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GEODESIC SPHERES AS GENERATORS OF THE
HOMOTOPY GROUPS OF O, BO

A. RIGAS

Introduction

The purpose of this paper is to show that the generators of the homotopy
groups of the infinite orthogonal group O and its classifying space BO can be
realized by isometric embeddings of standard euclidean spheres as totally
geodesic submanifolds of finite orthogonal groups and Grassmann manifolds
respectively.

This work was motivated by the observation, due to R. K. Lashof, that the
existence of such representatives of homotopy classes would give a partial an-
swer to a problem proposed by Cheeger and Gromoll in [6]. Specifically, we
prove that if one adds a large enough trivial bundle to any vector bundle over
any euclidean sphere, the total space of the Whitney sum will admit a complete
riemannian metric of nonnegative sectional curvature.

The precise statement of the theorem and the proof are in § 8. The nonstable
case is still open as far as we know, and some related questions have been dis-
cussed in [2], [7], [11], [13], [15] and [16].

The contents of this paper are essentially the author's doctoral dissertation
at the University of Chicago in 1974. The author wishes to thank very sincerely
his thesis advisor Professor R. K. Lashof, for his invaluable help and the Uni-
versity of Chicago for their support.

1. Summary

In dimensions n = 0, 1, 3 and 7 the generators of the homotopy groups πn(O)
are embedded as totally geodesic submanifolds isometric to spheres of constant
positive sectional curvature in small orthogonal groups. For simplicity we sum-
marize only the case n — 3, all other cases being similar.

If we think of S3 as the set of all unit quaternions, the natural inclusion of

S3 in SO(4) followed by the inclusion of SO(4) in O = lim O(n) provides a gen-

erator of τr3(O) = Z (see [17]).
To obtain the generators of π8k+3(O), k = 1, 2, we work as follows:
According to Milnor's proof of the Bott periodicity theorem in [10, § 24] we
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may identify O(4) with a certain submanifold of 0(64) denoted by Ω8(64). This
map is shown to be a homothety, i.e., an isometry up to a uniform scale change
of the metric, and therefore maps the unit quaternions onto some totally geo-
desic S3 in i38(64). A certain space of paths of £?8(64), also defined in (9(64), is
denoted by Q7(64). In fact, a chain of submanifolds of 0(64) is defined, each
being a certain space of paths of the next satisfying

β8(64) C β7(64) c β1(64) C βo(64) = 0(64) .

From S 3 in £?8(64) we define an inclusion of S* in β7(64) through a suspension
type construction, and then we replace it by another inclusion, homotopic to it,
which is more suitable for the next suspension to some Sb in Ω6(64). Repeating
this process six more times we end up with a homothetic embedding of the
euclidean Sn as a totally geodesic submanifold of O(64) which generates πn(O).
Next we identify 0(64) with ί28(1024), and find S19 in 0(1024) generating τr19(O).

The points which require proofs are the following:
(1) The homeomorphism

λ: Ω8(\6r)-^ 0(r)

of [10] is actually a homothety.
(2) The suspension construction induces isomorphisms between the homo-

topy groups in question. This follows by direct application of a step in the orig-
inal proof of the Bott periodicity theorem [3].

(3) The last sphere in 0(16r) is a totally geodesic submanifold isometric to
some euclidean sphere of small radius.

These facts are first established in §§ 1, 2, 3 and then applied to prove the
main result in §§4, 5, 6.

In [10] it is observed that β7(16r) contains the grassmannian Gr>2r —

^ r* as its base point component, and therefore the above described
O(r) X O(r)

method gives automatically the generators of the homotopy groups of BO as
totally geodesic euclidean spheres isometrically embedded in grassmannians.
We give an independent proof of this fact in § 7 for the following reason. The
existence of isometric spheres in Grassmann manifolds was observed first by
Y. C. Wong and is described in Wolf [19], without any relation to their homotopy
classes. In § 7 we relate this work with [19].

1. A Homothety

In this section we recall the setting of [10, §24] for the proof of the Bott
periodicity theorem for the orthogonal group, and show that a certain homeo-
morphism λ: Ωs(l6r) -> O(r) is actually a homothety between these two spaces.

Let Rm be the m-dimensional euclidean space, and O(ni) its orthogonal group
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with the standard bi-invariant metric induced by the inner product (A, B) =
trace ABK where Bι is the transpose of the matrix B, and A. B are in the Lie
algebra o(m) of O(m) consisting of the skew-symmetric matrices. Let Ωλ{m) =
o(m) (Ί O(m) be the set of all matrices / in O(m) such that J2 = — I. Such a
matrix is called a complex structure on Rm. Two complex structures / and K
are said to anticommute if JK + KJ = 0. Given fixed anticommuting complex
structures Jί9 , Jk_1 on J?m, let Ωk(m) be the set of all complex structures J
which anticommute with / l 5 /2, , Jk_v Note that Ωk(m) c Ωk_1(m) c C
^ ( m ) C 0(m) = βo(m).

The following lemma is proved in [10].
Lemma 1. ϋVzc/z Ωk(m) is a totally geodesic submanifold of O(m). The space

of manimal geodesies from Jp to — Jp in Ωp(m) is homeomorphic to Ωp + ί(m)for
0 < p < k.

Let m = 16r, r > 1, and observe that by Lemma 1, βfc(16r) must be a sym-
metric subspace G'/TT of O(\6r) considered as (H X H)/H, where // = O(\6r)
(see [12, Vol. II, p. 235]). In fact, if all groups below are considered with their
standard bi-invariant metrices Ω^lβr) is homothetic to O(\6r)/U(Sr), where
U(Sr) consists of all A in O(lβr) which commute with a particular Jλ in Ω^lβr).
Similarly, Ω2(l6r) is homothetic to t/(8r)/Sp (4r); Ω^lβr) has components of
various dimensions, and we choose J3 in the component which is homothetic
to G2r(Hir) — Sp (4r)/Sp (2r) x Sp (2r) the Grassmann manifold of quaternionic
2r-planes in the quaternionic 4r-dimensional space H4r. Then β4(16r) is
homothetic to Sp (2r), β4(8r) to Sp (r), β5(16r) to Sp (2r)/U(2r), and £6(16r)
to U(2r)/O(2r). The largest dimensional component of £7(16r) is homothetic
to Gr(/?2r) = Gr>2r = O(2r)/O(r) X O(r). Choosing /7 in this component, fi8(16r)
becomes homothetic to O(r).

