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A TOPOLOGICAL GAUSS-BONNET THEOREM

RICHARD S. PALAIS

0. Introduction

The generalized Gauss-Bonnet theorem of Allendoerfer-Weil [1] and Chern
[2] has played an important role in the development of the relationship between
modern differential geometry and algebraic topology, providing in particular
one of the primary stimuli for the theory of characteristic classes. There are
now a number of proofs in the literature, from the quite sophisticated (deduc-
ing it as a special case of the Atiyah-Singer index theorem for example) to the
relatively elementary and straightforward. (For a particularly elegant example
of the latter see [7, Appendix C].) In general these previous proofs have a de-
finite cohomological flavor and invoke explicit appeals to general vector bundle
or principal bundle theory. In view of the above historical fact this is perhaps
natural, and yet from another point of view it is somewhat anomalous. For the
theorem states the equality of two quantities:

Here M is any closed {— compact, without boundary), smooth ( = C°°) Rie-
mannian manifold of even dimension n = 2k, K{n) is a certain "natural" real
valued function on M (which in local coordinates is a somewhat complicated
but quite explicit rational function of the components of the metric tensor and
its partial derivatives of order two or less), μ is the Riemannian measure, and
χ(M) is the Euler characteristic of M. There is nothing fundamentally "coho-
mological" on either side of this identity. True, one tends to think of χ(M) as
the alternating sum of the betti numbers, but equally well and more geometri-
cally it is the self intersection number of the diagonal in M x M or equivalently
the algebraic number of zeros of a generic vector field. Indeed χ(M) is perhaps
the most primitive topological invariant of M beyond the number of connected
components; the fact that Σ{—\)knk (where nk is the number of faces of di-
mension k in a cellular decomposition of a polyhedron P) is a combinatorial
invariant χ(P) goes back two hundred years before the development of homo-
logy theory. And on the left we are really integrating a function with respect
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to a measure, not integrating an «-form over the fundamental cycle; for the
theorem is equally valid when M is not orientable. This suggests that it should
be possible to give an elementary "combinatorial" proof of the generalized
Gauss-Bonnet theorem, using only the basic techniques of differential topology
and in what follows we shall present such a proof. In the remainder of the in-
troduction we outline the main ideas of the argument and at the same time
introduce the notation we shall use in the body of the paper.

Let Jίn denote the class of compact, smooth ^-manifolds with boundary. A
function F mapping Jίn into a field K is called a differential invariant (for com-
pact ^-manifolds) if F(Mί) = F(M2) whenever Mx and M2 are diffeomorphic.
Let Mί9 M2 ς. Jί'n and let TV be a union of components of dMv Given a smooth
embedding ψ: N-> dM2 we can form a manifold M1 + ΨM2 <= Jί n called the
result of "gluing M1 to M2 along ψ". As a space this is the topological sum of
M1 and M2 with x <= N identified with ψ(x). The differentiate structure is char-
acterized up to diffeomorphism by the condition that M1 and M2 are smooth
submanifolds (see [6, Theorem 1.4]). By varying ψ we get a class of manifolds
which can be distinct differentiably and even topologically M1 +N M2 will de-
note an arbitrary element of this class. A differential invariant F: Jίn —• K will
be called additive if for all Mί9 M2, N as above it satisfies F(Mί +N M2) = F(M^)
+ F(M2). Now the Euler characteristic (thought of as defined on compact tri-
angulable spaces for definiteness and having values in Z c: Q) is well-known
to satisfy χ(A (J B) = χ(A) + χ(B) — χ(A Π B) whenever A and B are sub-
spaces of a space X which can be triangulated so that A and B are subcom-
plexes (in fact [9] this characterizes χ up to a multiplicative constant). By restric-
tion to Jίn we get a differential invariant χ: Jίn -> Q satisfying χ(Mί +N M2)
= χ(Mj) + χ(M2) — χ(N). Now if n is even then dim (N) = n — 1 is odd, and
it is well known that the Euler characteristic of a closed odd dimensional mani-
fold is zero, so that in this case χ: Jίn -> Q is additive. Of course if K is any
field and γ e K then more generally M >-> χ(M)γ is an additive differential in-
variant Fr: JCn —• K, and γ can be recovered as Fγ(Dn), where Dn denotes the
fl-disk, [x $ Rn\\\x\\ < 1}. The crucial topological fact for us is the following
theorem which says that there are no other additive differential invariants when
characteristic (K) Φ 2 (by contrast the number of boundary components modulo
two is an additive differential invariant Jtn -> Z/2Z not of the form Fr).

