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MORSE-SMALE SINGULARITIES IN SIMPLE
MECHANICAL SYSTEMS

ROBERT L. DEVANEY

Among the simplest of smooth dynamical systems are the so-called gradi-
ent-like Morse-Smale flows. These systems feature only a finite number of
equilibrium points, and all other orbits of the system tend toward and away
from one of these points. As a consequence, there are no closed or nontriv-
ially recurrent orbits. All the complicated or pathological behavior associated
with many physical systems are absent from these systems, and we may take
a gradient-like Morse-Smale system as being completely understood.

On the other hand, among the most complicated dynamical systems are the
Hamiltonian systems which arise in various branches of mechanics. Here, all
of the orbits of the system are recurrent (at least in the compact case), and
one generally expects random and highly unstable behavior. Furthermore, in
practice, such systems are often complicated by the existence of
singularities-that is, points where the differential equation itself "blows up"
or is otherwise undefined. A good example of such a singularity is a collision
of the various particles in the Newtonian w-body problem. The behavior of
solutions which lead to or even which come close to such a singularity is often
quite erratic and is not very well understood.

Our goal in this paper is to study this complicated behavior of a mechani-
cal system near a singularity by reducing the problem to the study of a
gradient-like Morse-Smale system. More precisely, we shall replace the singu-
larity by a smooth compact manifold which we call the singularity manifold.
After a suitable change of time scale, the scaled vector field will extend
smoothly to the singularity manifold. Orbits which previously ended or began
at the singularity will now tend asymptotically toward or away from the
singularity manifold. Furthermore, the behavior of orbits which previously
came close to the singularity will now be governed by the induced flow on the
singularity manifold. Thus an important problem is to understand the phase
portrait of this extended flow. Our main result is that, in general, the induced
flow is quite simple.
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Theorem A. For an open and dense set of simple mechanical systems with an
isolated singularity of order k at the origin in Rn, the induced flow on the
singularity manifold is a gradient-like Morse-Smale flow.

We remark that the gradient-like Morse-Smale systems always have sinks
and sources. In contrast, Hamiltonian systems never admit such solutions,
since they are volume preserving. Hence our extended system is no longer
Hamiltonian. However, away from the singularity manifold, the orbit struc-
ture of the extended system is identical to the original system (up to a change
of time scale along orbits). Thus the singularity manifold consists entirely of
fictitious orbits, introduced only as a device for understanding solutions
which pass close to the singularity.

The construction of the singularity manifold is due to R. McGehee, who
used this method in [7] to describe orbits which come close to triple collision
in the Newtonian three-body problem. Our results owe much to the methods
developed in this paper.

When the induced flow on the singularity manifold is gradient-like and
Morse-Smale, we shall call the singularity itself Morse-Smale. An important
problem thus becomes: how does one recognize when a singularity of a
mechanical system is Morse-Smale. Below, we shall relate the qualitative
features of the flow on the singularity manifold to the potential energy of the
system. Since the potential energy of the system is always known, this gives
an effective means of determining when the singularity is Morse-Smale.

Our results along this line may be summarized as follows. Let S denote the
unit sphere in configuration space in the metric determined by the kinetic
energy. Let / denote the restriction to S of the principal part of the potential
energy (to be defined below). Then we have

Theorem B. The flow on the singularity manifold is a gradient-like Morse-
Smale flow if

1. / has 0 as a regular value,
l.fis a Morse function on the set {s G S\f(s) < 0},
3. the stable and unstable manifolds of the equilibrium points in the singularity

manifold meet transversely.
Conditions 1 and 2 above are immediately verifiable in any mechanical
system. Unfortunately, condition 3 is not as obvious and must be checked in
each individual case.

The construction of the singularity manifold below also allows us to
determine the structure of the orbits which end or begin at the singularity. We
call such orbits (forward or backward) collision orbits. In general, the set of
such orbits can be fairly complicated. But, for Morse-Smale singularities, at
least, we have
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Theorem C. Suppose a simple mechanical system has a Morse-Smale singu-

larity at the origin in RΛ. Then the set of collision orbits consists of a union of m

submanifolds of varying dimensions, where m is the number of critical points off

onS.

Moreover, in §8 below, we shall relate the dimensions of these various

manifolds to the Morse indices of the critical points of/.

The structure of this paper is as follows. In §§1-3, we describe the basic

construction of the singularity manifold and the extension of the flow. In §4

we give a class of examples to which this construction applies: the central

force problems. We also describe the flow on the singularity manifold in some

detail in the special case of the Newtonian central force or Kepler problem.

In §§5-6 below, we relate the structure of the equilibrium solutions in the

singularity manifold to the potential energy of the system. Theorem B is

proved in §5 and Theorem A in §6.

The anisotropic Kepler problem is the main topic of §7. This is a noninte-

grable classical mechanical system which is of some recent physical interest.

We include this as a particularly illuminating example of a Morse-Smale

singularity.

Finally, in §8, we discuss collision orbits in more detail. It is here that we

complete the proof of Theorem C.