Now let us recall from [10] the definition of the homothety λ: Ω8(l6r)-^O(r).
The anticommuting complex structures Jx, /2, J3 determine a splitting of Rί6r

Ξ H4r as a direct sum V1 Θ ^2 5 where ^ is the + 1 eigenspace of JXJ2JZ on
Rί6r, and V2 is the — 1 eigenspace. By the choice of 73 the quaternionic dimen-
sion of V1 and also of V2 is 2r; Fj = W® J2W, where Wis the + 1 eigenspace
of Λ/4/5 on F l 9 and the real dimension of W is 4r. Moreover, W = 1 0 ^ 1 ,
where X is the + 1 eigenspace of J2J4J6 on Pf, and the real dimension of X is
2r. Finally Xx and X2 are the — 1 eigenspaces of the restriction of JλJ&JΊ on X,
and the real dimension of each is r.

Now given an isometry T: Xx —> X2 we first define
(1) J\Xl = -JΊT\Zι9

(2) J\x% = JΊT-\%9

and then define / on the rest of the summands of R16r described above so that
it anticommutes with each of the /1? , J6 as follows: (1) and (2) determine /
on X,

(3) J{J^x) — —J^Jx) for all x in X determines / on W9

(4) J(J2w) = —J2(Jw) for all w in W determines / on VX9 and
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(5) /(ΛΛLΊ) = ΛΛ(Λi) f° r l̂ m V\ determines / on V2 =
It follows that / is in β8(16r).
Let φ: Isom (X1? X,) -+ Ω8(l6r) be 0(Γ) = / determined by (1), , (5). The

set theoretic inverse of φ is ψ with

ψ(J) = (J7J)\Xi: X,

The proof of the following is also intended to fix notation.
Lemma 2. There is a homothety λ: Ω8(l6r) -* O(r).
Proof. Fix J8 in Ω8(l6r), and observe that (ΛΛ)!^ is an isometry between Xλ

and X2. Therefore

2: X2 -> ^ =

is also an isometry, and the composite ( / 8 7 7 ) | J 2 O Γ Ξ C(T) defines a bijection
c: Isom (Z19 Z2) -^ Isom (Xl9 X,) = O(r).

Now let λ = coyjr: Ω8(l6r) -> O(r). Obviously, >ί is a smooth homeomor-
phism, λ(J) = —(JJ)\Xι\ Xx -> ^ 1 ? and ^(/8) = id (X,). The inverse ^ ^ is also
smooth since by the definition of / from a given T in O(r), λ'1 consists of suc-
cessive embeddings

O(r) -> O(2r) -> O(4r) -> O(8r) -> 0(16r)

with the submanifold β8(16r) as the image.
Using Assertions 1 and 2 [10, p. 137] one can now give a routine proof that

this particular λ is homothetic, when 0(1 βr) and O(r) are considered with their
standard metrics.

Remark 3. The homothety λ of Lemma 2 as well as λ'1 determine a one-to-
one correspondence between minimal geodesies in β8(16r) and minimal geod-
esies in O(r) mapping midpoint to midpoint. Therefore they map anticommut-
ing complex structures to anticommuting complex structures. Indeed, if / and
K are auticommuting complex structures, the geodesic / exp (tKJ) is minimal
in the orthogonal group, between / a n d —/with midpoint K.

This implies in particular the following.
Corollary 4. For all k > 0 such that Ωk(r) is not empty, λ~λ restricts to a

homothety between Ωk(r) and Ω8+k(l6r).

2. A suspension

In this section we describe a morphism φ between the homotopy groups
πjΩ(ή) and πj + ίΩk_1(n) induced by a naturally defined suspension of Ωk(n) into
Ωk_x(n).

Consider Ωk_x{ή) in O(n) defined as in § 1, and let Jk_1 in βfc_i(«) define
Ωk{ή). For the remainder of this section we write Ωk9 etc. in place of Ωk(n), etc.,
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since n is fixed. Denote by ΛΩk_1 the space of all continuous paths in Ωk_1

starting at —Jk_λ with the compact—open topology, and by ΩΩk_x the set of
all elements of ΛΩk ending at Jk_v Let/?: AΩk_1 —• Ωk_ί be the end point map
defining a fibration with fibre ΩΩk_ί, where the base point of ΩΩk_x as well as
AΩk_ί is the minimal geodesic γk(t) = — Λ-i e x P (*Λ-iΛ)> ° < t < π> o f ^*-i
between — Jk_1 and Jk, while the base point of Ωk_1 is / f c_j.

Following [10, Lemma 24.4] there is a one-to-one map i: Ωk —• ΩΩk_ί defined
as follows. For each / in Ωk let /(/) be the minimal geodesic in Ω1c_1 from — Jk

to Jk with midpoint /, i.e., — Jk.x exp (tJk_xJ\ 0 < ί < π. By compactness of
flfc, z is a homeomorphism onto its image.

The space ΛΩk_ί is contractible, and so there is an isomorphism φ: πrΩk ->
^r + i^k-i f° r all r > 0. We want to give this φ an explicit form on the represen-
tatives of homotopy classes.