0.1. Topological Gauss-Bonnet theorem. If K is afield of characteristic not
two, and F: Jίn —> K is any additive differential invariant, then F(M) = χ(M)γ

for all M e Jίn where γ = F(DN). Moreover if n is odd then γ = 0, so F is identi-
cally zero.

The proof is constructive and basically combinatorial it shows that when
we adjoin a handle of index k to a manifold then the value of F changes by
(— X)kγ. It easily follows that for any handle body decomposition of M e Jίn

(cf. § 2) F(M) = (Σn

k=o ( - l )%)r , where βk is the number of handles of index
k in the decomposition. In one sense the theorem then follows by just defining
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this alternating sum to be χ(M). (Of course identifying this alternating sum
with the alternating sum of the betti numbers of M, the so called Morse equality,
of necessity does require homological arguments.) The author is grateful to W.
Neumann for pointing out that Theorem 0.1 is a simple corollary of re-
sults contained in Janich' paper [3], and also follows easily from the characteri-
zation of the "cutting and pasting" groups given in [4]. In fact our proof of
Proposition 2.4 is closely related to an argument used in the latter reference.

Now let Rn denote the class of compact smooth ^-dimensional Riemannian
manifolds with boundary; i.e., pairs (M, g) where M e Jίn and g is a smooth
metric tensor for M. The metric g will be said to be reflectable if it is the restric-
tion to M of a smooth metric tensor on DM, the double of M, with respect to
which the canonical "reflection" automorphism of DM across 3M is an iso-
metry. A natural scalar function (for ^-dimensional Riemannian manifolds) is a
map F which associates to each (M, g) ς. Rn a smooth function Fg: M^-R such
that if ψ: Mλ —• M2 is an isometric embedding of (Mί9 g^ into (M2, g2) then
Fgi — Fg2 o ψ. Such functions of course abound; for example the scalar curva-
ture, the length of the curvature tensor or of any of its covariant derivatives.
Given such an F we associate to each (M, g) e Rn a real number F(M, g) =

Fgdμg, where μg is the Riemannian measure on M denned by g. The natural
J M

scalar function F is called an integral invariant if whenever M e Jίn is without
boundary F(M, g) has a value F(M) independent of g. It is then not hard to
show (cf. § 4) that even if M has a nonempty boundary F(M, g) still has a value
F(M) independent of g provided we consider only reflectable g, and in fact
F(M) = \F{DM). Moreover it follows from the naturality of F(M, g) that
F: Jίn —> R is a differential invariant, and from the additivity of the integral it
is not hard to see that F is even an additive differential invariant (cf. § 4) so by
(0.1) we get

0.2. Abstract geometric Gauss-Bonnet theorem. If F is an integral invariant
for compact smooth n-dimensional Riemannian manifolds, then F(M) = χ(M)γ
for MzJCn where γ = F(Dn) = ±F(Sn).

Finally, in § 5, following in part the approach in [7, Appendix C] we define
the natural scalar function K(n) and prove its integral invariance. Since this is
a point where other proofs make an argument using the de Rham cohomology
of TM or its frame bundle, we have taken some pains to give an elementary
argument. Except for an application of the simplest form of Stokes theorem

ί if ω is an (n — l)-form on Rnwith compact support, then dω = 0) the ar-

gument is in fact essentially formal.

Why this emphasis on an elementary proof? What after all is wrong
with cohomology? Nothing of course, and the point is not to make the proof
accessible to students at a lower level. Rather, with theorems which have played
a role so central as Gauss-Bonnet it is author's feeling that it is important to
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understand their mathematical essence, and this can only be done by peeling
away all the layers of elegant sophistication.

The author would like to express his appreciation to Jack Milnor and Henry
King for helpful conversations during the preparation of this paper.

1. Some differential topological constructions

In this section F: Jίn -» K is an additive differential invariant and charac-
teristic (K) Φ 2, as in the statement of the topological Gauss-Bonnet theorem.
We shall investigate how F behaves with respect to several basic differential
topological constructions.

