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0. Introduction
The point of this article is to present a simple and unified approach to both

the immersion problem and the vector field problem for manifolds by using
the formalism of Clifford bundles. The fundamental constructions are based
on the work of Atiyah [1] and involve the study of certain natural first order
elliptic operators. The method not only applies to a broad spectrum of
problems but also yields quite delicate results. It recaptures, for example, all
the non-immersion and non-embedding theorems known to date concerning
complex and quaternion projective spaces.

In §4 we will show that if a certain condition holds on these spaces, then
our theorems will improve the old non-immersion results, and we conjecture
that the resulting theorems would be sharp. Evidence to that effect comes
from recent work of Davis and Mahowald.

In general outline, our approach is the following. To any riemannian
manifold X there is naturally associated a bundle Cl(T) whose fiber at a
point x is the Clifford algebra of the tangent space TX(X). One now studies
bundles of modules over this bundle of algebras. To any such bundle of
modules M with an appropriate connection one can associate an elliptic, first
order differential operator D which we call the Dirac operator of M. If X is
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oriented and even-dimensional, there is a simple decomposition M = M + θ
M~, such that the restriction of D gives an elliptic operator D + : Γ(M+)-»
Γ(Λ/~). The index of D + = dim(ker D + ) - dim(coker D + ) is a topological
invariant which is easily computed via the Atiyah-Singer theorem [5]. (This
construction is commonly employed in the study of spin manifolds.)

Suppose now that there is a smooth immersion Xn ** Sn+q with normal
bundle N(X), and consider the bundle Cl(T θ iV) whose fiber at a point x is
the Clifford algebra of TX{X) θ i^CY). This is evidently a bundle of left and
right modules over Cl(T), in fact, over C/(Γ θ N). Using left module
multiplication we decompose this bundle as above and obtain an operator
D + : Γ(C/+(Γ θ N)) -> Γ(C/"(Γ θ #)). The subbundles C/±(Γ θ ΛT) are
each modules by right multiplication over Cl(T θ N). Since T Φ N is trivial,
it admits n + q pointwise orthonormal sections εv . . . , en+q. These sections
generate a finite group in Γ(C/(Γ θ N)). Averaging D+ over this group
produces a new operator D + with the same first order part and, therefore, the
same index as Z) + . However, the kernel and cokernel of D+ are now
modules over Γ, i.e., they are modules for the Clifford algebra C7Λ+έΓ which is
the group algebra of Γ. These modules are naturally Z2-graded. Computing
the index of D + , we obtain the following result. If n = 0 (mod 4) and there
exists a smooth immersion Xn *& Sn+g, then

2*A(X)ΞΞO (mod2an+q),

where A (X) is the so-called A -genus of X (cf. [ 8]), and 2an is the dimension of
an irreducible, real Z2-graded module over Cln+q. (See §1.)

This is an exact analogue of Atiyah's proof [1] that if n = 0 (mod 4), and X
admits q everywhere linearly independent vector fields, then

L(X) = 0 (mod 2aq),

where L(X) is the signature of X.
The above construction is easily generalized by taking coefficients in a

bundle E. One then obtains the following.
Theorem. Let Xn be a compact oriented manifold of even dimension n. If

there exists a smooth immersion Xn *\» Sn+q, then

2"{ch2E A(X)}[X] = 0 (mod 2bn+q),

and if, on the other hand, X admits q linearly independent vector fields, then

{ch2E-L(X)}[X]=O(2bq),

for any complex vector bundle E over X.
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Here 2bk denotes the complex dimension of an irreducible complex Z2-
graded module over Clk; ch2E = Σ 2kchkE where ch E = Σ chkE, chkE G
H2k(X; Q) is the Chern character of E; and A(X) and l^X) denote the total
A and L classes of X in the sense of Hirzebruch [8],

When q is even, the congruences in the theorem above can sometimes be
improved by replacing 2q with 2q~ι. In the case that E is real or quaternionic,
further refinements of the theorem can be established by making careful use
of the structure of Clifford algebras and their representations. (See §3 for
precise statements.)

The theorems proved in §§3 and 5 recapture the results of a number of
people including Atiyah and Hirzebruch [3], Mayer [11], Frank [7], and
Schwarz [12]. The method employed here gives a certain new geometric
insight into these results and has the advantage of being both conceptually
and computationally simple.

The paper is organized as follows. In the first two sections we review some
basic material concerning Clifford bundles and Dirac operators. In §§3 and 5
we prove the general theorems for immersions and vector fields. In §4 we
compute specific results for immersions of CPn and HPn into euclidean
space. In the last section we prove general results concerning the geometric
dimension of the tangent bundle of a manifold. We then compute this bound
precisely for QPn and HPn. We also give bounds for the geometric dimension
of ζ θ θ£ (N times) where ξ is the canonical (hyperplane) bundle over
CPn.

We would like to thank Michael Crabb for several valuable conversations
related to this work.

1. The Structure of Clifford algebras

We shall present in this section a quick review of the theory of Clifford
algebras and their real representations. For more details the reader is referred
to the fundamental paper of Atiyah, Bott and Shapiro [2].

Let V be a real vector space with a quadratic form q. Associated to this
pair is the Clifford algebra

Cl(V9q)-$(V)/S(q),

where ?Γ(K) = Σ ® r V is the tensor algebra of V, and where 5 is the ideal

generated by the elements v ® v + q(v) for v E V. There is a canonical

inclusion i: V<L^Cl(V, q) which comes from the degree 1 inclusion V =

®λ V c ?Γ(K). Any map/: K-> &, where & is an associative algebra with

unit, and the property that/(t>) f(v) + q(v) = 0 extends to a unique algebra

homomorphism/: C/(F, q) -> έB.
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In particular the map υ -* -v, sending F - > F c C/( V, q), has this prop-

erty. It therefore extends to an algebra automorphism a: Cl(V9 q) -» C/(K, q)

with a2 = 1. Let Cl°(V, q) and Cl\V, q) denote the 1 and -1 eigenspaces of

a respectively. Then the decomposition

(1.1) C/(K, q) = Cl°(V, q) θ Clι(V, q)

gives Cl(V,q) the structure of a Z2-graded algebra, that is, Cl'(V9 q)

Cl\V, q) c Cli+J(V, q) where the indices are taken mod 2.

We shall only be concerned with the case where V is finite dimensional and

q is positive definite. Let ev , en be an orthonormal basis for V with

respect to the inner product determined by q. Then Cl( V, q) is isomorphic to

the associative algebra generated by ev , en subject to the relations:

(1.2) βfij + ejβ, = -2δv

for 1 < i,j < n. We denote this algebra by C/Λ,

The algebras Cln have been determined up to isomorphism in [2]. They

satisfy the periodicity relation Cln+S = Cln ® C/8. The first eight are given by

the following table

n

cιn

1

c
2

H

3

H Θ H

4

H(2)

5

C(4)

6

R(8)

7

R(8) θ R(8)

8

R(16)

TABLE 1

Here K(jί) denotes the algebra of n X n matrices over the field K9 and C

denotes the complex numbers and H the quaternions. One has the relation

K(l6n) = K(n) ® R(16).

Note that given an orientation in V one can define a canonical volume

element

(1.3) co = eι - - - en,

where (el9 , en) is any oriented orthonormal basis of V. This element has

the following properties:

(1.4) co2 = (-l ) π ( / l + 1 ) / 2 ,

(1.5) ϋco = ( - l ) " " 1 ^ for all v G V.

If n = 3 or 4 (mod 4), then co2 = 1, and we can decompose the Clifford

algebra into 1 and -1 eigenspaces under left multiplication by co. That is,

setting C/( V) = C/( V, q) for convenience, we have a decomposition

(1.6) Cl(V) = Cl + (V) θ C/-(K),

where

(1.7) C/±(F) = (l±ω) C/(F),
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If n = 3 (mod 4), then ω is central, and the spaces Cl±(V) are (simple)

subalgebras. The decomposition (1.6) corresponds to the decomposition seen

in Table 1.

