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HOMOTOPICAL EFFECTS OF DILATATION

MIKHAEL GROMOV

1. Statement of results

1.1. Geometrical and topological complexity. Let V and W be Riemannian
manifolds, and X a space of mappings V-^W. For instance, X may consist of
all smooth maps, or may be the space of imbeddings or immersions. We ask
how to estimate a measure of the "topological complexity" of an x € X by geo-
metry of x. We measure geometrical complexity of x by a positive functional
F: X -^ R+, say, by the dilatation of x or by an integral characteristic like the
Dirichlet functional. The topological complexity of x may be measured by its
degree (when the degree makes sense) or another numerical invariant.

The Morse theory suggests a different point of view. We take the levels Xλ

C X, Xλ = F~\[0, λ]),,λ e R+ and compare the numerical invariants of Xλ (say
the number of components or the sum of all Betti numbers) with λ.

When λ —• oo, the first asymptotic term of the topological complexity of Xλ

is often independent of the particular choice of metrics in V and W (but de-
pends, of course, on the particular type of F), and we come to a pure topologi-
cal problem: how to express this asymptotic topology of Xλ in terms of usual
invariants? When we study the asymptotic distribution of the critical values of
F, what we need first is the asymptotic behavior of the Betti numbers bi(Xλ),
/, λ —> oo .

When we seek finer geometro-topological relations in Xλ depending on indi-
vidual features of V and W, we enter a completely different field resembling
geometry of numbers (such as minima of quadratic forms, packing Rn by balls,
etc.).

This paper has a definite topological bias.
1.2. The number N of the homotopy classes and the homological dimension

dm. We denote by N(λ) the number of connected components of X intersecting
Xi9 where Xλ = F~\[0, λ]) c X.

We denote by dm (λ) the maximal integer d such that every map of an arbi-
trary d-dimensional polyhedron into X is homotopic to a map into Xλ.

1.3. Spectrum of the Laplacian. Consider, for example, the case when W
is the real line and X is the projective space associated to the linear space of
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the smooth maps V-* R. The ratio |grad/|2 / f2: V-+R defines a func-
Jv I Jv

tional on X, and when V is closed dm (X) is equal to the number of the eigen-
values of the Laplacian on V which are not greater than λ.

From now on all our manifolds are compact and connected.
1.4. Loop spaces. Let X be the space of all smooth loops in W based at

w0 <= W, and let F(x) = length (x), x <= X.
Theorem. If W is a closed manifold with finite fundamental group, then dm (X)

ΪZ λ, λ —• oo, i.e., Cxλ > dm (X) > C2(λ — 1) where C1 and C2 are positive con-
stants depending on W.

Of course, the first inequality Cxλ > dm (X) is obvious and well known. The
second inequality άm(X) > λ implies that the Betti numbers bt{X^), i < C2(λ — 1),
are not less than bt(X), and we come to the following improvement of the
classical theorem of Morse:

If points p, q e W are not conjugate (for any geodesic passing through them),
then the number of geodesic segments joining p and q and having length < λ
is not less than B(C2(λ - 1)) = ΣcΛλ~1)bί(X).

Observe that in most cases B(X) « e\ and we have exponentially many geo-
desies.

When πλ(W) is infinite, the inequality dm (X) > λ does not generally hold
even if we replace X by one of its components, and the behaviour of bi(Xλ), λ
—> oo, becomes more attractive (and mysterious).

Observe also that the inequality dm (X) > λ shows finitness of bt(X) and our
proof from § 4.1 uses only one simple combinatorial trick, closely related to
semisimplical ideas of Kan [5] (the author wishes to thank D. Sullivan for
this observation), but no algebra (spectral sequences). Iterating this trick leads
to a very short and elementary proof of the Serre-Kan theorem:

If W is simply connected, then all homotopy groups πt{W) are finitely ge-
nerated and can be effectively computed. (The last statement supposes that we
are given a triangulation with a reduction of the standard presentation of πx(W)
to the trivial presentation.)

1.5. Closed geodesies. Take now for X the space of all smooth maps Sι

—• W. When πx(W) is finite we again have dm (X) > λ, and for the number of
prime closed geodesies of length < i w e get the lower estimate by (const/X)B(X)
= (const.//Γ) Σl^biiX) provided that the Riemannian metric in Wis generic
(bumpy). This is an improvement of the (easy generic case) Gromoll-Meyer
theorem [3], [6]. (The author does not know how to eliminate the "bumpy"
condition from our estimate.)