1.1. Products of manifolds with boundaries. Let M1 ε Jί^ and M2 e ^ z .
Then there is a well-known way to put a differential structure on the topologi-
cal product giving an element Mxχ M2 e Jίk + i. If one of Mλ and M2 has empty
boundary, the process is elementary and the product is categorical (with respect
to smooth maps). If dM1 Φ 0 and dM2 Φ 0, then this simple method of putting
a differential structure on M1 x M2 leads to "corners" along dM1 x dM2. These
can be removed by Milnor's method of "straightening angles", but the resulting
product is no longer categorical. The basic facts that we shall need about the
product are that it is associative and commutative up to diffeomorphism, and
that

d(Xχ γ) = dXχ Y+dXxdYXχ dY,

where dXX dY c: 3X X Y is glued via the identity map to dXxdY<^X XdY.
1.2. Interior deletion. Given M € Jίn let us denote is interior, M — dM,

by M. Given Mλ and M2 in Jίn with M2 smoothly embedded in Mί we can re-
move M2 from M1 getting an element M1 — M2 of Jtn. Clearly d{Mλ — M2) is
dMx + 0 dM2, the disjoint union of 3Mι and 3M2. If we glue M2 to MΛ — M2

along dM2 (by the identity map) we of course get back Mv Since F is additive
we now see that it is also subtractive; i.e., F(M1 — M2) = F(M1) — F(M2).

1.3. General gluing. Let Mu M2 e Jίn and let TV be a smoothly embedded
compact submanifold of M1 of dimension n — 1, and ψ: N —• dM2 a smooth
embedding. If dN — 0 we are in the case of the introduction and we can form
Mί + f M 2 . Henceforth we will refer to this process as simple gluing. In case
dN Φ 0, we still get a topological ^-manifold with boundary, which we now
denote by Mί UΨM2, by taking the disjoint union of M1 and M2 and identifying
x e TV with λjr(x) € 3M2. The analogous attempt to impose a differential structure
on ¥ j UΨ M2 leads to corners along dN; however once again the process of
straightening angles permits us to smooth these corners and get a differential
structure o n ^ UΨ M2. We shall refer to this process as general gluing, and
once again where convenient we shall use the alternative notation M1 UN M2

when we wish to emphasize N rather than ψ. Let dψ: dN —> dM2 denote the
restriction of ψ. Then we have the following easy but important formula relat-
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ing interior deletion, general gluing, and simple gluing:

d(Mλ Uψ M2) = (dM, - N°) +dψ (dM2 -

There is also a simple and obvious relation we shall need relating general gluing
and product, namely the latter distributes through the former:

(M, U* M2) X Y = (M, x Y) U* x i d F (M2 x Y) .

1.4. Doubling. The double of a manifold M in JCn is usually defined by

DM = M +idM ,

i.e., by (simply) gluing together two copies of M along dM using the identity
map. The involution, which maps an x in one copy of M to the corresponding
point in the other copy, will be denoted by p. Its fixed point set is of course
Fix (p) = dM. It is immediate from the additivity of F that F(DM) = 2F(M).

There is another well-known method for constructing a manifold diffeomor-
phic to DM which will be important for us, namely taking the boundary of
M x I (where / = Dι = [0, 1]). Indeed

d(M x /) = (dM X /) +j (M X {0, 1})

= (M x {0}) +, 0 (dM x /) +h (M x {1}) ,

where j \ is the obvious inclusion of dM X {1} into dM x /. Now by the collar
neighborhood theorem M X {0} +jo (dM X /) is diffeomorphic to M and of
course so is M x {1}, and it follows easily that d(M x /) « DM. We are now
prepared to prove

1.5. Proposition. Let Mί9 M2 e Jίn, N be a smoothly embedded (n — 1)-
dimensional submanifold ofdMu and ψ: N^dM2 be a smooth embedding. Then

D(Mλ (J* M2) « (DM, -(NX 7)°) + ί + x l d (Z)M2 - (ψ(N) X 7)°) .

Proa/. Recall the distributive law

(MΛ U* M2)χ 1= (Mx x I) +ψxld (M2 x I) .

Then the conclusion is immediate from the facts noted earlier that DM «
d(M x I) and d(M, \J9 M2) « (dM, - N°) +dψ (dM2 - φ(N)°). q.e.d.

If we use the additivity and subtractivity (cf. § 1.2) of F on the conclusion of
Proposition 1.5 we get

F(D(M, Uψ M2)) = F(DMX) + F(DM2) - F(N X 1) - F(ψ(N) X I) .