If n = 0 (mod 4), then Cl±(V) are not subalgebras. In fact, from(1.5) we

see that Lv: C/±(F) -> ClT(V) where LΌ denotes left multiplication by v for

any v G V. Note, however, that Cl±(V) are still invariant under right

multiplication by elements of Cl{ V).

We now consider the question of real modules over the algebras Cln. From

the classification above and the simplicity of the matrix algebras, we see that

f or n 5* 3 (mod 4) there is only one equivalence class of irreducible modules

over Cln. If n = 3 (mod 4), there are two such classes. They have the same

dimension.

For applications in topology it is useful to consider the notion of a

Z2-graded module over Cln = C/Λ° Θ C/Λ

!. This is a module M = Λf° θ Mι

such that CVn- Mj c Mi+J where the indices are taken mod 2. There is a

natural equivalence of the category of Z2-graded modules over Cln with the

category of ungraded modules over C/n° (cf. [2]). Furthermore, there is an

algebra isomorphism

given by extending the map R/I~1-»C/Π which sends e,H»eyeΛ for j =

1, , n — 1. This means that the dimension 2an of an irreducible real

Z2-graded module over Cln is exactly twice the dimension an of an irreducible

ungraded module over Cln_v The same statement applies to the complex

dimension 2bn(2cn) of an irreducible complex (quaternionic) Z^graded mod-

ule over Cln. These numbers can be read directly from Table 1. For any n,
an+s = 16αΛ, bn+s = \6bn and c n + 8 = 16crt. For n < 8, the numbers are given

by the following table.

n

K

1

1

1

2

2

2

1

2

3

4

2

2

4

4

2

2

5

8

4

4

6

8

4

8

7

8

8

16

8

8

8

16

TABLE 2

In particular we have that:

(1.8) as

(1.9)



242 H. B. LAWSON, JR. & M. L. MICHELSOHN

where vr and μ,. for 1 < r < 8 can be read from Table 2. We also see that

(1.10) bn = 2[{n-χ)/2\

for all /z.

Remark 1.1. For future use we make the following observation. Let n = 0

(mod 4) and consider the subspaces C// given by (1.7). Since ω G C/,,0, each

of these spaces carries a Z2-grading:

(1.11) C// = ( 1 ± ω ) C / ° θ ( l ± ω ) C/1.

Under right multiplication these form Z2-graded C/Λ-modules.

2. The geometry of Clifford bundles and the Dirac operator

We shall now briefly review the notions of Clifford structures in rieman-

nian geometry. For a detailed exposition of this subject the reader is referred

to [10].

The first observation of this section is that any functorial construction for

vector spaces with positive quadratic forms carries over naturally to the

category of vector bundles with inner products. In particular, suppose E is an

Λ-dimensional real vector bundle with a riemannian metric over a space X,

Then one can naturally form the Clifford bundle

a(E) = ?Γ(/o/ίKn
where ?Γ(2s) is the bundle of tensor algebras of E, and $(E) is the bundle of

ideals generated by the elements e ® e + | |e | | 2 for e G E. The fiber Clx(E) at

x G l i s just the Clifford algebra of the fiber Ex. There is a natural inclusion

E c Cl(E). The bundle map e-^-e sending E^E c Cl(E) extends to a

bundle automorphism α: Cl(E) -> Cl(E) with a2 = 1. This gives a decom-

position

(2.1) Cl(E) = Cl°(E) θ Cl\E)

into the 1 and -1 eigenbundles of a respectively. Under fiberwise multiplica-

tion we have CΓ(E)ClJ(E) c Cli+J(E) where the indices are taken mod 2.

If E is oriented, there is an invariant and therefore globally defined volume

form

(2.2) co = β, en,

where at x G X, (ev , en) is any oriented orthonormal basis of Ex. This

form satisfies the relations (1.4) and (1.5). In particular, if n = 3 or 4 (mod 4),

then there is a decomposition

(2.3) Cl(E) = Cl+(E) θ CΓ(E)
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into the 1 and -1 eigenbundles of left multiplication Lω by ω. Again we have
that

(2.4) Cl±{E) = (\±Lω) Cl{E)

If n = 3 (mod 4), then a: Cl +(E) -> CΓ{E) is a vector bundle isomorphism.

If n = 0 (mod 4) and e is a nowhere vanishing section of E, then left

multiplication by e, Le: C/ + (is) —» Cl~(E) is a vector bundle isomorphism.

Suppose, more generally, that M -*> X is a bundle of left modules over the

bundle of algebras Cl(E). (For example, Cl(E) is itself such a bundle. If is

carries a spin structure, then the fundamental Spinπ representations gives rise

to such bundles.) Then if n = 3 or 4 (mod 4) we have a decomposition

(2.5) M = Λf+ ΘM"

into 1 and -1 eigenbundles for Lω, where

(2.6) M ± = ( 1 ± L J M .

If Λ = 0 (mod 4), then by (1.5) we see that at each x 6 l , left multiplication

gives an isomorphism

(2.7) Le:M±^M*

for all nonzero e E Ex.

We now suppose that X is a smooth manifold and that all vector bundles

under discussion are smooth. Recall that a connection on a vector bundle E

over X is a linear map

V:

where Γ* denotes the cotangent bundle of X such that

(2.9) V(fe) = df®e +f7e

for all functions / E C °°(X) and all smooth sections e E Γ(^). This means

that to any smooth vector field V on X we have assigned a differential

operator Vκ: Γ(£) -> Γ(£) satisfying Vκ(/e) = (F/> + JVve for / and e as

above. The value of Vve at a point x 6 l depends only on Fx and the first

order jet of e at c. If E has an inner product < , >, we say V is riemannian

if

(2.10) d(el9 e2} = <Ve,, e2) + <elfVe2>

for all ev e2 E Γ(£). It is not difficult to show that riemannian connections

always exist.

Let E carry a riemannian connection V. Then there is a unique extension

of V to a riemannian connection on Cl(E) with the property that

(2.11)
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for all φ , ψ e T(Cί(E)). Furthermore, if M is any riemannian bundle of

modules over Cl(E\ i.e., Clifford multiplication by unit vectors in E is

orthogonal on the fibers of M, then there is a riemannian connection V on M

such that

(2.12) V(φ σ) = V(φ) - σ + φ (Vσ)

for all φ G T(Cl(E)) and all σ G Γ(M). See [10] for details. In the cases

considered in this paper we shall construct these connections explicitly.

Recall that if E is oriented, there is a globally defined volume form ω (cf.

(2.2)). It is a straightforward computation to see that ω is parallel, that is,

(2.13) Vω = 0

for any riemannian connection V on E, extended canonically by derivations

to Cl(E).

Suppose now that X is a compact riemannian w-manifold. Let T denote its

tangent bundle, and let V be the canonical riemannian connection on T. Let

M be a bundle of modules over Cl(T), and suppose M carries a compatible

riemannian metric with a riemannian connection also denoted V.

Under these general hypotheses one can define an elliptic, first order

differential operator

D: Γ(M)-»Γ(M)

by setting

(2.14) Dσ-Σ ΉV)'
7=1

where at the point x in question (el9 , en) represents any orthonormal

basis of Tx. Locally on X we may choose (eϊ9 , en) to be a smooth frame

field, so it is clear that D maps smooth sections to smooth sections. It is easy

to see that D is elliptic. In fact for any ξ G T* s Tx the symbol σf Mx^> Mx

is just given by Clifford multiplication: σ̂ (<p) = ξ φ. Since ξ - ξ φ — ||£||2φ,

this map is an isomorphism for all ξ φ 0.

We shall always assume that the connection on M has property (2.12). In

this case D is a self-adjoint operator.