If Dr + 1 is the closed disc of radius π in Rr + \ we write each nonzero element
in Dr + 1 as tx for 0 < t < π and x in the unit sphere Sr. Given a base point
preserving map a: (Sr, x0) -* (Ωk, Jk\ we define ^ i (Dr + \ dDr + 1) -+ (Ωk_19 Jk)
by a^tx) = — Jk_x exp (tJ1c_1a(x)), 0<t<π, where exp is the usual exponential
map of O(n). So aλφ) = -/ f c _ l 5 a^πx/2) = α(x) and ^(TΓX) = Λ - I f° r a ^ ^ m

iS7". In particular a^πxjl) — /fc, and if β is homotopic to Z? in Ωk with /fc fixed
throughout the homotopy, then ax is homotopic to b1 in i2fe_i with γk fixed
throughout the homotopy. So we may define a map φ: πrΩk-± πr + 1Ωk_1 by
0[α] = fe] and ^[0] = [0].

Lemma 5. If d denotes the boundary homomorphίsm of the fibration p defined
above, and i^.: πrΩk —> πrΩΩk_1 is induced by i, then d o φ — i^ for all r > 0.

Proof. As each aγ(tx) is a minimal geodesic from — Jk_ί to Jfe_1? ^ maps the
interior of D r + 1 into the interior of the injectivity ball of — Jk_1 in Ωk_19 and
maps d£>r + 1 on Jk_19 so that a/)r + 1 lies on the cut locus of —Λ-i We can lift
to ΛΩk_1 the restriction of ax on int (Dr + 1) by mapping each tx, 0 < ί < π, to
the unique minimal geodesic in Ωk_ί9 which joins —Jk_1 to ^(ίx). Explicitly,
let a2{tx) = —Jk_1 exp (sJ]c_1a(x)), 0 < s < t.

In particular a2(πx0/2) = γk\[0, π/2]. Now we can lift the boundary points πx
uniquely by continuity. For example, a2(πxj2) = γk and so we have defined

a2: (D' + \ dD' + \ πxQ) -> (ΛΩt_19 ΩΩk_ί9 γk) ,

such that poa2 = av Letting az be the restiction of a2 on (dDr + \ πx0) we have
that 3 o φ[a] = [az] in πrΩΩk_v Identifying (Sr, x0) with (3Dr + \ πx0) by x ^ πx,
we observe that α3 = / o a. In particular 9 o φ o [α] = ^[α].

Corollary 6. 77*<? m^p 0 w β grow/? morphism, and if for some r > 0, /
isomorphism, then so is φfor the same r.

Proof Immediate, since d is an isomorphism.
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3. Geodesic spheres in orthogonal groups

In this section we give the structure of some totally geodesic spheres Sn in
the orthogonal groups O(r), and later we shall show that the structures carry
the homotopy of O. Our Proposition 10 is similar to one in Wolf [19], and the
proof is included here for completeness.

Let Sn be the unit sphere in the euclidean space Rn + ι with elements x = (x0,
• , xn), and let KQ, , Kn be anticommuting complex structures in O(r). The
map f(x) = x0K0 + xxKx + + xnKn defines an inclusion of Sn into Ωx(r)
as it follows from the relations

Lemma 7. The image f(Sn), denoted by Σn, as a set of points, is a union of
minimal geodesies ofθ(r) between two points of the type A and —A. The midpoints
of these geodesies form an equator Σn~\ which is also the union of a set of mini-
mal geodesies between any two of its antipodal points. Continuing this way we
end up in a closed smooth geodesic, which is minimal between any two of its an-
tipodal points and has equator Σ° = {E, — E), where E is in Ωλ(r).

Remark 8. According to Lemma 7, Σn may be constructed by successive
suspensions. Starting from Σ° we obtain Σι then Σ2, etc., the great circles
being always smooth closed geodesies and minimal between the two vertices of
each suspension. The vertices of the different suspensions are anticommuting
complex structures as it follows from the fact that each Ωt is the set of midpoints
of minimal geodesies in Ωi^x.

Proof of Lemma 7. For x(xQ, , xn) in Sn let t in [0, π] be such that cos t
= x0. Then sin t = (1 - xl)ί/2 = ( * ; + . . . + 4 ) 1 / 2 and/O) = K0(I cos t +
/ sin t), where

/ = sj2 + + snΛn , st = xt{x\ + + xlY1'2 , A, = -K0Kt .

Moreover, si + + si = 1, and A19 , An are anticommuting complex
structures which also anticommute with Ko. Therefore / lies in Ωλ(r) and

i.e.,/(x) is a point on the minimal geodesic of O(r) between KQ and —KQ which
has midpoint

KQJ = J A + + snKn .

Since the midpoints are of the same form as the elements of Σn, the lemma
follows by repeating the process a finite number of times.

Remark 9. Obviously, the proof and conclusion of Lemma 7 remain true if
λ̂ o is replaced by /, i.e., if
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f{x) = Xj + X,K, + + XnK n >

A + *ϊ + + A = i ,

and K19 - , Kn are anticommuting complex structures in O{r).

Proposition 10. The image of f as in Remark 9, denoted by Σn, is a totally
geodesic submanίfold of O(r) isometric to an euclidean sphere.

Proof Let o(r) have the following conveniently normalized metric (A, B}

= — — tr AB, and notice that K19 , Kn form an orthonormal basis of an n-
r

dimensional subspace Vn of o(r). As in Lemma 7 and Remark 9, Σn is the image
of the closed disc Dn of radius π in Vn through the usual exponential map of
O(r). Any element of Dn may be written as tJ, where 0 < t < π, J is a complex
structure of the form Σ^sjζ.^ st = x^x? + + ^n)~1/2» a n ( i ^i + + sl
= 1, i.e., / is in the unit sphere S"'1 of Vn.

Any element of I 7 " may be written as exp (tJ) = I cos t + / sin /, and since
exp is periodic of period 2π when restricted to Vn, we have that I 7 " = exp (Vn).

