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FINITE TYPE CONDITIONS FOR REAL
HYPERSURFACES

JOHN P. DΆNGELO

Introduction

An important advancement in partial differential equations and several
complex variables in the 1960's was the solution of the 3-Neumann problem
for strongly pseudo-convex manifolds. Let X be a complex manifold with
boundary, and consider the Dolbeault complex

0 -* C °°(X) Λ Λ0'^ T*(X)) -H>

Let D̂ be the L2 adjoint of 9, and let H be the orthogonal projection onto the
null space of ^ 3 + 3 ^ . The 3-Neumann problem is the overdetermined
system of partial differential equations

9/ = 8 where dg = Hg = 0.

Kohn [4] has proved that regularity for the unique solution /orthogonal to
the holomorphic functions follows from a subelliptic estimate of the form

whenever u is in the domain of ^D, and where ||| | | |e denotes the tangential
Sobolev norm for some ε with 0 < ε <^. Characterizing subellipticity in
terms of the geometry of M = bd X is an open problem. Kohn found such a
characterization if dim X = 2. He defined a notion of "point of finite type" in
terms of iterated commutators of vector fields, and showed that if p is a point
of finite type, there is a subelliptic estimate near p. Greiner [5] proved the
converse. Generalizations of Kohn's definition to higher dimensions give
neither the right geometric analogue nor the right condition for the estimates.

We make the following definition of point of finite type. Let M be a real
hypersurface of a complex manifold X'.

Definition, p E M is a point of finite type if there is a finite algebraic
obstruction to the existence of a nontrivial germ at p of a complex analytic
subvariety of M.

We interpret the Levi form as a 2-jet obstruction in this sense. In case the
degeneracies in the Levi form are particularly simple, such as what must
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happen if dim X' = 2, we show that our definition is equivalent to that of
Kohn. The general case presents more difficult algebraic problems, because
we must consider subvarieties with singularities at p. We prove several theo-
rems clarifying the algebraic and geometric content of our definition, and
give evidence supporting our conjecture that finite type is equivalent to
subellipticity. The author would like to thank Professors J. J. Kohn and H.
Hironaka for helpful conversations.

1. Real hypersurfaces

Let X' be a complex manifold of dim n + 1, and Tl0(X') the bundle of
type (1, 0) vector fields to X'. A real hypersurface M of Xf is a real
(2Λ + l)-dimensional submanifold. Let CT(M) be the complexified tangent
bundle, and put T10(M) = CT(M) n TX\X'). Write T°\M) for the com-
plex conjugate bundle. Then Tl0(M) θ TΌ\M) is a subbundle of codimen-
sion 1 in CT(M). Let η be a purely imaginary nonvanishing 1-form annihilat-
ing Tι0(M) θ Toι(M). Write < , > for both a fixed hermitian metric on
Tl0(M) and contraction of vector fields and 1-forms. For each purely
imaginary vector field N with <7V, τj> = 1 we can write CT(M) = Tl0(M) θ
T°\M) θ N(M) where N(M) denotes the bundle generated by N.

Definition. Let L be the quadratic form on Γ10(M) defined by (LX, Y)
= <[X, F], η>. L is called the Levi form. For each N with (N, η> = 1 let wN

be the 1-form defined by (X, wN} = <[JV, Y - (X, η}N], η). It is easy to
check that L is Hermitian symmetric, that wN is a real 1-form, and that
<X, wN - wN,) = (dη, X Λ (N - JV')> if (N\ η> = 1. Therefore, wN is in-
dependent of N precisely when dη = 0, which is the well known integrability
criterion for flat M. M is called pseudoconvex if L is positive semi-definite.

Supposep G Λf, and near/?, M = r~ι(0) for some smooth real valued fn. r
on X' with dr(q) φ 0 for q G M. By the implicit function theorem we can
choose coordinates in a small neighborhood of p so that p is the origin and
r(z) = 2 Re z0 + f(zv , zrt, Im z0). Formulas for the above notions in
terms of derivatives of r appear in [2].

Suppose V is a complex analytic submanifold of Λf, and F 6 Γ(F) n
Γ10(Λf). Then [Y, F) must lie in the space generated by Y and Y, so
<[ Y, Y], η}v = 0. It is natural to consider the following concept.