1. Basic definitions

In this paper, we shall be primarily concerned with the simple mechanical

systems of the form q" = A ~ι grad K(q), where A is an n X n positive definite

symmetric matrix, and q = (ql9 . . . , qn) is a point in RΛ. Equivalently, one

may introduce the momentum variable p = Aq\ and write this system as a

first order system of differential equations on R2n:

(1.1) q ' ^ ' p , p' = -V(q).

This is a Hamiltonian system on RΛ. That is, if one introduces the Hamilto-

nian or total energy function

(1.2) H(q, p) = K(j>) + F(q),

where K(p) = jp'A'ιp, then (1.1) may be written in the form

, dH , -dH

F(q) is called the potential energy of the system, and K(p) the kinetic energy.

It is well known that the Hamiltonian is a first integral for systems of the

form (1.3). That is, H is constant along any solution of the system. Thus,
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instead of studying the full 2 n -dimensional system, one may restrict attention
to the codimension-one level sets of H. These level sets are invariant under
the flow of (1.3), and are called energy surfaces. We denote H~\e) by Σe. If e
is a regular value of H, then it follows from the Implicit Function Theorem
and Σe is a smooth submanifold of R2π. We shall restrict our attention to a
single such energy surface in the sequel.

As we mentioned above, we wish to consider Hamiltonian systems which
admit singularities in the equations of motion. Such singularities occur
whenever the potential energy suffers a singularity. We assume throughout
that V has an isolated singularity at q = 0, that is, limq_^ K(q) fails to exist,
while V is smooth in a punctured neighborhood of the origin.

This assumption excludes some of the most complicated singularities in
mechanics-for example, λ>fold collision in the n-boάy (k > 3) problem is a
nonisolated singularity in the above sense. Nevertheless, many important
systems do admit isolated singularities, and their structure is already com-
plicated enough to warrant special attention.

We shall say that V has a singularity or pole of order k at the origin if

(1-4) F(q) = F(q) + JV(q),

where F is a homogeneous function of degree -k, and N contains higher
order terms, i.e., rkN(q) extends smoothly over 0, assuming the value 0 there.
Equivalently, if we choose "polar coordinates" (r, s) on R", where r G [0, oo),
s E Sn~ι, then we may write rkV(rs) = F(s) + O(r) where F is now regarded
as a smooth function on the (n — l)-sphere in Rn. We call F the principal part
of the potential energy.

We finally list several important mechanical systems to which our analysis
below applies. Each of these examples admits an isolated singularity or order
k at the origin.

1. Central force problems. Here the Hamiltonian assumes the form

2

where | | denotes the standard norm in RΛ. The structure of these systems
near the singularity is quite different depending on whether k > 2 or k < 2.

2. The anisotropic Kepler problem. Here the Hamiltonian is given by

(l/2)pU"1p — l/|q|, where A is an n X n diagonal matrix with positive
entries. If A is the identity matrix, we have the usual (Newtonian) central
force or Kepler problem. If all of the entries along the diagonal are distinct,
however, then the orbit structure changes quite dramatically. Our analysis
below gives a good picture of how orbits behave near the origin.
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2. The singularity manifold

The goal of this section is to replace a singularity or order A: by a smooth

compact manifold. In the next section, we shall show how to extend the

system over this manifold to get a well-defined vector field without singulari-

ties.

Let r = (qUq)1/2. Let S denote the unit sphere in RΛ in the metric defined

by A, i.e.,

(2.1) 5 = { s e R ^ β U s - 1}.

We think of r, s as defining polar coordinates in the configuration space of

the system. We also introduce the variables

(2.2) >> = s'p, x-^p-j* .

Since s'Ax = 0, x may be regarded as the component of momentum tangent

to 5, and y as the radial component of momentum. We also think of the pair

(s, x) as defining a point in the tangent bundle to S.

In these coordinates, the system (1.1) assumes the form

r' =y,

y' = -x'Ax- s'VF(rs),
r

x' = --[>>x + (xUx)s] - A-ιVV(rs) + [s'VF(rs)]s.

We regard (2.3) as a vector field on the open manifold (0, oo) X R X TS,

where TS denotes the tangent bundle to S. This system still has singularities,

but the singularity set has been enlarged. Now, the system is singular along

the entire boundary r = 0.

We now scale the momentum variables by a factor of rk/1. That is, let

(2.4) u = r*/2x, v -

The differential equation (2.3) goes over to

r' = rk/2v,

υ> = rλ-kl\xtAvL + (k/2)v2] -

(2.5) s* = r-^/V

(-1 + k/2)vu]

+ rk'2[-A-ιVV(rs) + (sVF(rs)s)],
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where the energy relation becomes

(2.6) e = r-k[(\/l)vlAvi + (l/2)t>2] + K(rs).

The singularity at r = 0 may now be removed by the change of time scale

(2.7) dt = rι+k/2dτ.

If we let a dot indicate differentiation with respect to T, the scaled system

becomes

r = rυ9

v = (k/2)v2 + u'Λu - rk+ VV F(rs),

s = u

ύ = (-1 + A:/2)™ - (u'Λu)s + r H 1 [s 'VF(rs )s - Λ^

Using (1.4) we may write

VV(rs) = Γk-ιVF(s) + VJV(rs),

and using Euler's formula also gives

s'VF(rs) = r-k-ι[-kF(s) + s'VW(rs)].