Suppose now that n = 0 (mod 4), and consider the decomposition (2.5) of

M under Lω. From the derivation property (2.12) and the fact that Vω = 0 it

follows that

(2.15) D o L ω = -Lωo D,

Therefore by restriction we get an operator

(2.16) D +
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which is elliptic since at a cotangent vector ξ G 7£ ss Γx its symbol σ*+: Mx

+

—» M "̂ is again Clifford multiplication by ξ. The adjoint of D + is the operator

D~: Γ ( M " ) ^ Γ ( M + ) obtained also by restriction. Consequently D+ has a

well defined analytic index

(2.17) /(/) + ) = dim(ker D + ) - dim(coker Z) + )

= dim(ker Z>+) - dim(ker D~).

The main result used in this paper is the following case of the Atiyah-

Singer Index Theorem [4], [5]. Let TΓ: T -* X be the bundle projection, and

consider the pullback bundles tττ*M±. Since D + is elliptic, its symbol gives

an isomorphism of π*M + with 77*M" in the complement of the zero-section.

Consequently π*M + - π*M~ is a well-defined element in the ^-theory of T

with compact support. Let ch: Kcpt(T)-> H*pt(T) denote the Chern char-

acter, and Ψ: H*(X) -+ H*pt(T) the Thorn isomorphism.

Theorem 2.1. (Atiyah and Singer). Let X be a compact oriented manifold,

and suppose D +: Γ(M + ) —> Γ(M~) is an elliptic operator. Then

(2.18) i(D+) = {ψ-ιch(π*M+ -w*M~)- 9(X)}[X],

where $(X) denotes the total Todd class of the bundle T ® C.

Note that this formula holds for any operator D+: Γ(M +)-^Γ(Λf~)

having the same symbol as D + .

The Todd class is given by the multiplicative sequence of Chern classes

associated to the power series p(x) = x/(l - ex). Hence, for d i m ^ ) = n

even, we have that

n/2 χ _χ

(2.19) HX) = Π YZΓeϊ TZΓ^j - l + *i(Pi) + UPvPi) + ,

where Sk(px, , /?fc) G H4k(X), and /ιfc G i / 4 ^ ^ ) denotes the fcth

Pontryagin class of X. The /7̂ 's are computed formally in terms of the x/s by

the formula

(2.20) pk = σk(x2

l9 , ^ / 2 ) ,

where σk denotes the A:th elementary symmetric function.

Remark 2.2. The index theorem above applies to both real and complex

operators. In the case that M± are complex bundles and D+ is complex

linear, the index of D + is defined as dimmer D + ) - dim^coker D + ) . If

M± are real bundles, then the index is given as dimR(ker D+) -

dimR(coker D + ) , and ch M ± is taken to mean ch(M ± ® C). The real case

can be deduced immediately from the complex one by complexifying the

bundles M ± .
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Suppose now that M + and M" are associated to the tangent frame bundle
P(X) by linear representations of SOn. Then M ± are induced from bundles
M± over BSOn by the classifying map/ Γ for T. Atiyah and Singer [5, §2]
show that in H*(BSOn; Q) there is a factorization ch M+ - ch M~= & e,
where e = xλ xn denotes the universal Euler Class, and that the first
factor appearing in (2.18) is given by

Consequently, when M ± are associated to the tangent frame bundle of X, we
have that

(2.21) i(D+) = I < * " * - < * " - . HXή[X].

Example. The simplest case of an operator of type (2.16) on a manifold of
dimension n = 0 (mod 4) is given by choosing M± = Cl±(T). (See (2.3)
above). In this case

ιt/2

chM+ -ch M= Π {eXj - e~%
7 = 1

where the xfs have the same meaning as above, that is, the Pontryagin classes
of X are given formally as the elementary symmetric functions in the xf. For
a proof of this fact see the discussion following (3.11) below. Now using
formula (2.19) and the fact that e = xx xn/2, we see that

chM+-chM-. = g *
,-_! tanh(x,./2)

If, more generally, we assume that M± = C/±(Γ)® E for some vector
bundle E over X, then

(2.23) ckM-ckMm Hχ) = ch£.t—±—.
e J=x tanh(xy/2)

This formula will be useful in later computations.
We conclude this section with some useful technical comments. Let Eι and

E2 be two riemannian vector bundles over X with riemannian connections V1

and V2 respectively.
Remark 23. There is a natural riemannian connection V1 Θ V2 defined

on the (orthogonal) Whitney sum Ex θ E2 by setting (V1 θ V2)(eι Φ ej
= Vλex θ V2β2. This is called the direct sum connection.

Ex and E2 are both oriented, and ω{ and ω2 are the corresponding volume
forms (cf. (2.2)), then Ψ'ωj = 0 for j = 1,2. Therefore both ωx and ω2 are
parallel in the direct sum connection.
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Remark 2.4. There is a natural riemannian connection V1 ® V2 defined
on the tensor product Ex ® E2 by setting (V1 ® ^2)(eι ® ej = (V1^) ® e2 +
^ ® (V2*?2). This is called the tensor product connection.

Hence the operations Θ and ® have a natural meaning in the category of
riemannian bundles over X with riemannian connection.

Remark 2.5. Any riemannian connection V on Ex Θ E2 induces rieman-
nian connections Ψ on Ej by setting Ψve = ^(Vye) where TΓ7: E -* Ey is the
orthogonal bundle projection. In this way we produce a new connection
V1 θ V2 on Ex θ E2 which we call the projection of V.

Remark 2.6. There is a natural vector bundle isomorphism

Cl(Ex θ E2) a C/(^!) ® C/(£2).

In fact, if multiplication on Cl(Ex) ® Cl^E^ is defined in the Zj-graded sense
of Atiyah, Bott and Shapiro [2, §1], then this becomes an algebra bundle
isomorphism.

If one takes a direct sum connection on Ex θ E2, then the connection
induced on Cl(Ex) ® Cl(E2) is the tensor product of the connections induced
separately on the bundles Cl(Ex) and Cl(E2).

Remark 2.7. If M is any bundle of modules over Cl(Ex), then so is
M ® E2. If M carries a connection with property (2.12), then the tensor
product connection on M ® E2 also has this property.

The bundle Cl(Ex) ® E2 is a bundle of left and right modules over Cl(Ex).
This follows directly from Remark 2.6 by noting that there is a natural
containment Cl(Ex) ® E2 c Cl(Ex) ® C/(£2) which is stable under multipli-
cation by Cl(Ex) a C/ί^i) ® 1.

The verification of the remarks above is straightforward and is left to the
reader.

3. The fundamental theorems for immersions

In this section we shall be concerned with the following question: given a
compact differentiate Λ-manifold Xn, when does there exist a smooth
immersion Xn*»Rn+q for q <nl Such an immersion always exists for
q = n - 1. The point of this article will be to give lower bounds for q in
terms of certain characteristic classes on Xn.

Before stating the main results we recall the notion of the total Λ-class of a
manifold. This is a multiplicative sequence of Pontrjagin classes associated to
the power seriesp(z) = l\Γz /sinh(2Vz ) (cf. [8]). In terms of the notation of
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the last section,
[n/2] 2x

A(X) = 1 + Ax(Pl) + A2(Pι,p2) + Π /
si

where A^/?,, ,pk) e i/ 4 *(*), and />* G # * * ( * ) is the Arth Pontrjagin

class computed formally as the kth elementary symmetric function of

jcj, , X[n/2γ The sequence begins

A l = ~~3Pι'

If A" is orientable and of dimension n = 4A:, then the A-genus of X is

defined to be the characteristic number A (X) = Ak(X)[X] E Q. This number

is always an integer. (It is related to the so-called A -genus by the formula

A(X) = 24kA(X). The Λ-genus is an integer if X is a spin manifold.) This

number, of course, depends only on the oriented rational cobordism class of

X.

We can now state the main results. For clarity of exposition we present

these results and their proofs as a sequence of theorems of increasing

generality. The first theorem embodies the basic construction. The subsequent

theorems, although much stronger, are simply refinements obtained by using

general coefficients and employing a detailed analysis of the representations

of Clifford algebras.

Let {ΛΛ}J£1I be the sequence of integers defined at the end of §1. (See

(1.8).)