Following [8, Chapter IV, § 7] we see that Σn is a totally geodesic submanifold
of O(r), and is therefore a symmetric subspace if and only if Vn is a Lie triple
system, i.e., if and only if the Lie bracket [[X, Y], Z] is also in Vn for X, Y and
Z in Vn. Because of the following relations, we can directly verify that Vn is a
Lie triple system.

If LiJk = [[Kt, Kj], Kk], then for distinct i,j9 k we have

Lίik = 0, LtjJ = 4Ki9 LtJi = 0, Lίjk = 0.

Now the sectional curvature K of a 2-dimensional plane tangent at the iden-
tity /, spanned by Kt and Kj for / Φ j , is

K=L \\[Ki9 KM2 = l l ^ ^ ll2 = ~ K(KiK3Y = 1 tr/ = 1 .

If R denotes the curvature tensor, then R(X, Y)Z = [[X, Y], Z] in O(r). The
identity ([[X, Y], Z], W) = ([X, Y], [Z, W]) and the values of Lίjk above im-
ply that (R(Kί9 Kj)Kk, Kj} is zero unless k = i and / = j (or k = j and / = /),
in which case (R(Kt, Kj)Ki9 Kj) = 1 (we are following the notation of [10] for
the curvature tensor and sectional curvature). Since K19 , Kn form on
orthonormal basis of Vn, the curvature of any plane section of Vn is equal to
1, so that the symmetric space Σn is of constant sectional curvature 1. From
Σn = exp (Dn), where exp is injective on int Dn and collapses 3D71 to —/, it fol-
lows that Σn is homeomorphic to the ^-dimensional sphere. So Σn has to be
isometric to the euclidean Sn since a connected riemannian manifold of constant
curvature is determined up to isometry by its fundamental group (see for ex-
ample Wolf [20, Cor. 2.7.2]).
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Observe that if o(r) has the metric (A, B) = — tr AB, then Σn is isometric
to the euclidean sphere of radius \\4~r .

Corollary 11. If Ku , Kn are antίcommuting complex structures in O(r),
then the set of ail x,Kx + + xnKn in O(r) with x\ + + x\ = 1 is a
totally geodesic submanifold of O(r) isometric to the euclidean (n — l)-dimen-
sional sphere of radius \\<sJΎ.

Proof. Notice that left multiplication by Kx is an isometry of 0{r), and apply
Proposition 9. q.e.d.

We may denote now by Sn the sphere described in Remark 9, and consider
its image Sn in Ω8(l6r) through the homothety λ = λ~\ Obviously Sn is a total-
ly geodesic submanifold of Ω8(l6r) isometric to some euclidean sphere of posi-
tive radius.

We want to show that §n is of the same form as Sn.
Lemma 12. There exist anticommuting complex structures Aί9 , An + 1 in

Ω8(\6r), such that Sn is the set of all elements of Ω8(\6r) of the form

a1Aι + + an + ίAn + 1 ,

where al + + a2

n+1 = 1.

Proof According to Remark 3, λ(I) = /8 and λ(Kt) = Js+ί, where /8, ,
J8+n are anticommuting complex structures in Ω8(l6r) defining β9(16r), β lo(16r),
• , Ω8+n + ί (16r). Our Sn consists of minimal geodesies between J8 and — J8,
and we can continue as in the statement of Lemma 7.

A minimal geodesic in Ωs(\6r) between /8 and — JB has the form

g(t) — J8 exp (tB) = J8 cos t + J8B sin t ,

where B is a complex structure anticommuting with J8, but commuting with
the J19 , JΊ which are used to define Ω2(16r), , Ω8(l6r). The midpoint of
g(t) is J8B, and according to the above it may be written as

JSB = /9 cos θ + / 9 C sin θ

for some θ in [0, π] and some complex structure C of O(l6r) which anticom-
mutes with J2 and commutes with Jί9 , J8. Now g(t) above, becomes

g(t) = aJ8 + bJ9 + cJ9C, a2 + b2 + c2 = 1 .

But / 9 C is the midpoint of a minimal geodesic between Jί0 and —Jί09 etc.
Repeating the process a finite number of times we complete the proof, where
A x = J8, -,An + 1 = J8+n. q . e . d .

Now from Sn in Ωk(m) as in Lemma 12 we construct Sn + ί in Ωk_1(m) through
the suspension φ of § 2. Since φ(A) is the minimal geodesic

— Λ-i e x P (^Λ-i^) J 0 < t < π
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between Jk_ί and — Jk_ί with midpoint Jk.ίA9 we employ the same method as
in the proof of Lemma 12 to show that Sn + ί may be written as the set of all
sums sxLx + + sn+2Ln+2, where s\ + + 4 + 2 = 1 and L19 , Ln+2

are anticommuting complex structures in Ωk_λ(m). lϊ k — 1, sn + 1 will be of the
form xj + xλL^ + + xn + 1Ln + 1.

Thus we have proved
Corollary 13. If Sn in Ωk(m), k > 0, is of the form described in Corollary 11,

//*£« Λ-1 α«ί/ φ preserve that form.
In conclusion, given S n in O(r) of the form described in Remark 9, we may

construct Sn+S in O(16r) of the same form by first mapping the Sn into β8(16r)
through λ~\ then successively applying φ to the image and using corollary 13
in each step.

The lemma proved below will enable us to use the Bott periodicity theorem
[3], [10] in the proof of the main result, while we retain the form of the homotopy
generators described above.

Let Ω2(n), , Ωk(n) in Ω^n) be defined through the anticommuting complex
structures Jl9 , Jk_1 and fix Jk in Ωk(n), which is assumed nonempty. The
matrices

0 Jt

are the anticommuting complex structures in Ωx{2ή) which define Ω2{2ή), -
Ωk{2ή), and Jk is in Ωk(2n). Let ir: Ωr(n) —• Ωr{2ή) be the following inclusion:

ir(A) =
(A OX

Vo -JJ

where r = 0, , k and Jo = I. This is easily seen to be well defined.
If Sq is a totally geodesic sphere in Ωk(n) of the form rλΛx + + rq + ίΛq + ί,

etc., and Sq + 1 = φ(Sq) is the sphere of the same form in ^^(/z) obtained
through the suspension construction, we consider the following:

k ) k^( ) φ() = Σq + ί , in Ωk.x{2n) .