Definition. Let Y G Γ1 0(M). We say tp Y = m if

m = min{A::([[y, F], , 7], r,), ̂  0}

for some combination of k brackets.
Remark. The necessary and sufficient condition for subellipticity men-

tioned in the introduction for M c C 2 is that tpY < oo for all Y G Γ10(Af)
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with Yp ψ 0. The following example shows that this definition is not the
"right" one in higher dimensions.

Example. [1]

r{z) = 2 Re z0 + \z\ - z\\2 p = origin.

Then tpY = 3 or tpY = 5 if Yp φ 0, Y G Γ10(M). Notice that V is an
analytic subvariety of M, where

Any vector field tangent to V must be singular at/?, since/? is a singular point
of V. Therefore this type condition does not prevent analytic subvarieties
from lying in M. It is also not an open condition, and therefore cannot be the
right condition for the estimates. One can also verify that local regularity for
3 (a corollary of a subelliptic estimate) fails near V.

2. Points of finite type

Suppose V is a complex analytic subvariety of X\ and/? E V. Then there
are a δ > 0 and a holomorphic map z: {t e C: |f| < 8} -» V. If V c M, and
r is a defining function for M, then z*r = r(z(/)) = 0. Put

for/any smooth function on C. Then formally

00

z*r= Σ

Fix the defining function. Consider the vanishing of cabz*r as algebraic
equations for the unknown Taylor coefficients for z. We formalize this as
follows.

Let C((0) = ring of formal power series in t,

Sp

k(M) = {z<ΞAp: cabz*r = 0 Vα, b < k),

pp(M) = {polynomial equations defining sp(M)).

If we write z(t) = Σ * = o ^m)tm/m\ where z(m) G C π + 1 , and let jj denote the
k jet of any smooth functon/, then^ is a linear projection on Ap. We write
91* and <3lA for the null space and range of j k respectively. Let (D^r):
(ft? x q$ _> c be the multilinear map defined by the α-th holomorphic and
6-th anti-holomorphic derivatives of r. Thus
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1)) = Σ vf

pk(M) is defined by setting these two expressions equal to 0. Using the chain
rule it is easy to compute more of these equations.

Definition. P*(M) is a finite obstruction to the existence of complex
analytic data passing through p and lying in M if the following holds:
Suppose jkr

f — jkr. Then the equations z*r' = 0 and z(0) = p imply that z is a
constant map.

Definition, p G M is a point of finite type if there is an integer k so that
Pp(M) is such an obstruction.

Theorem 1. Suppose Sj c 91/ for i = 1 or i = 2. 77H?AI S/1 C 91* VA:, and
p is a point of finite type. On the other hand, if dim M = 2n + 1 > 5, the
containment S™ C 911 for m > 3 is not sufficient to guarantee that p is a point
of finite type.

Corollary. If M is strongly pseudoconvex atp,pisa point of finite type with
k=\.

Proof of Corollary. M is strongly pseudoconvex at/? if and only if

Σ V/ΓM 0 > ° whenever 2 rzz\X) = 0 and z(1) φ 0.

Therefore, if M is strongly pseudoconvex at/?, then Sj(M) c 911.
Proof of theorem. The second statement follows from the following exam-

ple. Put r(z) = 2 R e z o + \z?~x ~ z?\2 wherep is the origin. Here S™ C 911

if m > 3, but z*r = 0 for z(t) = (0, /m, tm~ι). We prove the first statement by
induction on k, assuming i = 2, as the case / = 1 is similar and easier.
Suppose S2k c 91*. We must show that z e S2k+2=>jk+ιz = 0. Let / <Ξ
P 2 ** 2 . Then/(z) has the following form:

2k + 2 d

/(*) = Σ Σ habdk(Dabr){z^\ , z<*\ z<->,, z<"*>),
β _ 0 6-0

where habdk are constant positive integers, qit nil > 1 and Σ q,, = 2k + 2 and
Σ ntj = d. If z e S2*+ 2, then z e S2*, so thatyΛz = 0. Depending on d, after
substituting 0 for zm through z w , we see that/(z) = 0 reduces to one of the
following equations