Theorem 3.1. Let Xn be a compact oriented manifold of dimension n = 0

(mod 4). If there exists an immersion Xn ** Sn+q

9 then

2«-ιA(X) = 0 (modan+q).

If furthermore, q = 0 (mod 4) and the normal Euler class eN = 0, then

2 « - 2 Λ ( X ) Ξ E 0 (modan+q).

The proof of this theorem gives the main construction. It can be

strengthened by taking coefficients in an arbitrary bundle E over X. To state

the stronger version we need the following definition. Let chE = ch°E + chλE

+ 9chkE e H2k(X; Q), be the Chern character of E. Then for / G R we

define

(3.1) chtE
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Let {bk}%_ι be the sequence of integers defined at the end of §1, and note
from Table 2 that

2b = [ 2 a k i f * Ξ Ξ l > 0 o Γ - 1 (mod 8),
k \ak otherwise.

Set S = &(X, N, E) = {eN ch E A2[X]}[X] where eN is the normal Euler
class.

Theorem 3.2. Let Xn be a compact oriented manifold of dimension n, and

suppose there exists an immersion Xn <*> Sn+q. Then for any complex vector

bundle E over X,

2"-ι{ch2E A(X)}[X] = 0 (modZ>n+9),

and if, furthermore, both q and S are even, then

2«-2{ch2E A(X)}[X] = 0 (mod bn+q).

The statements of Theorem 3.2 can be refined if one restricts to real or

quaternionic bundles. Let {ck}k

G^ι be the sequence of numbers given at the

end of §1, and note from Table 2 that:

2c, =

4ak if k = 1, 0 or -1 (mod 8),

2ak if k = 2 or 6 (mod 8),

a, otherwise.

Theorem 33. Let Xn be a compact oriented manifold of dimension n = 0

(mod 4) and suppose there exists an immersion Xn °*» Sn+q.

(i) If E = E ® R Cfor some real bundle E over X, then

2"-ι{ch2E- A(X))[X] = 0 ( m o d α B + 9 ) ,

and also if,q = 0 (mod 4) and & is even and divisible by 4 when n + q = 4

(mod 8) then

2*-\ch2E. A(X)}[X] = 0 (modan+q).

(ii) If E is a quaternionic bundle over X, then

2«-ι{ch2E A(X)}[X]=0 (modcn+q),

and also if, q = 0 (mod 4) and S is even and divisible by 4 when n + q = 0

(mod 8), then

2«-\ch2E- A(X)}[X] ΞΞ 0 (mod cn+q).

Note that one recaptures Theorem 3.1 from part (i) above by taking E to

be the trivial line bundle over X.
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The theorems stated above contain results due to Atiyah and Hirzebruch

[3] and to Mayer [11]. Note that all conditions involving &(X,N,E) are

trivially satisfied if eN = 0, e.g., if the immersion is in fact an embedding.

Proof of Theorem 3.1. Suppose there is an immersion/: Xn °* Sn+q, and

let N denote the normal bundle to F. There is a natural metric with

riemannian connection o n Γ θ i V induced from SH*q by/. Let V denote the

associated projected connection (cf. Remark 2.3), and extend V canonically

to Cl(T θ N) by derivations, that is, so that (2.11) is satisfied.

We now consider Cl(T θ N) as a bundle of left modules over C/(Γ), and

let D be the associated Dirac operator. Note that the projected connection is

an extension of a riemannian connection on T. Hence the derivation property

(2.11) for Cl(T θ iV) as a bundle of algebras implies the derivation property

(2.12) for Cl(T θ i V ) a s a bundle of modules over C/(Γ). It now follows from

the discussion in §2 that since X is oriented and of dimension n = 0 (mod 4),

the restriction of D defines an elliptic operator D + : Γ(M + ) —» Γ(M~) where

(3.2) M± = ( l ± L j C/(ΓθiV),

and co is the unit volume form for T.

It is clear from formula (3.2) that M+ and M~ are both invariant under

right multiplication by elements of Cl(T θ N). Therefore if φ is any section

of the bundle Cl(T θ N)x of units in C/(Γ θ N), then the operator

R~ι ° D ° Rψ (where Rφ denotes right Clifford multiplication by φ) maps

T(M±) to r(Af"). Furthermore, one can see easily from the derivation

property (2.11) for V that D and R^1 ° D ° Rψ have the same first order part,

i.e., they differ by a zero-order operator.

Now the bundle T θ TV is, of course, trivial. Hence we can find a set
εi» * * ' > εn+g °f pointwise orthonormal sections of T θ N, and define a new

first order operator on Cl(T θ N) by setting

(3-3) D = | i | Σ R;1 ° D o Λ,,

where Γ is the finite (multiplicative) subgroup of Γ(C/(Γ θ N)) generated by
εi> ' * ' 9 εn+q- This operator is self-adjoint, differs from D by a zero-order

operator, and maps IXM*) to T(MT). Hence by restriction we get an

operator D + : T(M +)-> T(M~) having the same index as D + . Its adjoint is

the operator D~: Γ(M") -> T(M+) also given by restricting D. Thus we have

that

(3.4) i(D + ) = i(D + ) = dim(Ker D +) - dim(Ker j5").

We now observe that since D ° Ry = Ry © β for γ E. Γ, the spaces Ker D +

and Ker D ~ are invariant under right Clifford multiplication by elements of
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Γ. This obviously makes these spaces into modules for the Clifford algebra
Cln+q. In fact, they are in a natural way Z2-graded modules over Cln+q. The
grading on M + and M~ is given (as in Remark (1.9)) by taking the 1 and -1
eigenbundles of the bundle map α. Since Vα = 0, a preserves the subspaces
ker D + and ker D ~ and gives the grading there. We conclude that

(3.5) /(/>-) s θ (mod2απ +,).

It remains only to compute i(D+) using Theorem 2.1. We begin by
observing that under the natural isomorphism Cl(T Θ N) = Cl{T) ® Cl(N)
(cf. Remark 2.5) equation (3.2) becomes

M± =[(1 ± LJCI(T)] ® Cl(N) = C^iT) ® Cl(N).

To apply formula (2.23) we must compute ch(Cl(N) ® Q. To do this, note
that T θ N = (n + q)θ where θ denotes the trivial line bundle. Hence
Cl(T) <g> Cl(N) = 2Λ+*0. It follows that

ch(Cl(N) ® C) = 2n+«ch(Cl(T) ® C)"1.

Since Cl(T) = Λ*(Γ), we have that (cf. [5])

n/2

ch(O(T) ® C) = Π (1 + e-*)(l + e*)
7 = 1

n/2

= 2n Π cosh2(xy/2),

and so
n/2

ch(Cl(N) ® C) = 2q Π cosh-2(xy/2).
7 = 1

Consequently, using (2.20) and formula (2.23) we have that

(3.6)

Π . .,' \[X]-2Ά(X).
ί /

2* Π .
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In the third line we use the fact that the terms which are not zero when
evaluated on the fundamental class of X are homogeneous of degree n/2 in
x = (JC,, , xΛ/2) Combining (3.5) and (3.6) now gives the first part of the
theorem.

Suppose now that q = 0 (mod 4), and let ωN denote the unit normal
volume form. Since we are using the projected connection, VωN = 0. It
follows that D ° Lω^ = LωN <> D, and so restriction of D gives a new elliptic
complex D + + : T(M + + ) 4 Γ(M"+) where
(3.7) M ± ± = (1 ± LJ(1 ± LjCl(T θ N) = O±(T) ® a*(N).

Note that Lω ° L^ = LωN ° Lω, and also that the bundles M ± ± continue to
be Z2-graded modules over Cl(T θ N) under right Clifford multiplication. It
follows as above that i(D + +) = i{D +") = 0 (mod 2an+g).