Hence the system (2.8) may be written more simply as

r = rv,

v = (k/2)v2 4- uUu + kF(s) + O(r),

(2.9) s = u,

ύ = (-1 + Jfc/2)t>u - (uUu)s - A:F(s)s - A~lVF(s) + O(

The system (2.9) has no singularity at r = 0. In fact, (2.9) is well-defined on

r = 0, and moreover, since r = rυ, it follows that r = 0 is invariant under the

flow induced by (2.9). Hence this new system may be regarded as a smooth

vector field on all of the manifold with boundary [0, oo) X R X TS.

Now the energy integral (2.6) also extends to the boundary, and gives

(2.10) 0 = rke = \VIAVL + \υ2 + F(s) 4- O{r).

If the right-hand side of this expression has 0 as a regular value, then the

relation (2.10) defines a smooth codimension-one submanifold of the

boundary r = 0. In this case, we denote this submanifold by Λ; Λ is called

the singularity manifold of the system.

The following proposition gives a criterion for Λ to be a smooth submani-

fold in terms of the potential energy of the system.

Proposition 2.1. If 0 is a regular value of the restriction of F to S, then Λ is

a smooth submanifold ofr = 0.
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Proof. Let g: R X TS -* R be given by

(2.11) g(v, s, u) = \{υ2 + u'Λu) + F(s).

Note that g~ι(0) = Λ. So Λ is a submanifold of r = 0 if 0 is a regular value of

g. We shall show that if 0 is a regular value of the restriction of F to S, then 0

is also a regular value for g.

To see this, assume that g has a critical point at (t>0, so,Uo) and g(v0, s0, UQ)

= 0. Differentiating (2.11) shows that ^ ( S Q ) = 0, and also that UQ = 0,

v0 = 0. Hence we must have F(s0) = 0. If 0 is a regular value of F, then we

must have dF(s0) ¥= 0. This contradiction proves that 0 is a regular value of g.

q.e.d.

In case 0 is a regular value of F on S, we say that the singularity at the

origin is nondegenerate. It is well known that this condition holds for an open

and dense subset of the smooth functions on 5, and so we have shown that

most singularities of order k are nondegenerate.

In case the singularity is nondegenerate, the topology of Λ is easy to

describe. Recall first that TS X R is diffeomorphic to S X R" in a natural

way. If F(s) is strictly negative on S, then the energy relation (2.10) gives

(2.12) £(iA4u+ v2) = -F(s)

in r = 0. This defines an ellipsoid in RΛ for each fixed s G S. Hence Λ is

diffeomorphic to S"1"1 X S"1"1 in this case.

If F(s) is not strictly negative, then the topology of Λ is more complicated.

Since 0 is a regular value of the restriction of F to S, it follows that

M = {s E SΊ^ίs) < 0} is a smooth submanifold with boundary in S. Denote

the boundary of M by ΘM. Then, as before, (2.12) defines an ellipsoid in RΛ

as long as s e M - ΘM. If s e 3M, then only u = 0, v = 0 satisfies (2.12).

Hence we may regard Λ in this case as a pinched or reduced sphere bundle

over M: the fibers of this bundle are spheres, except over 9M, where the

fibers degenerate into single points. We remark that the homology groups of

Λ may be easily related to the homology of M and 3M by using a Mayer-Vie-

toris sequence.

We also remark that Λ is independent of the energy level e. Consequently,

Λ may be regarded as the invariant boundary of each fixed energy level.

Orbits of the original system which previously reached the singularity set in

finite time now tend asymptotically toward Λ. And orbits which previously

came close to 0 now behave like orbits on Λ itself. In the next section we

discuss this flow in some detail.

Finally, we remark that Proposition 2.1 is the prototype of the theorems we

have for Λ: the question of the nondegeneracy of the singularity is reduced to
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a question about the principal part of the potential energy. This question is
always easy to answer, given the potential energy of the system.

3. The flow on the singularity manifold

In this section, we assume that the origin is a nondegenerate singularity of
(1.1). By Proposition 2.1, it follows that Λ is a submanifold of r — 0 having
dimension 2n — 2.

The restriction of (2.9) to the entire boundary r = 0 is given by

v = (k/2)υ2 + u'Λu + kF(s),

(3.1) s = u,

ύ = (-1 + k/2)vu - (u^u)s - kF(s)s - Λ^VFfc).

This is a smooth vector field on TS X R. Using the energy relation (2.10), the
flow on the submanifold Λ is given by the simpler system

ύ = (1 - k/2)u'Au,

(3.2) s = u,

ύ = (-1 + k/2)vu - (uUu)s - kF(s)s - A~ιVF(s\

where the point (t>, s, u) e Λ.
In this section, our goal is to show that the flow induced by (3.2) is

relatively simple-generally, (3.2) is a gradient-like Morse-Smale system on Λ.
Our first observation is that, if k φ 2, then (3.2) is always gradient-like.

Recall that a vector field is called gradient-like if there is a smooth function
which increases along all nonequilibrium orbits. A gradient-like vector field is
relatively simple in the sense that there are no nontrivially recurrent or
periodic solutions: the only nonwandering points are the equilibrium solu-
tions.