(DIor)(«) = 0,

(Dnr){u, U) = 0,

(Dlor)(v) + h(D^r)(u, «) = 0,

(/>„/•)(«, Π) + h(D21r)(u, u, ΰ) = 0,

(Dnr)(v, v) + h 2 Re(D21r)(u, u, ϋ) + A ^ ' H " . ". «. «) = 0>



CONDITIONS FOR REAL HYPERSURFACES 63

where u = z (*+ 1 ) and v = z ( 2 / c + 2 ). We see that these are precisely the equa-

tions defining S2, i.e., S2k+2/?fik « S2 under the correspondence u -» z(1),

ϋ -+ A z(2). Since S 2 c 911, we get that w = z<*+1> = 0. Therefore S2k+2 c

9L*+1, completing the induction. Therefore the only solution to z*r = 0 with

z(0) = /? is a constant.

Things are much easier in C2.

Theorem 2. Let M e C 2 6e a pseudoconυex hyper surface^ and p E M. ΓAe

following are equivalent:

(l)p is a point of finite type.

(2) The 3-Neumann problem is ε subelliptic at p with ε = \/{k + 1).

(3)tpY = 2k-\\fY G TlΌ(M) with Yp ψ 0.

(4) Sk C 9L1, >vAere A: w /Â  smallest such integer.

Proof. The equivalent of (2) and (3) follows from the work of Kohn [6]

and Greiner [5]. We will demonstrate the equivalence of (1), (3) and (4). We

may assume/? is the origin, r(z) = 2 Re z0 + /(z, Im z0), and the Taylor series

for / up to terms of order < 2k + 2 contains no holomorphic or anti-holo-

morphic terms. Then

r(z(ή) = zo(ί) + zo(ί) + 0(|ί|2)

Suppose cαOz*r = 0, a < k. Then z(α) = 0, Vα < A:. We may therefore assume

z(t) = (0, t). This implies that (1) and (4) are equivalent. If M c C2, TX0(M)

is 1-dimensional, locally spanned by

Suppose y e Γ 1 0(M) satisfies ί̂ , =̂ 0. Then tpY = ^L^ Since the only curve

in consideration is z(t) = (0, /), the conditions that Sk c 911 and that ^Lj =

2k — 1 are easily seen to be equivalent. This shows that (1), (2) and (4) are all

equivalent to subellipticity in C2.

We now consider an illuminating special case. If fj are germs of holomor-

phic functions at 0 in C1, we write

and (/) for the ideal in ΘΛ generated by thejζ.

Theorem 3. Suppose r(z) = 2 Re z 0 + Σ\fj(z)\2 where fj G 6 Λ and 0

F(/). The following are equivalent

(1) 0 w a point of finite type.

(2) ΓAm? w α neighborhood UofOso that V(f) Π U = {0}.

(3) Θn/(f) is a finite dimensional complex vector space.

(4) Vi, 3 Λ wί/A z» G (/).

(5) ΓAere w α constant K so that for z near 0,
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Proof. (2) and (4) are equivalent by Hubert's Nullstellensatz. (3) is
another equivalent formulation whose proof follows from Nakayama's
lemma. (5) obviously implies (2). Conversely, since each zi vanishes on V(f),
by Lojasiewicz's inequality there are integers pt and a constant K so that (5)
holds. It remains to demonstrate the equivalence of these statements with our
notion of finite type. If (2) were false, then dim V(f) > 1. By Oka's normali-
zation theorem, there is a curve w{t) whose image lies in V{f). Put z(t) =
(0, w(t)). Then z*r = 0, sop is not a point of finite type. Conversely suppose
(5) holds. We may assume z(t) = 0. If z*r = 0, then by (5) we see that
zt{t) = 0 Vi. To verify finite type we must show that this information depends
upon only finitely many derivatives of r. The existence of some constant K so
that (5) holds in some neighborhood of 0 depends upon some finite jet of r by
Taylor's theorem. This jet then defines a finite obstruction to finding a
holomorphic curve through 0.

The above example shows how the positivity condition guaranteed by
pseudoconvexity shows up. Suppose in general that r is a real analytic
function. Then there are holomorphic functions ha so that r(z) = 2 Re z0 +
Σ ha(z)za. (Here a is a multi-index.) When r has the form in Theorem 3, we
claim V(f) = V(h). Notice that V{h) c V(f) is obvious, and in this case we
see that each ha is a linear combination of the fJ9 so that V(f) D V(h).
Without pseudoconvexity, V(h) = {0} does not prevent holomorphic curves
from lying in r~ ι(0).