We have

Lemma 14. The spheres Sq + 1 and Σq + ί belong to the same based homotopy
class in πq + ιΩk_ι(2ri).

Proof. Choose a continuous real valued function h(s, t) for 0 < t < 1 and
0 < t < π, such that λ(0, t) = t, A(l, 0 = 0 and h(s, 0) = 0, for all s and /. Let

F:Sq + 1 x [0, lj — β

be defined by



536 A. RIGAS

Jk_,A) 0

-Jk_ίQxp(-h(s, t)Jk_λj

where the elements of Sq+1 are written in the form resulting from the construc-
tion of φ. One can verify that/ 7 is a well defined homotopy with Σq + 1 =
F(Sq+ί X 0) and Sq+1 = F(Sq+1 X 1). Moreover F is base point preserving
since h(s, 0) = 0.

Corollary 15. Let Σq+2 and Sq+2 in Ωk_2(2n) be the respective images under
φ ofΣq + 1 and Sq + 1 defined above. Then [Σq+2] = [Sq+2] in πq+2Ωk_λ(2ri).

Proof. Using the same notation for the construction φ and the induced
morphism φ: πq + 1Ωk_1(2n) -• πq+2Ωk_2(2ή) we have

[Σq+2] = φ[Σq+1] = φ[Sq+1] = [Sq+2] .

4. Generators of π8 f c + 3(O)

We begin by considering the homothety λ: £8(64) ^ 0(4) and the J19 , J7

in 0(64) defining £,(64) for i = 1, , 8 as in § 1. We now fix /8 in £8(64) and
define

β8(128) C β7(128) C . . C 0(128)

through the anticommuting complex structures Jί= I* Y i = 1, . . , 7.

Then we consider the inclusions ik: βfc(64) —> βfc(128) with ik(A) = ( Q _J )

for k = 1, , 8, and observe that z8 viewed as an inclusion of 0(4) in 0(8)

^ fl8(128) maps A to (^ ^X

Recall that the group of unit quaternions S3 = Sp (1) is a subgroup of 50(4)
as follows.

Let σ: S3 —> 50(4) be defined by σ(q)(r) = qr, where the product on the right
hand side is quaternionic multiplication of r in R* = H by the unit quaternion
q (see [17]). For example the standard complex units ι,y, k in 5 3 are mapped to
the following anticommuting complex structures in 50(4):

0
1

0

0

0

0

1

0

- 1
0

0

0

0

0

0

- 1

0
0

0

1

-1

0

0

0

0
0

- 1

0

0

1

0

0
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1
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1
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-1
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0
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and also σ(r0 + rj + rj + rjc) = rj + rjλ + r2J2 + r3/3 for r\ + r\ + r\
+ r\ = 1.

It follows from the results of the previous paragraph that σ(S3) is homothetic
to S3 and equal to exp (F3), where V3 = span {J19 J2, J3} in o(4).

It is known [17, § 23.6] that ττ3θ(4) = Z®Z and the homotopy class of the
above described σ is (1, 0) with image i%[σ] = 1 in Z = ;r3θ(8) = 7Γ3O, where
i: 0(4) -^ 0(8) is the standard inclusion. So, if Σ3 denotes the image i8 o λ(S3)
in β8(128), then [Σ]3 is a generator of τr3β8(128) = Z.

We now apply the suspension a of § 2 to Σ3 and then to σ^ 3 ) = Σ\ etc. :

^ 3 in flβ(128)

Σ* in fl7(128)

Σ1 in βo(128) = 0(128) .

: πrΩk 1Ωk_1 is an isomorphism according toEach induced morphism
Corollary 6, since z^: 7rrlβfe —> πrΩΩk_ί is an isomorphism as we verify below.

(1) ττ3β8(128) ^ τr4β7(128), [10, p. 146].
(2) flβ(128) = C/(16)/O(16), and from [3] it follows that 7rfcβ7(128) ^

τrfc + 1β6(128), 0 < k < 7, which we need for fc = 4.
(3) fl5(128) = Sp (16)/ί/(16), and [3] implies ττfcβ6(128) ^ ττfc + 1β5(128), 0 <

k < 15, which we need for /: = 5.
(4) fl4(128) = Sp (16) and τrfcfl5(128) ^ ^fc + 1β4(128), 0 < k < 32, which we

need for k = 6.
(5) ττ7β4(128) ^ ττ8β3(128), [10], where fls(128) = Sp (32)/Sp(16) X Sp (16).
(6) fl2(128) ^ C/(64)/Sp (32), and from [3] it follows that τrfcί23(128) ^

ττfc + 1β2(128), 0 < A: < 63, which we need for k = 8.

(7) 0,(128) = O(128)/£/(64), and [3] implies that τrfcβ2(128) ^ ^ ^ ^ ( 1 2 8 )
0 < k < 124, which we need for k = 9.

(8) 7^(128) ^ πk + 1SO(128), 0 < k < 124, which we need for k = 10.
Therefore 2111 in £0(128) generates τrnSO(128) = πn0 = Z.
Now we apply successive suspensions to the isometric sphere S3 in β8(64) to

obtain a totally geodesic sphere Sn in 0(64) using Corollary 13 in each step.
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Applying Lemma 14 and Corollary 15 in each step we conclude that [i(Sn)] =
[Σn] in 7rπ0(128), where i: 0(64) -> 0(128) is the standard inclusion. Since /*
is an isomorphism of τrn's, it follows that the totally geodesic isometric sphere
Sn in 0(64) generates πn0.