On the other hand recall that F(DM) = 2F(M\ and F(ψ(N) χl) = F(N X I)
since F is a differential invariant and ψ is a diίfeomorphism. It follows that
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2F(M, UN M2) = 2(F(M1) + F(M2) - F(N X /)) ,

and since by assumption F has values in a field of characteristic different from
two, finally we get

1.6. Extended additivity theorem. If F: Jίn -> K is an additive differential
invariant, and K has characteristic Φ 2, then F(M, [JN M2) = F{MX) + F(M2) —
F(N X /).

1.7. Remark. If dN = 0, then Mx ^N M2 = Mx +N M2 so F(M1 UN M2)
= F(Mί) + F(M2). This of course strongly suggests that when N is any closed
(n — l)-manifold, then F(N X /) = 0. In fact, this is an immediate conse-
quence of the additivity of F and the fact that (N X /) +f (N x /) « N X /,
where ψ is the obvious diffeomorphism of TV X {1} with TV X {0}. This latter
remark allows us to give a completely elementary proof of Theorem 0.1 for
two-manifolds. For simplicity we consider only the orientable case. Suppose
Σg is an orientable surface of genus g. We can construct Σg from S2 by "add-
ing g handles". Now F(S2) == F(D(D2)) = 2F(D2) = 2γ, and each time we add
a handle, we delete the interiors of two 2-disks, which by § 1.2 reduces the value
of F by 2γ, and then (simply) glue on a cylinder Sι x /, which by the remark
above does not change the value of F. Thus F(Σg) = 2γ — g(γ2) = (2 — 2g)γ9

and it is well-known that χ(Σ^) = 2 — 2g.

2. Handles and handle-bodies

F still denotes an additive differential invariant Jίn -> K (characteristic (K)
Φ 2) and γ = F(Dn). We will denote Dk x Dnk by hi which we call the handle
of (dimension n and) index k. Of course hi « Dw so i 7 ^ ) = ^. Included in dhl
is a/)fe X Z)""fc = Sk~ι X JD71"* SO that given a smooth embedding ψ of S*"1 X
Z)n~fe into M € ^ n we can form M \JΨ hi, which we call M with a handle of
index A: attached. Note that by Theorem 1.6

2.1. Proposition. F(M \J9 hi) = F(M) + γ - fk_x.
where:

2.2. Definition. fk = F(Sk x Dnk).
Note /'(S'0 X Z)w) = F(Dn +0D

n) = 2γ and F(Sn X D°) - F(Sn) = F(D(Dn))
= 2^. Thus

2.3. Lemma. fo=fn = 2γ.

2.4. Proposition. /fc = ^ — (— l)k + ιγ. That is, for k even fk = 2γ, and for
k oddfk — 0. Moreover, if n is odd then γ = 0, so that all the fk are zero.

Proof Sk = D(Dk) = Dk U5fc-x Dk and hence by § 1.3

Sk x D«-k = (Dk x Dnk) Usk_lχDn-kD
k x />»-* ,

a n d t h e r e f o r e b y T h e o r e m 1 . 6 s i n c e D k x D n k « Z > n
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fk = F(Sk x Dnk)

= F(Dn) + F(£>*) - F(Skl X £ * f c X /) = 2γ - fk_λ .

That is, fk + fk-\ = 2γ. Since f = 0, from Lemma 2.3 it follows that fk = 2/
for fc even and/ fc = 0 for k odd, as required. Finally, if n is odd then by Lem-
ma 2.3, 2?- = fn = 0 so γ = 0.

2.5. Theorem. F(M U^ Aj) = F(M) + ( - \)kγ.
Proof. Immediate from Propositions 2.1 and 2.4.
2.6. Definition. Let M e Jt'n. A Morse-Smale presentation (or handle-body

decomposition) of M is a sequence (Mo, , Mr) \nJtn, and embeddings φ3:

Skj-i χ 2)»-*J _* M,, 0<j<r such that Mo - DTC, M J + 1 = Mj {Jφ. h
n

kp and
M r = M. The &th ί̂ /7e number βk of the presentation (k = 0, 1, , ή) is the
number ofj in {0, 1, , r — 1} such that /:; = k.

2.7. Theorem. Lei M e Jt'n and let {/30, β19 , /3TO} Z?e the type numbers of
any Morse-Smale presentation of M. Then F(M) = (Σιk=o(—l)kβk)7'

Proof Immediate from Theorem 2.5.