It is easy to see that i(D + ) = i(D + + ) + i(D + " ) . Futhermore, a straight-
forward computation shows that

(3.8) /(Z> + + ) - i(D+~) = κ{eN S(X))[X] = «c{^

where K = 2 (1/2)(/I+9), and e^ denotes the Euler class of the normal bundle.
(The key to this calculation is the following observation. Let E be a real
oriented 2m-dimensional bundle with Pontrjagin classes pk(E) =
°k(*i> > *£)• Then ch(Cl+(E) - CΓ(E)) = Π ( ^ ' - e"*<) = 2 % . α(£),
where e^ = xx xm is the Euler class of E, and a(E) is a multiplicative
sequence). It now follows immediately that if eN = 0, then i{D +) = 2i(D + + )
= 0 (mod 4an+q). This completes the proof of Theorem 3.1.

Remark 3.4. Michael Crabb has made the following observations. The
second conclusion of Theorem 3.1 will hold in general if one can show that

| m o d 4 when« + ^ Ξ 4 (mod 8).

This number has several geometric interpretations. For example, let σ be
any section of the normal bundle N, which is transversal to zero, and consider
the oriented (n — ̂ -dimensional submanifold Z c X given by the zeros of σ.
[Z] is the Poincare dual of eN. Then

A{Z) = {eN-λ\X)}[X].
Since the normal bundle of Z is N θ N, Z is a spin manifold, and so 2A(Z)
satisfies the conditions above. Unfortunately the condition that the normal
bundle of Z is a "square" does not in general imply that A(Z) satisfies these
conditions.

There are similar interpretations of {eN ί(Λr)}[Λr] in terms of the self-in-
tersection locus of the immersion and also in terms of the Gauss map. Of
course, this number always vanishes for embeddings.
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Remark 3.5. Recall that if q = 3 (mod 4), then again ω£ = 1 and we
obtain subbundles M±± = C/ ± (Γ)® C/±(iV). In this case Cl+(N) and
Cl~(N) are canonically isomorphic under the automorphism <xN (extending -1
on N). By restriction of D we get an operator Z) + + : Γ(Λf + +)-»Γ(Λf ~~).
The bundles M ± : t are again right C7π+<?-modules. However, they are not
Z2-graded modules. Hence the factor of two gained in one place is lost in
another, and we are left wth a different proof of the same result.

Proof of Theorem 3.2. This argument is essentially the same as the one given
above with one addition. Let E by any complex vector bundle over X with an
inner product for which multiplication by i is fiberwise an isometry. We can
choose a riemannian connection V on E with respect to which multiplication
by / is parallel, i.e., V(/e) = iVe for all e G T(E). We then consider the
bundle Cl(T Θ N) ® Λ E endowed with the tensor product connection (cf.
Remark 2.4). This is naturally a bundle of complex right and left modules
over Cl(T Θ N). We may assume n = 2m, and consider the element w =
imeι e2m where as before ex e2m denotes the oriented volume element
of T. Again w2 = 1 and we = -ew for any e E T. Hence proceeding as before
we can define subbundles M± = (1 ± L^)Cl{T Θ N) ® E and averaged
Dirac operators D±: Γ ( M ± ) ^ Γ ( M : i : ) with the property that the spaces
K± =ker(Z)±) are complex Z2-graded modules for the algebra Cln+q. It
follows immediately that

(3-10) i(D+) = 0 (2bn+q),

and it remains to compute the index of this operator.
Remark 3.6. We should point out at this time that in previous computa-

tions we have dealt with real operators on real bundles and have computed
the index in terms of the real dimensions of the kernel and cokernel. This is
of course equivalent to complexifying the bundles and computing the com-
plex dimension of the kernel and cokernel, since these spaces will be the
complexifications of the former ones. However, in this case the coefficient
bundle E has induced a natural complex structure on Λf+ and M~ with
respect to which D + is complex linear since multiplication by i is parallel.
Consequently, in this case we have applied the index theorem in complex
form.

To compute the index of D + we first note that

Cl(T ®N)®RE^ Cl(T θ N)e ®CE^ Cl(T)c ® c Cl(N)c ® c E,

where the subscript ( )c denotes complexification. It follows immediately that
M± a C^iTX ® c Cl(N)c ® c E where C/±(Γ)C = (1 ± LJ)Cl(T)e. We
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now assert that

(3.11) cA(C/ + (Γ)c " C/-(Γ)c) = Π (e* - e^)9

7=1

where n = 2m, and the cy's are as before. By the splitting principle we may
assume for the purposes of computation that T = £x θ ®ξm where ξj is
an oriented 2-plane bundle with Euler class Xj. Then Cl(T)c ^ C/(|1)c

® ® Cl(ξn)c. Moreover, w = wx wn where Wj = iβj -fj for an oriented
orthonoπnal basis (eJ9 fj) of £,. Consequently Cl+(T)C = Σ C/±(| 1) c

® ®C/±(ξm)c with the sum taken over all strings of + and - with an
even number of -'s appearing. CΓ{T)C is represented similarly with an odd
number of -'s appearing. It follows immediately that C/+(Γ)C — CΓ(T)C =
Π(C/ +(ξj)c - CΓ(ξj)c). Now one can easily check that for an oriented 2-plane
bundle fc Cl+(ξ)c - CΓ(ξ)c = ξ-~ξ. This proves (3.11).

As a result of (3.11) we see that the computation of the index of Z) +

proceeds formally in the same way as before with the exception that one
carries a multiplicative factor ch(E). The result is (cf. (3.6)) that

The term involving the xfs can be reexpressed as Ai(X) where by definition

A,(X) = 2 Ak(Pι, • • •

for t G R.
Lemma 3.7. For all s, t 6 R + ,

[chtE AS(X)}[X] = (sty'2{chι/ME. Aι/t(X)}[X].

The proof of this lemma is easy and is left to the reader. It now follows
directly that

i(D+) = 2"{ch2E

Combining this with (3.10) establishes the first part of Theorem 3.2.
Suppose now that q = 2p, and consider the element wN = ipωN where ω^ is

the oriented volume form for N. Then Cl(N\ = Cl+(N)C θ CΓ(N)C where
C/±(Λ^) = (1 ± LwJCl(N)c. As in the proof of Theorem 3.1 we consider the
subbundles

M±± = (1 ± LJ(1 ± LwJCl(T ®N)®RE
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each of which is a bundle of complex Z2-graded modules under right
multiplication by Cl(T θ N). Restriction of the Dirac operator Z)+ gives
operators D±±: T(M±±)^>T(Ml:*) which are adjoints of one another.
These operators commute with right multiplication by elements of Γ, hence
the spaces K± = ker(Z) ± + ) are complex Z2-graded Cln+q modules. It follows
that

i(D + +)=i(D+-) = 0 (mod2bn+q).

It is clear that i(D + ) = i(D + + ) + i(D +"). Furthermore, one has that

(3.12) i(D + +) - i(D+~) = κ{eN chE A2(X)}[X],

where K = 22(/I+<7) and where eN denotes the normal Euler class. Hence, if

eN = 0, then i(D + ) = 2/(Z)+ + ) = 0 (mod 4bn+q).

We note that it suffices for this second part of the theorem to know that

(3.13) {eN - ch E λ\X)} [X]=0 (mod 2).

This number has interpretations analogous to those mentioned in Remark 3.4.

In particular, if Z c X is a submanifold dual to eN as before, then

Proof of Theorem 3.3. Suppose that E = Eo ® R C for some real bundle Eo

over X. Then we can run through the argument given for Theorem 3.2 with E

replaced by Eo. We insist at each step that all bundles in question be real

bundles. For this reason we must require that n = 0 (mod 4), and for the

second half of the argument that q = 0 (mod 4). The spaces K± will in this

case be real Zrgraded modules over Cln+q. Applying the index theorem for

real operators (See Remark 3.7), we see that i(D + ) = dimR K+ — dimR K~=

0 (mod 2an+q). However i(D +) = 2q{ch(E0 ® Q A(X)}[X]. This proves

part (i).