To see that (3.2) is gradient-like, we first observe that the equilibrium
solutions on Λ consist of all points of the form (t>0, s0, UQ) where

Uo = O,

(3.3) kF(s0) + A-ιVF(s0) = 0,

(l/2)t;2 + F(s0) = 0.

When k < 2, we consider the function g: A —> R given by g(υ, s, u) = v (if
k > 2, take g = -v and the argument is similar). Let g denote the derivative
of g in the direction of the flow. One computes easily that

g = (i _ k/2k)u'Au,
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so that g > 0 if u Φ 0. Hence g increases along any orbit segment which
misses u = 0.

When u = 0, however, g = 0. Nevertheless, we claim that g still increases
along any nonstationary orbit that meets u = 0. This can be seen as follows.
When u = 0, we have ύ = -kF(s)s - A'ιVF(s)9 and, from the energy rela-
tion, v2 = -2F(s). Hence |ύ| = 0 iff the point (t>, s, u) is an equilibirum
solution. If |ύ| > 0, then the orbit leaves the submanifold u = 0 immediately,
and g increases everywhere by continuity.

In the special case when k = 2, the function g defined above is an integral
for the flow on Λ. This follows immediately from the fact that g = (1 —
k/lXu'Aύ) = 0 in this case. In fact, one may check that the flow on Λ is itself
Hamiltonian, with g as the Hamiltonian function.

We summarize these facts in a proposition.

Proposition 3.1. Suppose the system (1.1) has a nondegenerate singularity of
order k at the origin. If k < 2, the flow on A is gradient-like with respect to
g(υ, s,u) = v.Ifk>2, the flow on λ is gradient-like with respect to g(v, s, u)
= -υ. Moreover, if k = 2, then the flow has an integral given by g(v, s, u) = v.

We turn our attention now to the equilibrium solutions of the flow on the
singularity manifold. Let/(s) denote the restriction of F(s) to S. Also, let < , )
denote the Riemannian metric on S defined by <ξ, η> = ξAη where ξ, η are
tangent to S at s. Recall that ξ G Rπ is tangent to S at s iff ξAs = 0.

The gradient vector field associated to/(s) is the vector field grad/ defined
by the requirement that
(3.4) <grad/(s),£> = <//s(ξ).
The following proposition gives a formula for computing grad/ on our
coordinates.

Proposition 3.2. grad/(s) = A:.F(s)s + A~ιV F(s).
Proof. First observe that kF(s)s + yl^Vi^s) is indeed tangent to S at s.

This follows since

s'Λ(fcF(s)s + A~ιVF(s)) = kF(s) + s'VF(s) = 0

via Euler's formula. For any vector ξ tangent to S at s, we also have

gA(kF(s)s + A-ιVF(s)) = £VF(s) = dfs($ = dfs(ξ).

Hence, grad/(s) = kF(s)s + A~ιVF(s). q.e.d.

This proposition immediately gives the relationship between equilibrium
points for the flow on Λ and critical points of/(s):

Corollary 33. The flow on A has an equilibrium point at (VQ, SQ, UQ) iff
1. u0 = 0,
2. s0 is a critical point off,
3. v0 = ± ( - 2 y / 2
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Proof. The proof follows immediately from (3.3) and Proposition 3.2,

together with the fact that grad/vanishes precisely at the critical points of/.

4. Central force problems

As an example of the previous construction, and as motivation for what

follows, we digress in this section to discuss a physically important class of

examples for such we may construct singularity manifolds. These examples

also serve to illustrate the fact that the flow on the singularity manifold is

relatively easy to describe.

For each k > 0, we consider the central force problem in Rn defined by the

Hamiltonian

Here | | denotes the usual norm in Rπ. The case k = 1 is particularly

important in classical mechanics; this is the familiar Kepler or Newtonian

central force problem. The other cases correspond to different non-Newto-

nian laws of attraction; there are many applications for these systems in

various branches of physics and astronomy.

For each k, the potential energy of the system is homogeneous of degree -k

and has an isolated singularity at the origin. The restriction of F to S is

therefore identically -I/A:, so the singularity is nondegenerate. Thus we may

introduce a singularity manifold at the origin. This is accomplished via the

changes of coordinates in §2. The resulting system is given by

r — rv,

ύ = (k/2)υ2 + |u|2 - 1,

(4.1) s = u,

ύ = (k/2 - 1)UU - |u|2s

with the energy relation

(4.2) rke=\{\n\2 + v2)-\/k.

The singularity manifold is therefore defined by

r-0, £(M2 + »2) - V*

So Λ is diffeomorphic to Sn~ι X Sn~x for each k. The flow on Λ depends on

k and is given by

v = (1 - k/2)\u\\

s = u,

ύ = (-1 + k/2)υu - |u|2s.
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We wish to discuss the phase portrait of this flow in some detail.

Observe first that this system has an equilibrium point at each point of the

form u = 0, v = ± λll/k . Hence there are two (n - l)-spheres of

equilibria, which we denote by Z + and Z~, the choice of sign depending on

the sign of v. When k < 2, v increases along nonequilibrium orbits, so orbits

in Λ travel from Z" to Z + . Just the opposite is true for k > 2, since -v

increases along orbits in this case. For k φ 2, each orbit in Λ is both forward

and backward asymptotic to a unique equilibrium point in Z ± we refer to [8]

for more details on how this behavior depends on k.