3. Proof of the topological Gauss-Bonnet theorem

It is of course not immediately evident that an arbitrary M e Jίn admits any
Morse-Smale presentation. However this is well-known and reasonably ele-
mentary. See for example [6, Theorem 2.5] and [8, § 12, Theorem]. Moreover,
it is also well-known that if (/30, , βn) are the type numbers of any Morse-
Smale presentation of M, then Σl=0 (— l)kβk = χ(M). This in fact is essentially
equivalent to the "Morse equality" [6, Theorem 7]. These two facts together
with Theorem 2.7 complete the proof of the topological Gauss-Bonnet theorem
(Theorem 0.1). The fact that γ = 0 when n is odd is already contained in Pro-
position 2.4.

4. Proof of the abstract geometric Gauss-Bonnet theorem

In this section Fwill denote some integral invariant for compact ^-manifolds.

Then by assumption F(M, g) = Fgdμg depends only on M and not on g

when dM = 0, and we denote its value in this case by F{M). It is clear from
the fact that F is a natural scalar function that F(M) depends only on the dif-
feomorphism type of M. Since F(M) is defined to be \F{DM) when dM Φ 0,
and the diffeomorphism type of M determines that of DM, it follows that F:
Jίn -> R is a differential invariant and we now will show that it is additive.
Recall that a smooth Riemannian metric g for M e Jίn is said to be reflectable
when it is the restriction to M of a smooth Riemannian metric λ on DM for
which p is an isometry (i.e., p*λ = λ), where p: DM « DM is the canonical
involution. (Since the fixed point set of a Riemannian isometry is totally geo-
desic, this implies dM is totally geodesic with respect to g, conversely it is not
difficult to see that if a smooth Riemannian metric g on M has dM as a totally
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geodesic submanifold, then the result of reflecting this metric across dM is a
metric on DM which is C2 across dM, but not necessarily smoother.) It is trivial
that reflectable metrics always exist. For if λι is any smooth metric on DM and
χ = ±{χλ + p*λί), then p*λ = λ since p2 = id. Now put M' = p(M) so that
(since DM = M U M\ and dM = M Π Mf has measure zero)

F(DM) = ί Fλdμi = ί Fgdμg + ί Ftdμ, ,
J DM J M J M'

where g and g/ are respectively the restrictions of λ to M and M'. Since p maps
(M, g) isometrically onto (M', g'), ^ o ̂  = ^ , and since F is a natural scalar

function we have Fg, o p = Fg. Hence Fg,dμr = Fgdμg and so

W g) = f i v ^ = iF(Z)M) - F(M) ,
J M

provided g is reflectable. It is of course clear that a metric g for M which is a
product metric on some collar neighborhood U « dM X / of dM is reflectable.

Now suppose M = Mί +N M2 and let g be a product Riemannian metric
on b\ the union of a tubular neighborhood of TV and a collar neighborhood of
dM. By a classical extension theorem after restricting g to a slightly smaller
neighborhood of N U dM it can be extended to as mooth metric on M. By the
preceding remark g is a reflectable metric for M, and its restriction gt to M f is
a reflectable metric for Mi9 and hence

+N M2) = f ^ φ , = ί V A + ί

= f Fgίdμg, + f ^ , Φ W =
J Mi J Mi

This proves the additivity of F and completes the proof of the abstract geo-
metric Gauss-Bonnet theorem (Theorem 0.2).

5. The classical generalized Gauss-Bonnet theorem

The abstract geometric Gauss-Bonnet theorem of the preceding section only
gains content with the demonstration that nontrivial integral invariants exists.
In this section we will give an elementary, almost formal argument to show
that the classical Pfaflian expression in the components of the curvature tensor
is, as first noted by S. S. Chern, an integral invariant.