Now we apply the same process to Sn = λ(Sn) in β8(1024) to obtain a gen-
erator S19 of ;r19O(1024) = ττ19θ, as a totally geodesic submanifold of 0(1024),
homothetic to an euclidean sphere. The verification of the corresponding steps
(l)-(8) above reduces to checking the following.

If φ: πqΩk(n) —• πq + ιΩk_ι(ή) is an isomorphism, then φ: πq+8Ωk(l6n) —>

πq+dΩk_ί(l6n) is also an isomorphism for all k = 1, , 8, all q and all n > 0.
This may be observed directly from the formulas of [3] and [10].

It is now obvious how by iteration of this process we may realize all gen-
erators of π8k+3θ as totally geodesic euclidean spheres S8k+S homothetically
embedded in the orthogonal groups 0(16fc + 1 X 4).

5. Generators of π8k+7θ

Although explicit generators of πΊ0 are known to homotopy theorists, we
prefer to construct one using the suspension method from Ss in 5*0(4), since it
seems convenient for the continuation of the process.

First recall that Ω±($k) is homothetic to Sp (k) ϊoτk> 1. For example Sp (1)
= 5 3 is homothetic to £?4(8), and Sp (2) is homothetic to Ω4(l6). Next observe
that there exist exactly seven anticommuting complex structures in 0(8) (left
Cayley multiplication by each of the standard complex units in Rs). This fol-
lows from the steps defining the /fc's in § 1, as there is just one choice for /7,
namely, JΊ\X = J%Jλ\x or — J&JX\X, X being a one-dimensional subspace of R\
We apply now the suspension φ to £?4(8) = S* to obtain S4 in £?3(8), then S5 in
β2(8), S6 in Ω^S) and S7 in 0(8). According to Corollary 13, S7 = exp(F 7)
where V7 is the span of the Jί9 , JΊ in 0(8), and this S7 is a totally geodesic
euclidan sphere of radius l/\/7 in 50(8).

Observe now that

τr7SO(8) ^ πΊ(S7) Θ πΊS0(l) ^Z®Z

by the parallelizability of S7, and we want to show that the S7 in 50(8) de-
scribed above is a generator (1, 0) in Z ® Z which projects to a generator of
Z ^ πΊ0 through the map induced by the standard inclusion of O(8) in O(16).

First observe that a •-> ί ̂  , ) is an inclusion of Sp (1) in Sp (2) which

generates π3 Sp (2) = Z as follows from the fact that the homogenious quotient

of the standard inclusion a ι-> ί^ , j is diffeomorphic to S7.

The inclusion flh>Γ | induces /4: £?4(8) >-> β4(16), i±(A) = (Q _ / )
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for some fixed element 74 in £?4(8), as in the beginning of § 4. Now we suspend
/4(53) = Σ\ which generates τr3ί24(16) = Z to a Σ4 in £3(16), etc., and finally to
a 217 in 0(16). Using Bott's theorem II [3] in each step, one may verify that φ
induces isomorphisms of the homotopy groups 7r3£?4(16) = τr4β3(16), •••,
TΓAOO) ^ ττ7θ(16) and therefore [I77] = 1 or - 1 in Z ^ τr7θ(16) ^ π7θ. Using
Corollary 15 in each step we conclude that i*[S7] generates 7r7O(16), where S7

is the sphere of radius 1/V 7 in S0(8) described above.

The process of obtaining S15 in 0(128), as a totally geodesic submanifold
isometric to a sphere and generating π 1 5 θ, is now familiar and is illustrated be-
low:

0(8)-

Z) S1

β7(128) ZD S8

0(128) Z) S15 \

-> 0(16)
'7

λ

Σ7 c β8(256)

C β7(256)

C 0(256)

Here λ is the homothety of § 1, and the horizontal maps i69 , i0 are the inclu-
sions introduced in § 3. The vertical arrows S* •-• Sί + ί and Σ* ̂ > Σί + 1 indicate that
Sί + \Σi + ι are obtained from S\ Σι by the suspension φ. The Σί9s are generators
of τr;β;(256) as follows from the application of Bott's theorem II [3] in each
step, while the Sί9s are totally geodesic euclidean spheres in β/128). The base-
point preserving homotopies Σι ~ Σι are given by Lemma 14.

Repeating the process one obtains generators of τr8fc+7θ as S8k+ 7 homothe-
tically embedded euclidean spheres in 0(16k X 8), as totally geodesic submani-
folds for all k > 0.

6. Generators of τr8fc + 1 θ and of 7r8fcO

It is known [17, § 22.8] that the standard inclusion of S0(2) = S1 in 50(4)
provides a geodesic loop at /in 50(4) which generates 7^50(4) ^ πλθ = Z2. To
apply the method of the last two sections we first obtain Jί9 , J7 in βα(64),
define ΩX64) through them and then we embedd £^(32) in β*(64), / = 0, ,
8 in the same way as in §§ 4 and 5.

Restricting to the connected component β§(32) of ί28(32), which is homothetic
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to SO(2) through Λ, we have the commutative

50(2) > SΌ(4) .

We apply φ successively to βg(32) and to Σ1 = /(β£(32)), the generator of
TΓjiSaίό^ = πβ. Using Corollary 13, Lemma 14 and Bott's theorem II we ob-
tain a generator of ττ9θ as a totally geodesic euclidean sphere in 0(32). Repeat-
ing the process one realizes a generator of π8k + 1θ = Z2 as a homothetically
embedded totally geodesic euclidean S8k + 1 in O(\6k X 2).

In order to obtain the generators of π8k + ίθ we begin with the grassmannian
manifold G5>10 of 5-dimensional planes in I?10, which is homothetic to β7(80) and
has πfi^o = π0O(5) = Z2. From the version of Bott's theorem in [10] it fol-
lows that the inclusion /: 428(8O) —> ββ7(80) induces a bijection i#: ττ0β8(80) —•
ΩQΩΩ7(S0\ and therefore φ: τr0β8(80) -• ̂ £,(80) is also a bijection.