Example. r(z) = 2 Re z0 + |z j 2 - |z2|
2. Here z*r = 0 for z(t) = (0, t, t),

but V(h) is clearly {0}.
Lemma. Suppose g is a real analytic subharmonic function defined near 0 in

C.Put

^ ta ?

Suppose g contains no pure terms, i.e., ca0 = cOa = 0 Vα. Suppose that c^ φ 0
for minimum a + b. Then a + b = 2k is even, and ckk φ 0.

Proof. Write / = \t\em. Since g is subharmonic,

For |/| sufficiently small we must then have

c eiθ(a~

-l)!(^T)!> α
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By Bochner's theorem we must have cab = 0 Vα, b or else ckk > 0.

Lemma 2. Put z 0 = x + iy. Suppose r is real analytic near 0, defines a

pseudoconυex hypersurface near 0, and has the following form:

r(z, z0) = 2x + p(z) + yg(z) + >>2A(z) + 0{y3).

Then the following matrix is positive semi-definite near 0 in Cn:

where all the functions are evaluated at z.

Proof. Use the formula for the Levi form in terms of the derivatives of r,

and then evaluate aty = 0.

Theorem 4. Suppose r is as above, and 0 is a point of finite type. Suppose

that z φ 0, but caQz*r = 0 for all a. Then there is an integer k such that

cabz*r = 0 whenever a + b < 2k, and ckkz*r > 0. (This shows that the ob-

structions are given by positivity conditions.)

Proof. We may assume without loss of generality that the Taylor expan-

sion for r(z, z0) — 2 Re z 0 contains no pure terms, and that zo(t) = 0. (See the

proof of Theorem 2). Therefore the functions/?, g and h of Lemma 2 have no

pure terms, and when we pull back that formula via z, the last three terms

vanish to higher order than the first. This shows that z*r is subharmonic. By

Lemma 1 we can conclude the existence of such an integer k.

3. Remarks and open questions

As stated in the introduction, a very important question is characterizing

subellipticity. Subellipticity holds with ε = \ precisely when M is strongly

pseudoconvex [4]. It is natural to conjecture that subellipticity holds for some

ε with 0 < ε < \ whenever the (possibly degenerate) Levi form behaves

qualitatively as if it were definite. Kohn has proved for example, that

subellipticity holds when the Levi form is smoothly diagonalizable by vector

fields L, with tpLt < oo, or when M is real analytic and the Levi form has

isolated degeneracies [6], [7], the notion of finite type presented here makes

clear what it means for the Levi form to behave as if it were nondegenerate.

In case M contains an analytic subvariety, generalizations of the proof for flat

M [6] indicate that subellipticity will fail. Therefore we conjecture that finite

type is precisely equivalent to the subelliptic estimates.

There are also important geometric and algebraic questions. One important

such question is whether or not the assignment of an integer (or oo) to each
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point of M given by /(/?) = min{&: Pp(M) is an obstruction} is an upper
semi-continuous function on M. Also, does ί(p) have any relation to ε? A
second question is whether the complex analytic methods used in Theorem 3
have a generalization to more general plurisubharmonic functions than F(z)
= Σ\fJ(z)\2,fJ holomorphic. A third question is what happens when r(z) has
zeroes of infinite order, but r~ι(0) contains no complex analytic varieties.
Here there will be no subelliptic estimate, but 3 should still have good
properties.

Finally we mention the Bergman kernel function K(z, w) in case M is the
boundary of an open subset of Cn+ι. K(z, w) is C 0 0 off the boundary
diagonal whenever there is a subelliptic estimate. Calculations in [2] show that
the singularity of K(z, z) is closely related to the degeneracy in det Λ. It
would be very important to relate more precisely the Bergman kernel,
subellipticity, and the notion of point of finite type.

Since the writing of this article, two very important papers have appeared
concerning real analytic hypersurfaces. Using a result of Diederich-Fornaess
[3] and the theory of ideals of real analytic functions, Kohn [8] has proved
our conjecture about subellipticity; namely, the subelliptic estimates hold for
(/?, q) forms near a point if and only if there are no ^-dimensional complex
analytic subvarieties of M passing through that point. Diederich-Fornaess
have also shown that this holds whenever M is compact.
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