We shall work locally, in a coordinate neighborhood Θ of a closed manifold
M of dimension n = 2m. An ^-triple E = {Eu , En) of smooth vector fields
is called a framing of Θ if E(x) = (E^x), , En{x)) is linearly independent
and hence a basis for TMX for all x € Θ. In this case we denote by θ =
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(θ19 , θn) the w-tuple of one-forms in Φ such that θ{x) = (θ^x), , θn(x)) is
the dual basis to E(x). We note that E defines a unique Riemannian metric in
Φ with respect to which it is orthonormal. Moreover any metric g in φ is de-
fined in this way; merely take E to be defined by orthonormalizing (β/dx19 ,
d/dxn) with respect to g using the Gram-Schmidt process. Given a framing E
of Φ and a smooth map Γ: 0 —• GL(n) we get another framing Ef = TE of 0,
where Ej(x) = Σ?=i T^^E^x), and clearly every framing of 0 arises in this
way for a unique such map T. Of course Ef and £ define the same Riemannian
metric in φ if and only if they are orthogonally related, i.e., Γhas its image in
the orthogonal group O(n). We note that θί Λ Λ θn is a nonvanishing «-
form in 0, so any smooth «-form λ in 0 can be written uniquely as fθx Λ •
Λ 0n where/is a smooth function in 0. Since θ[ Λ Λ θ'n = det ( 7 X Λ
Λ #w we easily get the following general principle for defining natural scalar
functions on ^-dimensional Riemannian manifolds.

5.1. Proposition. Let a be a function which assigns to each orthonormal
framing E of an open set Φ of an n-dίmensional Riemannian manifold (M, g) an
n-form σE in Φ, and suppose that whenever E and Ef are two orthonormal fram-
ings of the same open set Φ with Ef = TE, then σE' = det (T)σE. Then there is
a uniquely determined natural scalar function F for n-dimensional Riemannian
manifolds such that for any orthonormal framing E of an open set Φ of (M, g),
aE = Fgθx A Λ θn.

We now seek a local criterion for deciding when such a natural scalar func-
tion is an integral invariant.

5.2. Lemma. Let F be a natural scalar function for compact n-dimensional
Riemannian manifolds. Suppose that whenever (M, g0) and (M, gλ) are two closed
Riemannian manifolds with the same underlying manifold, and g0 and g2 agree
outside some compact subset of a coordinate neighborhood φ of M, then Fgo = Fgl.
Then F is an integral invariant.

Proof Let M be any closed manifold of dimension n, and let φu , φk be
a smooth partition of unity for M subordinate to a covering by coordinate
neighborhood Φί9 , Φk. Given two metrics for M, call them g0 and gk and
let s = (gk — g0). By the convexity of Riemannian metrics, if/ is any smooth
function or M with 0 < / < 1 everywhere, then g0 +fs is also a smooth metric.
In particular taking/. = ψλ + . + <pj9 (so/, = 1), gj = g0 + fs is a smooth
metric for M. Moreover gj + 1 agrees with gj outside the support of ψj which is
a compact subset of φj9 and so Fgj+1 = Fg. It follows that Fgk = Fgo.

5.3. Proposition. With the notation of Proposition 5.1 suppose that given a
smooth one-parameter family E(t), 0 < t < 1, of framings of Φ, the corresponding
family σE(t) of n-forms in Φ is smooth in t, and moreover (d/dt)(σEU)) = d(λ(t)),
where λ(t) is an (n — X)-form in Φ vanishing on any open set where E(t) is inde-
pendent of t. Then the natural scalar function F of the conclusion of Proposition
5.1 is in fact an integral invariant.

Proof. Let (M, g0) and (M, g^ be closed Riemannian manifolds, and suppose
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go agrees with gγ outside some coordinate neighborhood Θ. By Lemma 5.2 it
will suffice to show that Fgχ = Fgo. Let gt = g0 + t{gx — g0). Then we will show
that Fgt is independent of t. Since gt (and hence Fgt and μgt) agree outside Θ

and Fgt = Fgtdμgt it will suffice to show Fgtdμgt is independent of t. In

fact, we shall show that it is a differentiate function of t with derivative zero.
Let E(t) be the framing of 0 obtained by orthonormalizing (d/dxί9 , d/dxn)
with respect to g{t). Let γ be a cube in 0 (with respect to the coordinates x)
including in its interior the set where gQ and gt differ. The restriction of the co-
ordinate map to γ is a singular ft-cube C in M, and £(/) is constant in a neigh-
borhood of dC. Since by assumption (d/dt)(σEU)) = d(λ(t)) where λ(t) vanishes
on dC, by Stokes theorem we have

A f „«» = f d ( m = f , ( 0 = o.
dt Jc Jc Jdc

On the other hand, by definition of the Riemannian measure μgt:

" • L F ' ^ = i L F^ = - i L ̂  (/) Λ Λ

= { | ^ = 0. q e d.