We also wish to consider the behavior of the flow in the direction

transverse to Λ. Since f = rv, it follows that each equilibrium point in Z" has

a one-dimensional stable manifold tangent to the r-direction, while each point

in Z + has a one-dimensional unstable manifold in the same direction. This

gives us completely different behavior for the flow near Λ in the two cases

k > 2 and k < 2.
When k > 2, the sphere Z~ is a global attractor for the flow, while Z + is a

global repellor. As a consequence, it follows easily that any orbit of the

system which comes close enough to the origin must in fact eventually collide

with the origin.

When k < 2, the situation is quite different. Only an {n — l)-dimensional

submanif old tends to collision with the singularity in each time direction, so

most orbits in an energy surface do not experience a collision. Orbits which

come close to a collision tend to behave like orbits on the singularity

manifold. That is, nearby noncollision orbits approach Λ near one of the

stable manifolds tending to Z~, then follow the flow on Λ toward Z + , and

finally leave a neighborhood of the singularity near one of the unstable

manifolds emanating from Z + . We examine this behavior in more detail

below for the special case of the Kepler problem, i.e., when k = 1.

Using (4.1), the flow of the Kepler problem is given by the system

r = rυ,

(4.3) s = u,

ύ = -\vu - |u|2s.

Define E: [0, oo) X R X TS -+ R" by

E(r, v, s, u) = (1 - |u|2)s + vu.

E is a generalization of the so-called eccentric axis of the system [11].
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Proposition 4.1. E is a constant of the motion for the Kepler problem.

Proof. We differentiate E in the direction of the flow:

E = -2(u'ύ)s + (1 - |u|2)s - vu - vύ

= u|u|2s - |u|2u + u + (\υ2 + |u|2 - l) + v(-\vu - |u|2s)

= 0. q.e.d.

On Λ, we have E*E = 1, so that E takes its values in S for points on the
singularity manifold. Note that at an equilibrium point (± V2 , SQ, 0) we have
E = s0, so E is an injection on both Z + and Z~. Hence, to determine the
ultimate behavior of a point (v, s, u) E Λ under the flow, one simply com-
putes is(v, s, u). Then the orbit of (v, s, u) must be forward (resp. backward)
asymptotic to (V2 , E(v, s, u), 0) (resp. (-V2 , E, 0)). As a consequence, we
note that each orbit in Λ begins and ends with the same s-coordinate. This is
not in general true for the other central force potentials.

This fact has the following geometric consequence. An orbit in the Kepler
problem which begins or ends in collision with the origin does so with a
specific limiting direction in configuration space; that is, such an orbit tends
in forward time to a unique equilibrium point in Z~, say (-V2 , s0, 0). The
s-coordinate gives this limiting direction.

Now orbits which are close to a collision orbit but which miss the origin,
eventually must leave a neighborhood of 0. How these orbits leave is
governed by the flow on Λ. For the Kepler problem, an orbit which ap-
proaches collision near (-V2 , SQ, 0) follows the flow on Λ to a neighborhood
of ( 4- λίϊ , SQ, 0) and then leaves near the collision orbit emanating from this
equilibrium point. That is, since both equilibria project to the same point in
S, a nearby noncollision orbit leaves a neighborhood of the origin in the same
direction as it approached. It is this idea which has been exploited by Easton
in his geometric regularization of the Kepler problem [4].

5. Equilibrium solutions on Λ

In this section we continue the discussion of the flow on Λ. Our main goal
is to compute the characteristic exponents of the equilibrium solutions. As
before, we shall relate these dynamical properties of the flow on Λ to the
properties of the principal part of the potential energy of the system.

Recall that /(s) denotes the restriction of this principal part to the unit
sphere S. We say that/has a nondegenerate critical point at s iff dfs = 0 and
the Hessian d2fs is a nonsingular bilinear form. In the case of a nondegenerate
critical point, the index of / at s is defined to be the maximal dimension of a
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subspace on which d^ is negative definite. If / has a nondegenerate critical
point at s, then it follows easily that the vector field grad/ has a hyperbolic
equilibrium point at s and that, moreover, the dimension of the stable
manifold of grad/ at s is equal to the index of / at s. If / has only
nondegenerate critical points, then / is called a Morse function. It is well
known that Morse functions are open and dense in the set of all smooth
functions on a compact manifold. For more details on elementary Morse
theory, we refer to Milnor's book [9].

Corollary 3.3 shows that each critical point of / generates two equilibrium
points for the flow on Λ; the proposition below relates the nondegeneracy of
these critical points to the hyperbolicity of the equilibria.

Proposition 5.1. Suppose kφ2. If f has a nondegenerate critical point at SQ,

then the corresponding equilibrium solution of (2.9) at (0, t>0, s0, 0) is hyperbolic,

where v0 = ± V2/(so)
Proof. The characteristic exponents at the equilibrium point may be

computed in (r, v, s, u) coordinates as follows. The linearization of (2.9) at
(0, v0, s0, 0) is given by the 2n X 2n matrix

0

0

0 0 0 /
(k/2 - 1) V

where B is the (n - 1) X (n - 1) matrix giving the linearization of grad/ on

S at s0.