Suppose now that E is an H-bundle, and introduce on E a riemannian

connection with the property that scalar multiplication is parallel. Repeat the

construction of Theorem 3.2. In this case the spaces K± become quaternionic

Z2-graded modules over Cln+q. This gives the first part of (ϋ). (Note that it is

necessary that we have n = 0 (mod 4) for this argument to work.) If q = 0

(mod 4), the same arguments as above yield the second part of (ii), and the

proof is complete.

We conclude this section with some remarks concerning Theorem 3.2. This

theorem is significantly more general than Theorem 3.1; among other things

it gives nontrivial statements for manifolds of dimension n = 2 (mod 4). The

trick of taking coefficients in a bundle E may seem a bit formal; however, it

has a fairly concrete geometric interpretation. Note that Theorem 3.1 gives a
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condition only in terms of the cobordism class of the manifold X. The more

elaborate statement of Theorem 3.2 extends this condition to the cobordism

group of X.

This is most concretely seen in the case of oriented bundles E of real

dimension 2. Such bundles are in natural one-to-one correspondence with

elements of H2{X\ Z). Hence Theorem 3.2 implies the following.

Corollary 3.8. Let Xn be a compact oriented manifold of dimension n = 2

(mod 4), and suppose there exists an immersion Xn °^ Sn+q. Then

2«->{e*«A(X)}[X]=0 (mod 6 ,^)

for all a G H2(X; Z). //, furthermore, q and {ea eN A2(X)}[X] are even,

then

We recall now that H2(X; Z) « [X, CP°°]. Therefore, given a G H2(X; Z),

we choose a smooth map fa: Xn -^ CP^ (N > ή) representing α. By Sard's

Theorem for families there is a hyperplane CP^"1 c CPN to which fa is

transversal. The counterimage Ya = ̂ ( C P " " 1 ) is an oriented codimension-2

submanifold whose homology class represents the Poincare dual of α. If E is

the bundle on X with Euler class α, then E\ γ is the normal bundle of Ya in

X. Hence

A(Ya)={A(E)-ι A(X)}[Ya]

This gives the following conclusion.

Corollary 3.9. Let Xn be a compact oriented submanifold of dimension

n = 2 (mod 4), and suppose there exists an immersion Xn ^ Sn+q. Then for

every compact oriented submanifold Y of codimension 2 in X,

2 ^ ( 7 ) ^ 0 (modbH+q).

Furthermore if q and {ea eN - A 2 ^ ) } ^ ] are even where a G H2(X; Z) is

dual to [ Y], then

2«-ιA(Y) = 0 (modbn+q).

This condition is slightly stronger than the condition one obtains from

Theorem 3.1 by observing that Y immerses in codimension q + 2. The

additional information comes from the fact that the normal bundle to Y

carries a 2-ρlane field.
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4. Applications to complex and quaternionic projective varieties

In this section we shall apply the theorems of the last section to get
non-immersion and non-embedding theorems for complex and quaternionic
projective spaces CPn and HP", for complex hypersurfaces W(d) of CPn+1

of odd degree d, and for 4m-dimensional manifolds cobordant to CP2m and
Yl2m(d), d odd. These theorems are not new, or at least they can be retrieved
from the work of Mayer [11], however, they recapture in a very simple and
conceptual way all previously known theorems on the subject; cf. James
survey article [9]. At the end of this section we will conjecture "best possible"
non-immersion theorems for CP" and HPn. If we let a{ή) denote the number
of Γs in the dyadic expansion of n, our first result is the following: The
symbol a^ means "does not immerse", and the symbol °*» means "does not
embed".

Theorem 4.1. Let M2n be CPn or W(d\ d odd, or for n = 2m let M2n be
any manifold cobordant to CP2m or H2m(d). Then

and, for even n,

a(n) = 1 (mod 4) =* M2n <*> 5 4 n " 2 a ( / l ) ,

a(n) = 2 or 3 (mod 4) => M2n <*> s 4 / I - 2 α ( / l ) + 1 ,

a(n) = 3 (mod 4) => M2n <v S4n-2a{n)+2.

We also prove
Theorem 4.2. Let HPn be quaternionic projective n-space. Then for all n

HPn ^ 5*"-2*00-3,

X I p n Ofr O 8 Λ —2α(w) —2.

and

a(n) = 2 ( m o d 4 ) ^ H P π < ^ S 8 / I - 2 α ( / l ) - 2 ,

a(n) = 0or3 (mod 4) ^ HPn <*> s*n-2o*n)-\

a(n) = 0 (mod4)=»HP Λ ^5 r 8 r t - 2 α ( Λ ) .

Proof of Theorem 4.1. We begin with the case n even. Consider first CP2m,

and suppose that CP2m °* S4m+q. It is known [8] that

Thus it follows from Theorem 3.1 that

(4.1) 2q
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If K is an integer, let p(Λ') denote the highest power of 2 which divides K.

Now K(2m)) = a(m)> a n d w e denoted (§1) v(ar) by PΓ. Thus we have

(4.2) ? 4 m + ^ < a(m) + q - I.

b

2pb-b + 2

1

1

2

2

3

3

4

2

5

3

6

2

7

1

8

0

If we write q = 8α + 6, 1 < b < 8, and suppose for the moment that m is

even, then p4m+q = 2m + 4a + vb, and (4.2) becomes

(4.3) 4m - 2a(m) + 2 ^ - b + 2 < 8α + b = q.

Since 4m = 0 (mod 8), the congruency class of 4m — 2α(m) (mod 8) is

determined by a(m) (mod 4). We make the table:

(4.4)

Since 2vb - b + 2 > 0, we always have q > 4m - 2α(m). In fact we can

read off the rest of the non-immersion results in this case. For example, if

a(n) = 1 (mod 4), then q > 4m - 2α(m) + 1, because if q = 4m - 2α(m)

then b = 8 but also q = 6 (mod 8). If CP2m ^ S4m+q

9 (4.3) becomes 4m -

2α(m) + 2vb - b + 4 < %a + b = q when b = 4 or 8, and the results follow.

If m = 2/ + 1, then J>4m+<? = 4t + 4α + p4+έ,. Instead of (4.3) we have 4m —

2α(m) + 2v4+b -b-2<%a + b = q, and when there is an embedding

and b = 4 or 8, we have 4m - 2α(m) + 2v4+b - b < Sa + b. The same

results follow.

We note that our argument depends only on the cobordism class of CP2m

since it uses only the A -genus of QP2m.

We now show that v(A(H2m(d))) = p(A(CP2m)), so that the same argument

yields the theorem for M2n cobordant to H2m(d). Let / denote the canonical

line bundle over CP2m+ι (c^l) = ω). Then setting f = T{CP2m^λ)\^m{d) and

T = T(H2m(d)% we get the stable equation

2)1.

Thus we have

and therefore

A(Γ) =

By observing that this is d times a polynomial in d2 of degree 2m over d,

which has zeroes at d = 2, 4, , 2m, and using w2(H2m(even)) = 0 and the
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fact that a spin manifold with positive scalar curvature has a vanishing

A -genus, we are able to write

A(H»»(d)) = cm-ci- fl(d2-(2j)2).

If d is odd, then d Π"_ x{d2 - 2j)2 is odd so

v(A(H2m(d))) = v{cm) = v(A(H2">(\))) = α(#ι)f

since H 2 m ( l ) = CP2m. In fact, it is easy to compute from A(CP2m) =

(- l ) 1 "^) that cm = 22m/(2m + 1)!. So we have the theorem for M2n equal to

or cobordant to U2m(d).

We now consider the case n = It + 1. If M2n = CPΛ and M2n °# S2n+«,

then CP 2 ' is a codimension-2 submanifold, and Corollary 3.9 tells us

2«-°A(CP2t) = 0 (modb2n+q),

where ε = 1 if q is even and CPn ^ S2n+q, and ε = 0 otherwise. Then

α(/) + q - ε > v(bn+q). If q is odd or CPn ^ S2""1"^, we can write q = 2s +

1 - ε and v(bln+q) = n + s - ε. A little arithmetic with α(rt) = α(/) + 1

gives

q > 2n - 2a(n) + ε + 1.