dt

Now let V denote the covariant differentiation with respect to a Riemannian
metric g in Θ defined by a framing E. For a vector Y based in Θ we can write

VyE, = Σ ωti{Y)El ,
. 7 = 1

where ω = α>̂  is an n X « matrix of one-forms in Θ (called the connection
forms associated to E) defined by these equations. Since

0 = YδiS = Yg{Ei9 E3) = g(FYEί9 Ej) + g(Ei9 VYE3) ,

it follows easily that the matrix ω is skew symmetric, and hence so also is the
matrix Ω = Ωυ of curvature two forms associated to E, defined by:

Ω = dω — ω A ω ,

i.e., Ωυ = dωυ — Σΐ=i ω<* Λ ωkj. Let T: Θ -> O(n) be smooth and E' = TE,
so since Ef is orthogonally related to E it defines the same metric and hence
the same covariant derivative F. Then an easy calculation shows that the matrix
Ωf of curvature two-forms associated to Ef is related to Ω by Ωf = TΩT\ i.e.,

In what follows X denotes \n(n — 1) indeterminates Xυ(l < i <j < n), and
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we define Xu = 0 and Xn --= — Xij in the polynomial ring R[X], so we may
regard X as a skew n X n matrix of elements of R[X]. Similarly for Y and Z.
If A is any n X n real matrix, then AX will denote the metrix (AX)υ =
Σΐ=ι AίkXkj of elements of R[X], etc. Thus for Γ e O(ή), TXT1 denotes the
matrix

(τxτ%= Σ τίkτμx
kl l

kl

of elements of R[X], which is clearly skew. Now if P(X) is in R[X], and S = Sυ

is any skew n X n matrix of elements from a commutative algebra srf over R,
then we can substitute S^ for A^ in P to obtain P(S) € J / . In particular for
Te O{ή) we have P(TXTι) <= !?[*].

5.4. Definition. P(X) e [X] is said to be orthogonally covarίant if for all
TeO(n)

P(TXT~ι) = det(Γ)P(jr) .

Now differential forms of even degree in an open set Θ of an ^-manifold M
also form a commutative algebra. Thus, if Ω is the matrix of curvature forms
associated to a framing E of d), then P(Ω) is a form in this algebra. In parti-
cular, if P(X) is homogeneous of degree m = «/2, then P(Ω) is a form of degree
n. If ^ is the matrix of curvature forms associated to Ef = TE where T: G —>
O(n) is smooth, then as we noted above Ωf = TΩT~\ hence if P{X) is ortho-
gonally covariant then P(Ω') = det (T)P(Ω), so by Proposition 5.1 we see

5.5. Proposition. IfP(X) e R[X] is orthogonally covariant and homogeneous
of degree m = w/2, then there is a unique natural scalar function F for n-dimen-
sίonal Riemannίan manifolds such that for any orthonormal framing E of an open
set Θ of(M, g), if Ω is the associated matrix of curvature two-forms in Θ then

P(Ω) = FgθίA -" Aθn.

The remarkable and surprising fact is that, as was first shown by A. Weil,
such a natural scalar function F is automatically an integral invariant. We give
an elementary formal proof below.

Given P(X) € R[X] we define FP(X) to be the matrix of elements of R[X]
(the gradient of P) defined by

(FP(X))υ =

And we define ΔP(X\ Y\ the formal directional derivative of P in the direction

JP(X; Y) = [(P(X + TY) -

so that clearly
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ΔP(X; 7) = trace (FP(X)Y) =
id

5.6. Lemma. IfP(X) e R[X] is orthogonally covariant, and A is any n X n
skew real matrix, then

ΔP(X; [A, X]) = 0 .

Proof, exp (tA) is a one-parameter group of orthogonal matrices, and
exp(M) 1 = Qxp(-tA), so PίexpO^ T e x p O ^ ) ) = det (exp tA)P(X) =
P(X). Differentiating this with respect to t at t = 0 gives the result, q.e.d.

Next let

Δ2P(X; 7, Z) = \—(ΔP(X + TY; Z) - VP(X\ Z))l

- y dΨ
 Y z

i,j,k,l dXίjθXkl

and note that J2P(X; Y, Z) = Δ2P{X\ Z, Y).