Clearly, there are two eigenvalues of (5.1) which are given by v0 and kv0.

Since 0 is a regular value of/, and/(So) < 0, it follows that vQ = ± y-2/(s0)

φ 0. The remaining 2n - 2 characteristic exponents are the eigenvalues of

the submatrix

(5.2) ' °

(5.1)

0

kv0

0
0

0

0

0
-B

These may be computed by using the following lemma.

Lemma 5.2. Let \ , i = 1, . . . , n — 1, denote the eigenvalues of B. Then,

for each i,

are both eigenvalues of {5.2), where μ = (k/2 - l)ϋ0.

Proof. Let w be an eigenvector of B corresponding to the eigenvalue \ .

Then the equation

/ 0 / \/ w \ = I ™ \ = ( w \
\-B jui/vαw; VαV/ ^αw/
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has a solution iff

-Bw + μaw = αV,

which happens iff

a2 - μa + \ = 0.

But the roots of this polynomial are

Since μ φ 0, it follows that £.* 7*= 0 for all i. This completes the proof, q.e.d.

The proof of Proposition 5.1 also enables us to compute the dimensions of

the various invariant manifolds of the equilibrium points in Λ. These di-

mensions depend only on k, sgn(t>0), and the index of SQ as a critical point

of/.

Let W\p\ W\p\ and W\p) denote the stable, unstable, and center

manifolds in Λ respectively of an equilibrium point p. These manifolds are

tangent at p to the eigenspaces in TpA corresponding to eigenvalues with

negative, positive, and zero real parts respectively.

Table 1 summarizes the dimensions of these invariant manifolds in Λ. We

emphasize that these are the dimensions in Λ; one may also consider the

stable and unstable manifolds in all of the energy surface. In fact, we shall do

so in §8. In general, these manifolds have larger dimension.

To compute these dimensions, we first observe that only the eigenvalues ζ*

given by Lemma 5.2 give eigenvectors tangent to Λ; the two remaining

eigenvalues lie in the r, ϋ-plane which is transverse to Λ at (0, ϋ0, s0, 0).

Now when k = 2, we have k/2 — 1 = μ = 0, so that

Hence we have 2(n — m) pure imaginary eigenvalues, where m is the index of
s0 as a critical point of/. For each eigenvalue \ < 0, ξf

+ is positive while ξf is
negative, so the stable and unstable manifolds in this case are both w-dimen-
sional.

When k < 2 and v0 is positive, we have that μ > 0 and

μ2 - 4 \ > μ,

provided \ < 0. Thus there are n — 1 — m characteristic exponents ξ*

which are positive. The remaining n + m — 1 characteristic exponents have

negative real parts. In a similar fashion, one may verify the other entries in

Table. 1.
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Degree

k

k

k

k

k

k

<2

< 2

> 2

> 2

= 2

Sgni?o

+
-
+
-
+
-

dim Ws

m

m + 2

m

In — m

m

m

dim Wu

2n — m

In + m - 2

2n — m

m

m

m

dim

0

0

0

0

2(n -

2(n -

Wc

m)

m)

TABLE 1. The dimensions of the invariant manifolds of equilibrium points

in Λ. Here m denotes the index of SQ as a critical point of/.
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6. Morse-Smale singularities

Thus far, we have shown that a nondegenerate singularity of order k may
be replaced in phase space by a smooth manifold over which the scaled flow
extends smoothly. If the principal part of the potential energy restricts to a
Morse function on S, then we also know that the resulting flow on Λ is
gradient-like and possesses only hyperbolic equilibrium points when k Φ2.
In this section, we shall impose an additional restriction on the flow on Λ.

We shall say that a singularity of order k φ 2 at the origin is Morse-Smale
if

1. the restriction of the principal part of the potential energy to S is a
Morse function,

2. 0 is a regular value of/,
3. the stable and unstable manifolds of all equilibrium points in Λ meet

transversely.
Condition 2 implies that Λ is actually a manifold, while 1 and 3 imply that

the flow on Λ is a gradient-like Morse-Smale flow. Also, conditions 1 and 2
are immediately computable in terms of the potential energy. It would be
interesting to relate condition 3 to the potential energy in the same manner,
but this seems rather difficult.

We have already observed that conditions 1 and 2 hold for an open dense
subset of the set of potential energy functions. Here we use the Whitney Cι

topology on the set of potentials which have a singularity of order k at the
origin in R". Actually, one may allow perturbations of the potential energy,
which change the asymptotic behavior at the singularity; only the restriction
of the principal part of the potential energy to the unit sphere S matters for
conditions 1 and 2.
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The goal of this section is to show that condition 3 also holds for an open

dense set of potential energy functions. This will complete the proof of

Theorem A and will show that most singularities of order k are Morse-Smale.