If CPn only immerses in S2n+q and q = 2s, then v(b2n+q) = n + s - \ and

q > 2n — 2a(ή).

The theorem for CPΛ, AZ odd, follows.

The same argument works for Hn(d), n = 2t + 1, since a hyperplane

section of Hn(d) is a degree-rf hypersurface of CP", that is, H2/(rf). Thus the

theorem is proved.

Proof of Theorem 4.2. We use Theorem 3.3 letting E = ξ, the canonical H

line bundle over HPn (the hyperplane bundle). Let x be a generator for

/Γ4(Hi>Λ; Z), and let w = Vx formally, (or one can pull x back to CP2n+ι

and take w = Vx there). Now

ch ξ = e2w + e'2w = 2 cosh 2w,
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We want the coefficient of w2n in this power series. That is,

{ch2ξ A(HPn)}[X]

r 21.. L 1- ̂  / 2 w \2n+2 sinh4wϊ
= coeff of w2n in 2 cosh 2w\ . , . —

[ \ sinh 2w / 4w j
/\ + z

2m d t
Ψn + \

dz

_LJ7_ JΛ
n\ 2\ 2) 2n -\)

Now if we suppose HP" immerses in S4n+q, then Theorem 3.3 gives us

Thus if we suppose to begin with that n = 2m and we write q = Sa + b, we

have

(4.5) 4m - 2α(#ι) + 2v(cb) - b < Sa + b = q.

Again we make a table:

b

2v{cb) - b

1

1

2

0

3

-1

4

-2

5

-1

6

0

7

1

8

0

as we did for CPn we read off the claimed non-immersion results. If

= q, and the non-embedding results follow. When m is odd, one gets similar

tables with the right and left halves interchanged, and the same results can be

read off.

Now if it can be shown that given the hypotheses of Theorem 4.1 that

{eN - A2(GP2l f l)}[GP2l>l] is even whenever q = 0 (mod 4) and is divisible by 4

whenever 4m + q = 4 (mod 8) and that {<?"• eN A 2 (CP 2 w + 1 ) } [CP 2 m + 1 ] is

even whenever q is even, then the non-embedding results just proved for CPn

would be non-immersion results. Moreover, recent immersion results for CPn

of Davis and Mahowald [6] would show this to be sharp in the range where

their work is most effective, that is, where a(ri) < 7 or a(n) = 8 and n is odd.

This leads us to make the following conjecture.

Conjecture 1. If q is the smallest codimension for which CPn ** S2n+q, then

2n — 2<x(n) + 2 if n is even and a(n) = 2 (mod 4),

2n — 2a(n) + 3 if n is even and a(n) = 3 (mod 4),

2n — 2<x(n) + 1 otherwise.
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In response to our conjecture Davis has been able to find likely candidates

for obstructions from the Davis-Mahowald point of view. It appears, how-

ever, that it would be difficult to prove these candidates to actually be

obstructions.

We similarly conjecture

Conjecture 2. If q is the smallest codimension for which H P " °t> S4n+q, then

Un - 2a(n) + 1 ifa(n) = 0 (mod 4),

q = \ An - 2<x(n) ifa(n) = 3 (mod 4),

[ 4 Λ — 2a(n) — 1 otherwise.

The negative side of this result would be proved if UPn <*» s4n+g could be

shown to imply that {ew eN A2(HP")}[HPn] is even whenever q = 0

(mod 4) and is divisible by 4 whenever An + q = 0 (mod 8). For some

interpretations of this and the previously mentioned requirements see Remark

3.4 of §3.

5. The fundamental theorems for vector fields

In this section we shall be concerned with the following question: Given a

compact differentiable manifold Xn, what is the largest number q such that

there exist q everywhere linearly independent vector fields on Xnct Before

stating the main result we recall Hirzebruch's notion of the total L-class of a

manifold. This is a multiplicative sequence of Pontrjagin classes associated to

the power series p(z) = Vz /tanh(VT) (cf. [8]). In terms of the notation of

chapters 2 and 3,

where L,k(pl9 - , A ) <Ξ HΛk(X)9 and where pk e H4k(X) is the A:th

Pontrjagin class of X computed formally as the λ th elementary symmetric

function of cf, , X\n/2\ ̂  X ι s oriented and of dimension n = 4k, then by

the classical result of Hirzebruch, the Pontrjagin number L(X) =

Lk(p{, ,pk)[X] is the signature of X

The following results are not essentially new. The case where E is trivial is

contained in the work of Frank [7] and Atiyah [1].

The general version, although not explicitly stated, can be deduced from

the work of Mayer [11]. The main point here is that the strongest known

theorems can all be deduced, as in [1], from the local symmetries of the Dirac

operator.
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Theorem 5.1. Let X be a compact oriented manifold, and suppose X admits

q everywhere linearly independent vector fields. Then for any complex vector

bundle E over X

{ch2E L(X)}[X] ΞΞ 0 (mod 2bq).

Furthermore, if q is even and chq(E) = 0, then

[ch2EL(X)}[X] = 0 (mod 4bq).

Theorem 5.2. Let X be a compact oriented Ak-manifold which admits q

everywhere linearly independent vector fields. Then

ί (mod 2aq) for all real bundles E on X,
(5.1) {ch2E UX)}[X] = 0 | ( m o d 2cj far M q m t e m i o n bundles E Q n χ

Furthermore, ifq = O (mod 4) and chq(E) = 0, then statement (5.1) holds with

2aq, 2cq replaced by 4aq and 4cq respectively.

In particular, we conclude that if q = 0 (mod 4), then sigί^) = 0

(mod 4aq).

Proof. The arguments here are entirely similar to the ones given in §3, so

we shall only sketch the proof. We can suppose n = 2m, and consider the

form w = imω where ω is the oriented volume form for T. We then split

Cl(T)c = C/+(Γ)C Θ CΓ(T)e where C/±(Γ)C = (1 ± Lw)Cl(T)c, and con-

sider the bundles M± — Cl±{T)c ®CE with appropriate connections. Let

ελ, - - , εq be q pointwise orthonormal vector fields on X, and let

D + : Γ(Λ/ + )^Γ(M~) be the operator obtained by averaging the Dirac

operator over the finite group generated by right Clifford multiplication by

ε^ , εq. Then i(D + ) = 0 (mod 2bq), and it remains only to compute this

index. That i(D + ) = {ch2E L(X)} follows easily from formula (2.23) and

the obvious analogue of Lemma 3.7.

Suppose now that q is even. Note that T has an orthogonal splitting

T = To θ Tl9 where Tx is the span of the vector fields ε p , εq, and where

To has dimension 2k for some integer k. Let w0 = ikω0 where ω0 is the unit

volume form for To. Then w% = 1 and w0 commutes with each ε,. We average

D over the group of order 2 generated by R^ (right Clifford multiplication by

>v0). We then set M±± = (1 ± LJ^l ± R^JCl(T)c ® E, and observe that

restriction of D gives operators D±±\T{M±±)-^T(M±±) such that:

i(D + +) ΞΞ i(D+~) = 0 (mod 2bq) and ι (Λ + + ) + i(D+~) = i(D+). A
straightforward computation shows that

eΓo}[X],
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where eTo is the Euler class of Γo. Hence, if chg(E) = 0, we have i(D + ) =
+ + ) Ξ 0 (mod 4bq). This completes the proof of Theorem 5.1. The

arguments for Theorem 5.2 are entirely similar.

6. Theorems on the geometric dimension

Given a real bundle E over a space X one can ask for the smallest
dimension k of bundles E' which are stably equivalent to E. This number is
called the (stable) geometric dimension of E. For the tangent bundle T of a
manifold X this amounts to asking how many everywhere linearly indepen-
dent sections one can find for the stable tangent bundle T θ 0. The methods
of the preceding sections apply to give bounds for this number. Our main
result is the following.