We may construct now a smooth geodesic loop S1 in £?7(80), generating the
fundamental group as follows.

Let aλ\ {1, 0} -» 0(5) be such that ^(0) = /, at(l) = - / , generating ττ0O(5),
and α:0 = ^"J o α i , where r 1 is the homothety 0(5) ~> fl8(80). Now αo(O) = /8,
(Ύ0(l) = — J8 and [α0] = 1 in τr0β8(80) = Z2. We apply the suspension φ to a0

to obtain α: 5 1 -^β7(80), whose image consists of two minimal geodesies from
JΊ to —/7, determined by their midpoints J8 and —J8. Therefore their initial
tangent vectors are collinear and have opposite orientations, and so are their
final tangent vectors. Thus the image ^(S1) is J7 exp (F1), smooth geodesic loop
at JΊ, where V1 is the 1-dimensional subspace of 0(80) generated by /8, and the
exponential is the usual one of O(80).

We apply now iterated suspensions to aζS1) to obtain homothetic euclidean
spheres φ(a) = S2 in ββ(80), , S8 in O(80), each totally geodesic in the cor-
responding β,(80) and [S8] = 1 in ττ8O(80) ^ Z2.

Repeating the process we obtain SSk as totally geodesic euclidean spheres in
0(16fc X 5) generating τr8fcθ ^ Z2 for all k > 0.

7. Generators of πQ + ί BO

For each Sq in O(r) generator of πq0 constructed in the previous sections we
have λ(Sq) in fl8(16r) and φλ(Sq) = Sq + 1 in Ω7(\6r). Applying Lemma 14 one
sees that i*[Sq+1] generates πq + ιΩ7(32r) which is equal to πq + 1B0, where Ω7(32r)
is homothetic to the grassmannian G2 r > 4 r and / is the inclusion. The results of
§ 2 assert that Sq+1 is a totally geodesic submanifold of Ω7(l6r) homothetic to
the euclidean sphere.

In this section we intend to indicate what amounts to the same construction
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described above but without direct use of the homothety between the
grassmannians and the β/s. Our reasons for doing so are that the present work
began by considering Y-C. Wong's "Isoclinic spheres in grassmann manifolds"
as they are described by Wolf in [19] without connection to homotopy.

Let Sq be the generator described at the beginning of this section. According
to the preceeding results, Sq = exp (Dq), where Dq is the closed disc of radius
π centered at the origin of Vq = span {Jί9 , Jq} in o(r), and Jl9 , Jq are

anticommuting complex structures in o(r). Now we define Λt = lj Jj for

/ = 1, . , q and Λq + ί = ( j ~ \ in o(2r), and let Vq + 1 be the subspace of

o(2r) generated by Λ19 -9Λqi.19 and Dq+1 the closed disc of radius π/2 in Vq + ί

centered at the origin.
Observe that the exponential of O(2r) is a diffeomorphism when restricted to

Dq + 1 and the image Dq + ί = exp (Dq+1) is a totally geodesic submanifold of
0(2r) with totally geodesic boundary equal to

(SqY = { M i + + sq + 1Λq + 1\sl + + s\+1 = 1} .

Now let Gr>2r = O(2r)/O(r) X 0(r) be the homogeneous quotient, where the
denominator is included in O(2r) diagonally, and we denote the obvious
projection by p: O(2r) -• Gr>2r. Let B = p(I2r) and B1 = p(Λq + ί) in Grt2r. To
justify the notation we notice that B and B1 determine an orthogonal splitting
of R2r = R{ ®Rϊ = B® B^.

One may prove now the following lemma using a short argument similar to
the ones in § 3.

Lemma 16. (a) The map p is a diffeomorphism when restricted to the inte-
rior of Dq+\

(b) the boundary (Sq)' of Dq+ι lies in p-\B^X
(c) p(Dq+1) is a totally geodesic submanifold of Gr>2r in its homogeneous met-

ric, which is homothetic to a euclίdean sphere Sq+1.
The proof is ommitted.
Consider now the based fibration

(pΛB1); Λq + i) -> (O(2r); Λq + 1) --• (G ? , 2 r ; B±) ,

and notice that by the above construction we have d[Sq+ι] = [(Sq)'], where d
is the usual boundary homomorphism. All fibres of p are totally geodesic in
0(2/*) and isometric to O(r) X O(r) = p~\B). An isometry from(p~\BL)\ Aq+1)
to (O(r) X 0(>); /) is given by left multiplication by —Λq + 1, (This corresponds
to lifting horizontally the geodesic po exp ( — tΛq + 1) from each point of
p'XB1)). The induced isomorphism between based homotopy groups sends
[(SqY] to [Sq] in πq(O(r) X 0(r); 72r), where
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sq = + si = 1

Lemma 17. Ifp2: 0(r) X 0(r) —> 0(r) is the projection to the second factor
and V\ 0(r) -> O the usual inclusion then i*p*[Sq] generates πq0.

Proof. Notice that p2(Sq) = Sq, the generator we started out in this section.
q.e.d.

We consider now the following maps of fibrations and the induced maps on
their homotopy sequence diagrams :

O(r) X O(r) -^!» O(r) -^-> O

Ύ Ύ Ύ

O(2r) > O(2r)/O(r) > EO

Gr,2r

i
πq(O(r) X O(r)) - ^ πQ0(r) - ^ > πq0

The commutativity of the last diagram and the fact that i'*p2*d[Sq+1] imply
now that ^[S"7*1] generates πq + ίBO, and therefore we have

Corollary 18. A generator of each nonzero homotopy group πq + 1BO may be
realized as a homothetically embedded totally geodesic euclidean sphere Sq+1 in a
sufficiently large grassmannian Gr>2r.

8. Bundles with nonnegative curvature

In this section we give a partial answer to the following problem proposed
in [6].