The proof is essentially the same as the usual proof of the genericity of

transverse intersection of stable and unstable manifolds (see, for example,

Abraham-Robbin [1]) with some minor modifications due to the fact that we

are considering a special class of vector fields. Recall that, restricted to r = 0,

the system is given by

s = u,

(6.1) ύ = (k/2)υ2 + u'Λu + kf(s),

ύ = (- + k/2)υvt - (uUu)s - grad/(s).

We are only allowed to perturb /, so, roughly speaking, we may only perturb

the system in the "fiber" or t>, u-directions. We shall show below that we still

have enough leeway to make all stable and unstable manifolds meet trans-

versely with such perturbations. We first need a lemma.

Lemma 6.1. Let p be a hyperbolic equilibrium point for (6.1). Let Π denote

the projection of R X TS onto 5, i.e., Π(ϋ, s, u) = s. Let x E Ws{p) {or

Wu{p)). Then there is a point y on the orbit of x satisfying: that the restriction

ofdΠy to W\p) {or Wu{p)) has maximal rank.

Proof. Using the matrix of the linearization of the flow (5.1) at p, one

checks easily that the projections of the stable and unstable eigenspaces at p

to the tangent space of S have maximal rank. This implies that there are open

neighborhoods of p in the stable and unstable manifolds having the same

property. Since all orbits in W\p) and Wu{p) enter these neighborhoods, the

proof is complete, q.e.d.

We now complete the proof of Theorem A. The openness of transverse

intersection is immediate, hence we restrict ourselves to proving density. For

this, we assume some familiarity with the methods in Abraham-Robbin [1].

First suppose that Wu{p) and Ws{q) have a point x of nontransverse

intersection, and that the dimension of one of these manifolds, say Wu{p), is

greater than or equal to n — 1. By Lemma 1 we may choose a pointy along

the orbit of x so that dUy\Wu{p) has maximal rank. In particular, because

dim Wu{p) > n - 1, it follows that W\p) is transverse to the fiber

U~ι{H{y)) at y. We may assume that this fiber is diffeomorphic to an

{n — l)-dimensional sphere.

Now (6.1) may be perturbed in any direction tangent to these fibers. By the

Perturbation Lemma of [1, p. 107], we may therefore perturb Wu{p) in j

independent directions transverse to Wu{p), where./ is the codimension of
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Wu(p) in the energy surface. If follows that Wu(p) may be perturbed to be
transverse to W\q).

In case both W\q) and Wu(p) have dimensions < n — 1, the above proof
does not work. However, we may adapt the proof using the following trick.
Lemma 6.1 still applies to Wu(p)9 yielding a point >> in Wu(p) n W\q) where
dUγ\Wu(p) has maximal rank. This implies that U(Wu(p)) is locally a
submanifold of S near U(y). Let V be an open neighborhood of U(y) in this
submanifold of S. Let W = U~ι(V). Then W is a submanifold of Λ with
dimension n - 1 + dim Wu(p). We now perturb Wu(p) by adding vector
fields whose support in Wu(p) is tangent to W. This means that the unstable
manifold for the perturbed flow remains tangent to W over V. As before, we
can now perburb Wu(p) in n — 1 transverse directions in W. Hence we may
guarantee that W\p) misses W\q\ at least over V. This again implies that
the perturbed stable and unstable manifolds are transverse to each other. This
completes the proof of Theorem A.

7. The anisotropic Kepler problem

The anisotropic Kepler problem is a one-parameter family of Hamiltonian
systems recently introduced by Gutzwiller [5] to model certain quantum
mechanical systems. When the parameter μ = 1, we have the ordinary
(planar) Kepler problem considered in §4. When μ > 1, the kinetic energy of
the system becomes anisotopic. This destroys the integrability of the problem
and changes the orbit structure of the system dramatically. Our concern here
is to show that the singularity of this system is a Morse-Smale singularity of
order 1, at least for most values of the parameter.

Let q,pG R2. The potential energy of the system is given, as in the Kepler
problem, by F(q) = -l/|q|, where | | denotes the usual norm in R2. The
kinetic energy of the system depends on a real parameter μ > \ and is given
by K(p) — |p^4p, where A ~ι is the 2 x 2 matrix

(7.1) ( "

The Hamiltonian is then H = K + V, with the resulting differential equation

(7.2) q' = Aιp9 p' = -q|q|3.

This sytem has a nondegenerate singularity of order 1 at the origin. Hence
we may introduce a singularity manifold at the origin via the changes of
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coordinates in §2. The resulting system is given by

r = rv,

v =\v2 + u U u - l/|s|,

(7.3) s = u,

ύ = -\vu - (uUu)s + s/|s| - ^l^s/lsl3.

Recall that S is defined by s ^ s = 1, so the expression for ύ cannot be

simplified unless μ = 1.

The singularity manifold is defined by the energy relation

(7.4) 0 = | ( t ; 2 + u'Λu) - l/|s|.

Clearly, Λ is a two-dimensional torus. The flow on Λ is given by

ύ = ^

(7.5) s = u,

ύ = -±vu - (u'Λu)s + s/|s| - A~ιs/\s\3.

This system is much more complicated than the corresponding system (4.3)

for the Kepler problem. Below we sketch some of the highlights of the phase

portrait. For proofs and further details, we refer to [2], [3].

When μ = 1, there are two circles of equilibria in Λ, as we showed in §4.