5.7. Lemma. IfP(X)z R[X] is orthogonally covariant, then

JΨ(X; [7, X], Z) = trace ([7, PP(X)]Z .

iVtftf/. From Lemma 5.6 it follows that

ΔP{X + tZ\ [7, Jf + tZ]) - 0 .

If we "differentiate" this (i.e., subtract ΔP{X\ [7, X]) = 0, divide by t and set
t = 0) we get, using the linearity of JP(Z; 7) in 7,

; Z, [7, X}) + JP(JT; [7, Z]) = 0 .

Now

; [7, Z]) = trace (ΓP(Z)(7Z - Z7))

= trace (FP(X)YZ - FP(X)ZY)

= trace (FP(X)YZ - YFP(X)Z)

= trace QΓP(X), Y]Z) ,

and using the symmetry of Δ2P(X; 7, Z) in 7, Z we get the desired result.
q.e.d.

Now suppose E{t) is a smooth one-parameter family of framings of an open
set Θ of an ^-manifold M with associated matrix of connection one-forms α>(0
and curvature two-forms Ω(t). From their definition it is clear that ω and Ω are
smooth in t, and we put ώ(t) = (d/dt)ω(t) and Ω(t) = (d/dt)Ω(t). Since Ω =
ί/ω — ω Λ ω, it follows that Ω = dώ — ώ A ω — ω A ώ. Now for P(X) e R[X]
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(d/dt)P(Ω(t)) = ΔP(Ω(t);Ω(t))

= ΔP(Ω(t); dώ — ώ Λ ω — ω Λ ώ)

= trace (FP(Ω)dώ - FP(Ω)ώω - FP(Ω)ώω)

Since FP(Ω)ω and ώ are forms of odd degree,

trace (FP(Ω)ώω) = - trace (ωFP(Ω)ώ) ,

hence we have

(d/dt)P(Ω(t)) = trace (FP(Ω)dώ + [ω, FP(Ω)]ώ) .

On the other hand, we compute easily that d(ΔP(Ω ώ)) = Δ2P{Ω dΩ, ώ) +
ΔP{Ω dώ), and since the definition Ω = dω — ω Λ ω implies dΩ — —dω/\ω
— ω Λ dω = ω Λ Ω — Ω Λ ω = [ω, Ω]9 we have

d(ΔP(Ω\ώ)) = Δ2P(Ω; [ω, β], ώ) + ΔP(Ω\ dώ) .

Thus, if we assume that P(X) is orthogonally covariant, from Lemma 5.7 it
follows that

d(ΔP(Ω;ώ)) = trace ([ω, FP(X)]ώ) + trace (FP(Ω)dώ) ,

so comparing above we finally have

(d/dt)P(Ω(t)) = d(ΔP(Ω;ώ)).

Note that on any open set where E(t) is constant, ώ = 0 so ΔP(Ω; ώ) = 0.
Now from Proposition 5.3, follows
5.8. Theorem. Let P(X) e R[X] be orthogonally covariant and homogeneous

of degree m = n/2. Let F be the natural scalar function defined for n-dimensional
Rίemannian manifolds by the condition that if E is an orthonormal framing of an
open set Θ and Ω is the curvature matrix, then P(Ω) = Fgθί Λ Λ θn (see
Proposition 5.5). Then F is an integral invariant.

The final question of course is whether when n = 2m there do in fact exist
orthogonally covariant elements of R[X] homogeneous of degree m. This is
answered by the following classical theorem of pure algebra (cf. [5, p. 372], [7,
p. 309]).

5.9. Theorem. If n — 2m, then there exists up to sign a unique polynomial
Pf(X) (the pfaffian) in R[X] such that Pf(X)2 = det (X). Moreover Pfhas integer
coefficients, is orthogonally covariant, and is homogeneous of degree m.

The sign of Pf is chosen so that P/(diag(S, , S)) = 1 where S = ft Γ

In particular for n = 2, Pf(X) = Xί2 and for n = 4, Pf(X) = Xί2Xu - Xl3Xu.
With this choice let us call K{n) the corresponding integral invariant. Then a
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simple computation of K(n)(Sn), using the induced metric from the standard

embedding in Rn + \ gives 2(2π)n/2. It then follows that for any closed Rieman-

nian manifold M of dimension n we have Kndμ = (2π)n/2χ(M), which is the
J M

generalized Gauss-Bonnet theorem of Allendoerfer-Chern-Weil [1], [2].
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