Theorem 6.1. Let X be a compact oriented manifold of dimension n, and

suppose that the tangent bundle T(X) has geometric dimension < k. Then

{ch2E • UX)}[X] = 0 (mod bn+2_k)

for all complex vector bundles E over X. Furthermore, if E is a quaternionic

bundle over X, and if dim X = 0 (mod 4), then

{ch2E UX)}[X] = 0 (mod cπ + 4_*).

Finally, if E = E0®R Qfor some real bundle Eo over X, and ifn = 0 (mod 4),
then

{ch2E L(X)}[X]=0 (modaπ+i_k).

Proof Consider the bundle T θ 20 with a product metric and a direct
sum connection. Our assumption is that this bundle admits q = n + 2 — k
pointwise orthonormal sections εl5 , eq. We then consider the bundle
Cl(T θ 20) = Cl(T) θ Cl(2θ) and observe that left multiplication by the
volume element for 2Θ gives a parallel almost complex structure on this
bundle. Hence Cl(T θ 20) = Cl(T) Θ R 2C = 2Cl(T)c. We now decompose
Cl(T)c = Cl+(T)C® CΓ(T\, and consider the bundles M± = 2Cl±(T)c

®CE with appropriate connection as we did before. These are bundles of
complex, Z2-graded modules under right multiplication by elements of
Cl(T ® 20). Hence one can construct, as before, an averaged Dirac operator
D+: T(M +)-»Γ(M~) whose kernel and cokernel are complex Z2-graded
modules ϊoτClq. Therefore i(D +) = 0(2bq). Evidently, the index of this opera-
tor is twice the index of the operator considered in §5. This proves the first
part of the theorem.

Suppose now that E is quaternionic, and consider the bundle T θ 40
which admits n + 4 — k orthonormal sections. Choose a connection on
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Γ θ 40 which is the direct sum of a riemannian connection on E and the
canonical flat connection on 40. Let e0, , e3 be parallel orthonormal
sections of 40, and consider the bundle Mo = (1 + Lω)Cl(T' Θ 40) = C/(Γ)
® C7+(40) where ω = e0 e3. This bundle carries a parallel H-structure
given by setting / = Le&Bι,j = Le^ and & = Le^. Note that scalar multiplica-
tion by i,j and k commutes with the Dirac operator and preserves the
Z2-grading. We now have that Λf0 = Cl(T) ® 2H, and as usual we split
Mo = Mo

+ Θ MQ where M± = 2C/±(Γ) ® R H. We then introduce on £ a
quaternionic (i.e., "symplectic") connection, and consider the bundles M ± =
A/^ ® H is s 2C/ ± (Γ) ® ^. From here the argument proceeds as before.

In the case that E = Eo ® R C and n = 0 (mod 4), one repeats the above
construction with T Θ 0 and with £ replaced by 2s0. The bundles and the
operator are now real. Applying the index theorem in real form completes the
proof.

Example. Let X = QP2n~λ and let E = ξ, the canonical complex line
bundle (i.e., the "hyperplane" bundle), over C P 2 " " 1 . Then letting ω denote
the generator of H2(CP2n~ι; Z), we have that

•L(Ci>2r t-1)}[CP2"-1]

ω

= the coefficient of ω2n~ι in ( eH " Ϋ"
{ \ tanh ω /

= the coefficient of ω2n ~ι in I sinh 2ω( — ^ — ) I
1 V tanh co / J

sinh 2t
dt = In.| = ε(tanh/)

It follows that if the tangent bundle of CP 2 "" 1 has geometric dimension k,
then 2n is a multiple of bq where q = An — k.

Conversely, suppose that 2n is a multiple of bq. Then there exists a complex
Z2-graded C/̂ -module 9IL = 911° θ 91L1 where dim^^H0) = dim^^IL1) =
2n. Let ε^ , εq denote canonical generators for Clq (i.e., ε, ε, + ε, ε, = -
Iδy). Then multiplication by ε, gives an isomorphism (0\i° -^ 91L1 such that for
all nonzero z G (DH°, the vectors εjZ, , ε̂ z are linearly independent over
R. (To see this note that every v G spanfε^ , εΛ} satisfies v2 = -||t>||2 1.
Hence Clifford multiplication by any v φ 0 is an isomorphism). This means
precisely that there are q everywhere linearly independent sections of 2nξ =
T θ 20. Hence we have proved the following result of Steer [13].
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Theorem 6.2. The geometric dimension of the tangent bundle of CPn~x is
precisely 2n — q where

q = max{?': bq\n).

Note. Since the Stiefel-Whitney class w4m of C P 2 m is nonzero, one knows
that the geometric dimension of its tangent bundle is 4m.

The first few cases of the above result for CP0*0 run as follows:

g.d.(TCPι) = 0, g.d.(TCP3) = 2, g.d.(TCP5) = S,

g.d. (TCP1) = 8, g.d. (TCP9) = 16.

In general, g.d.(TCPτ-χ) = 2(2" - n - 1).
Example. Let X = H P 2 " " 1 and let E = £, the canonical quaternionic line

bundle over H P 2 " 1 . Then letting x denote the generator of HΛ(HP2n~ι; Z)
and setting ω = Vz (formally), we have that

. 2 c o s h 2 V i _ * - r - t < 2 V ? >

Λ «• * < 4n-2 ί ω4/I-1sinh(2co)l
= the coefficient of ω in { — - >

1 (tanh tυ)4/l J

1 r sίnh(2/) ,
= -— I ^—— dt = 4n.

Consequently, if the tangent bundle of H P 2 π ι has geometric dimension
k, then 4n is divisible by cq where q = 8n — k.

Theorem 63. The geometric dimension of the tangent bundle of HP
is > 4n — q where

q = max{Y: cq\2n).

Note. Since w8w of H P 2 m is nonzero we know that the geometric dimen-
sion of the tangent bundle of HP 2 m is 8m.

Remark. It seems probable that the bound given in Theorem 6.3 is sharp.
However the argument given above for CPn fails in this case since the
tangent bundle of H P " is not stably equivalent to n + 1 copies of the
canonical quaternion line bundle.

As a final application of our method we consider the problem of computing
lower bounds for the geometric dimension of Nζ over CPΠ.
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Theorem 6.4. Let ξ denote the canonical complex line bundle over CPΠ, and
suppose the geometric dimension of Nξ is < k. Then for all complex vector
bundles E over CPn,

[ch2E. (1 + ̂ r - (^)" + I } [CP-] S 0 (modb2N_k),

where ω is the generator ofH2(CPn; Z). In particular,

forr = 0, 1,2, •
Proof. Consider Nξ= T θ 20 θ (N - n - l)ξ, and introduce on this

bundle a connection which is a direct sum of a riemannian connection on T,
the canonical flat connection on 20 and the standard unitary connection on ξ.
Our assumption is that this bundle admits 2n — k pointwise orthonormal
sections.

Consider the bundle Cl(Nξ) = Cl(T) ® Cl(2θ) ® Cl(ξfr'H'1. Let ω0 de-
note the oriented volume form for 20, and ω, the oriented volume form for
theyth copy of ξ,j = 1, , N — n — 1. Left multiplication by ω0 gives a
parallel complex structure on this bundle which commutes with the Dirac
operator and preserves the Z2-grading. Hence

Cl(Nξ) a Cl(T) ® 2C ® Cl(ξ)N~n~ι = (2C7 T)c ®c O(ξ)N

c~
n~\

We then consider the bundles M± = 2C/±(Γ)C ® c Cl+(ξ)c~n~l ®c E9

where Cl+(ξ)c = (1 + iLω)Cl(ξ)c a θc θ ξ and ω is the volume element for ξ.
In lengthier terms, we have

•C/(ί,)e®

« ( i+€ , )® ® ( I + € Y - . - I )
Taking the averaged Dirac operator and preceding as usual establishes the
general formula.

Setting E = ζk+ι and evaluating the integral one finds that:

\ {The coefficient of zn in (1 + z)k(2 + z)N) = 0 (mod *2;v-*)

Looking at these conditions successively for k = 0, 1, 2, gives the result.
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