When μ > 1, each of these circles break up into four isolated equilibrium

points. One may check easily that each circle degenerates into two saddle

points, a sink, and a source. Equivalently, one may check that the real valued

function —l/|s| is a Morse function on S with eight critical points. A sketch

of the phase portrait of the flow on Λ is provided in Figure 1.

To show that the singularity is a Morse-Smale singularity, it suffices to

check that all of the stable and unstable manifolds meet transversely. This has

been verified for an open and dense set of parameter values by the author [2].

Also, Gutzwiller has computed the phase portrait of this flow numerically.

See [5].

Orbits of (7.2) which either begin or end at the singularity are called

collision orbits. They play an important role in the entire phase portrait of the

anisotropic Kepler problem. By the changes of variables in §2, such orbits are

slowed down so that they tend asymptotically toward or away from one of

the equilibrium points in Λ. Using the linearization of (7.3) about each of

these equilibria, one may check that for each μ > 1:

1. There is a unique collision orbit tending toward each source in Λ.

2. There is a unique collision orbit tending away from each sink in Λ.
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3. Two of the saddle points admit two-dimensional manifolds of orbits
tending toward the equilibrium.

4. The other two saddles admit two-dimensional manifolds of orbits tend-
ing away from the equilibrium.

FIG. 1. The phase portrait on the singularity manifold

for the anisotropic Kepler problem.

As a consequence of these facts, we have the following proposition.
Proposition 7.1. For all μ > 1, the set of collision orbits in the anisotropic

Kepler problem consists of a finite union of submanifolds of phase space.

In the following section, we shall prove a more general theorem which
holds for all Morse-Smale singularities.

We wish finally to mention one application which follows easily from the
considerations above. The singularity at the origin is a so-called nonregulariz-
able singularity. Roughly speaking, this means that certain orbits which are
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close to each other when they approach collision leave a neighborhood of
collision far apart. In the anisotropic Kepler problem, such behavior can be
verified as follows. Consider one of the collision orbits which tends to one of
the saddle points. In any neighborhood of this orbit, there are noncollision
orbits. These orbits come close to the saddle point and then leave, following
one of the two branches of the unstable manifold of the saddle point in Λ.
See Fig. 1. These branches die in distinct sinks. Hence the nearby noncolli-
sion orbits tend to leave a neighborhood of collision near the collision orbits
emanating from the two sinks. Since these are far apart, this proves the
nonregularizability of the problem. For further details, we refer to [3].

8. Collision orbits
In this section we complete the proof of Theorem C. Let C5 denote the set

of points on Σe — A whose forward orbits end in collision with the singular-
ity. Similarly, let Cu denote the set of points which collide with the origin in
backward time. Our goal is to show that, for a Morse-Smale singularity, both
Cs and Cu consist of a union of j submanifolds of varying codimension in Σe9

wherej is the number of critical points of/.
To prove this, we first observe that if k φ 2, then any orbit of (2.9) which is

asymptotic to Λ must in fact tend toward one of the equilibrium points in Λ.
This is a consequence of the gradient-like structure of the flow on Λ. Let
C\p) (resp. Cu{p)) denote the set of collision orbits tending top in forward
(resp. backward) time, by Proposition 5.1,/? is hyperbolic, so C\p) and Cu(p)
are contained in the stable and unstable manifolds respectively of/?. In fact,
we have C\p) = W\p) n (Σe - Λ) and C\p) = W\p) Π (Σe - Λ). Since
Σe - A is open, it follows that both C\p) and Cu(p) are open submanifolds
of W\p) and Wu(p), and hence both are manifolds themselves.

Now suppose p has coordinates (t>0, SQ, 0) in Λ. We claim that, depending
on the sign of v0, one of C\p) or Cu(p) is empty. To see that we recall that
the characteristic exponents at p are given by ζ^ for i = 1, . . . , n — 1,
together with v0, kv0. The characteristic vectors associated to the ξ* are all
tangent to Λ, whereas the remaining characteristic vector tangent to the
energy surface lies in either the υ0 or kv0 eigenspace. In any event, the
eigenvalue associated to this vector has the same sign as v0. Now only this
characteristic vector is not tangent to Λ, so the sign of υ0 determines whether
C\p) or Cu(p) is empty. We have

Proposition 8.1. Let (D0, SQ, 0) be an equilibrium point for the flow on Λ. If
v0 < 0, then Cu(v0, s0, 0) is empty. Ifvo>0, then Cs(v0, s0, 0) is empty.
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Consequently, corresponding to each critical point SQ of/, we find a unique

submanifold of collision orbits tending toward and away from one of the

equilibrium points determined by s0. This completes the proof of Theorem C.

We remark that, using Table 1 one may easily compute the dimensions of

these various submanifolds in Cs and Cu. We summarize the results below.

Proposition 8.2. Let s0 be a nondegenerate critical point for f of index m.

Let v£ = ± /-2/(s0) .Ifk < 2, then

dim CS(VQ, S0, 0) = n - m = dim CM(υ0

+, s0, 0).

Ifk > 2, then

dim Cs(vo, s0, 0) = n + m = dim Cuj(υ+, s0, 0).
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