Do all vector bundles over spheres admit complete riemannian metrics of
nonnegative sectional curvature?

In what follows "metric" means "complete riemannian metric", and K de-
notes the sectional curvature.

We begin with the abelian group [V(Sn)] of stable classes of real vector
bundles over the sphere S n for arbitrary n as it is defined in [9], and recall that
[V(Sn)] is isomorphic as an abelian group to πnBO. A natural isomorphism is
defined as follows.

Iff is in V(Sn) with fibre R\ then ξ is the pull-back f*(γmtte) of the vector
bundle γmΛ, described below, for some m > 1, by a smooth map/: Sn -> Gmt7n + k
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ΞΞ O(m + k)jθ{m) X O(k). The Lie group O(m) x O(k) acts linearly on Rk

from the left by its second factor, as (A, B)x = Bx, and we denote by EmΛ the
quotient of the diagonal action of O(m) X O(k) on the product O(m + k) X Rk,
i.e.,

We denote the elements of Em>k by [C, x] and the projection [C, x] »-• [C] in
Gm,m + k by p. The map/? defines the vector bundle fm>fc with fibre Rk. If we de-
note the inclusion Gm>m + k ~-> 5 0 by /, define [zΌ/] in πnB0, and recall [9] that
the correspondence [ξ]<->[i°f] determines an isomorphism between [V(Sn)] and
πnB0.

If ξ is in F(S n ) and πnB0 = 0, then there is a trivial bundle in the stable
class of ?, say S n X i?9, and the product metric on the total space has K > 0.

If τrn£0 is nonzero, let a be the embedding Sn -> SO(2r)/SO(r) x 5O(r)
asserted by Corollary 18. Now we recall [12, Vol. II, p. 235] that each totally
geodesic submanifold of a symmetric space G/H is itself a symmetric space and
may be written as G'/H'\ where Gf is a closed connected subgroup of G and
H' = G' 0 H. Therefore G'\H' = a(Sn) is a totally geodesic sphere homothetic
to Sn in G r>2r, and the inclusion a: Gr\H' -• G r j 2 r -* 5 0 generates πnB0.

Theorem. For every class of stable vector bundles over a sphere there is a
representative whose total space admits a metric of nonnegative sectional curva-
ture.

Proof STEP I. A representative of [£]. The total space E(a) of a*(γr,r)
is Gf X H, V, where V = Rr, and H' acts diagonally on the product as a sub-
group of O(r) X O(r). This is easily verified by noticing that the map [g\ v]' H^
[g\ v] from Gf X H, V to G X H V is a well defined bundle morphism which
covers the inclusion g'H' •-* g'H of G 7 ^ ' in G//Γ. Therefore we have the follow-
ing pull back diagram:

G' X V >G X V
H' H

(j \ti > (J/H > BU

where the composite inclusion at the bottom is a. We give Gf X κ, V the follow-
ing metric.

Let G' have a subgroup metric from SO(2r\ with K > 0, and let V = Rr

have the euclidean flat metric. When G' X V is given, the product metric Hf
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acts on it freely and by isometries inducing a quotient metric on G' X H, V with
K > 0 by B. O'Neill's theorem [14] on riemannian submersions.

STEP II. Representatives of s[ξ], s = 2,3, . The homotopy class of sa
in πnBO corresponds to the stable class s[ξ] = [0{ ξJ in [V(Sn))] where ©J ξt

is the Whitney sum of s copies of ξ. A bundle in the class [0{ ξ{] is the pull-
back by the diagonal A: G'IH>'-+(G'/H')S, where Δ(g'H') = {g'H\ ,g'H%
of the cartesian product bundle ξs, Vs (G' χH, V)s -» (G'/H'y. The total
space of £s may be written as {Gf X V)sl(Hf)\ where each coordinate of {Hf)s

acts diagonally on the corresponding coordinate of (G' X V)s. We should there-
fore exhibit a vector bundle over G'IH\ whose total space we denote by E(sa),
with fibre Vs and a vector bundle morphism δ from isfaαr) to {G' X V)s/(H'y
which covers J .

To do this we first consider the space G' X (H')8-1 x Ks and the following
action of (HJ on it:

(g, υ19 hu υ2, h29 , hs_19 v8)(h0, hu , ^_, )

= (gh09 ho%, hό%h19 hχλυ29 hϊλhji29 -Λ;\vs) .

This is a free diagonal action by isometries with respect to the obvious prod-
uct metric on G' X {H'y~ι X Vs and we claim that the quotient of this action
is E(sa).

Before we proceed, notice that E(sa) with the quotient riemannian metric has
K > 0, by O'Neill's theorem [14].

To define the map δ consider first the map

δ:Gf X (HJ-1 X K*->(G' X V)s

defined by

δ(g, υ19 h19 υ29 K - , Λ,-i, vs) = ((g, LΊ), (gh19 υ2)9 , (gh,_19 υ,)) ,

and observe that δ is (//'/)*-equivariant, and therefore it covers a well defined
map δ. One may now check easily that δ is a Fs-vector bundle morphism which
covers the diagonal Δ.

STEP III. Representatives of —s[ξ]9 s = 1, 2, . For the values of n such
that πnBO = Z we remark that each generator # of πnB0 and corresponding
α: Sn -> G r > 2 r there is a naturally defined β: Sn ^ GrΛr given by reversing the
orientation, which is also a homothety onto a totally geodesic submanifold of
Gr>2r and such that [a] + [β] = 0 in 7^50. Repeating Steps I and II above we
see that for each — s[ξ], s = 1, 2, , there is a representative i?C?β) in V(Sn)
which admits a metric with K > 0. q.e.d.

As a representative bundle of the zero class in τrwi?0 a trivial bundle suffices
for the purpose of this theorem. In [5] it is shown that the tangent bundle TSn

admits a metric with K > 0 for all n.
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