We except again that in most cases bt(X) grow esponentially, but there are
only isolated (and unpublished) examples due to P. Trauber supporting this
conjecture.

Some information about nonsimply connected manifolds is contained in [3].
1.6. Dilatation. Let X be the space of smooth maps K-> W. Denote by
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dil (x), x e l , the maximal value of the ratio dist (xty^), #(i;2))/dist (vί9 v2),
v19 v2 e V. Let F{x) == dil (x), x e X.

Theorem. If the fundamental group of W is finite, then N(λ) < 1 + Cλk,
where C is a positive constant depending on V and W, and k is a natural number
depending only on the homotopy types of V and W.

Proof is given in § 3.2.
This theorem shows that the number of homotopically distinct maps V^>W

grows at most polynomially as dilatation grows. Consider now an example
where the behavior of N(λ) can be described more precisely.

Let Wbe the standard ^-dimensional (n > 1) sphere (sphere with metric of
constant curvature), and let V be a closed orientable ^-dimensional manifold.
Then there exists the limit L = l i m ^ N(X)/λn and L = Cn Vol K/Vol W, where
Cn> En > 0, Cn < Dn < 2, and Vol denotes the volume of a manifold.

Proof immediately follows from statement A in § 2.3.

2. Dilatation and degree

2.1. A norm in the homotopy groups. Fix a point w0 € W, and denote by
Λ(a), a ζ. πn(W, w0), the volume of the minimal possible (metrical) ball B c Rn

for which there exists a map x: (B, 3B) —• (JY, w0) representing a and having
dil(x)< 1. One can easily prove that there exists the limit \\a\\n ^lim^^^ Λ(pa)/\p\
having the following properties:

I M L > 0 , | | α + i 8 | U < | | α | U + \\β\L , \\Ka\l = \K\\\a\U .

2.2. Let V be an ^-dimensional closed oriented manifold, and let W be
(n — l)-connected. The set of the homotopy classes of maps F-> W can be
identified with πn{W, w0). Denote by dil [x], x: V^ W, the minimal possible
dilatation of a map homotopic to x.

Theorem, (dil [*])» = ||M|L/Vol V + C&x]), where C(M)/||[x]|U ^ 0 as
IIMIU —> °°, and [x] denotes both the homotopy class of x and the corresponding
element from πn(W, w0).

Proof. To show that lim sup (dil [;c])n/|| [x] |U < (Vol(F))-1, || [JC] |U -• oo, we
cover V by small round balls and constract sufficiently "short" map F—• Sn

by representing the generator from πn{Sn) by maps supported on these balls.
The opposite inequality liminf (dil M)7IIMIU > (Vol(K))"1 is equivalent to
the following.

Lemma. For a map x of any triangulated manifold into W with dil (x) = d,
there exists a homotopic map x mapping the (n — X)-skeleton to w0 e W and
satisfying the condition dil (x) = d + C(d), where C(d)/d —• 0 as d —>- oo.

Proof Because W is (n — l)-connected, the first condition on x can be
replaced by the following: x maps Knl to the (n — l)-skeleton of a given triangu-
lation of W. To construct such map (keeping the dilatation almost undisturbed),
we subdivide Kn~ι properly, replace x\κn-i by its simplical approximation, and
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extend the approximating map to the whole manifold.

2.3. Maps into spheres. For closed oriented manifolds V and W of the
same dimension, we denote by dil {d} the minimal possible dilatation of a map
V^ W of degree d.

Statements. Let W be the standard sphere Sn.
(A) If Vis n-dίmensionaland oriented, then dil{d} ~Cn\d|1/n(Vol W/Vol V)ι/n,

where the constant Cn depends only on n, and Cn > 1.
(B) If diam W = 1, where diam ( . ) denotes the diameter of a Riemannίan

manifold, and Visa flat torus, then dil"1 {1} is equal to the injectivity radius of V.
(C) If V is also the standard sphere of the same size as W, then dil {d} > 2

for\d\>2.

Proof Statement (A), with the exception of the inequality Cn > 1, follows
from § 2.2. The inequality Cn > 1 follows from the next theorem (see § 2.4.).
Statement (B) is obvious. Statement (C), when d is even, was proven by R.
Oliver (see [8], and [7], [9] for further information). We shall prove the follow-
ing generalization of (C).

Lemma. Let V and W be Riemannian manifolds with the following properties',
for every point w e W there exists an "opposite" point w' e W with dist (wf, w)
> 1 the complement of any unit ball in V is convex, i.e., every two points of the
complement can be joined by the unique shortest geodesic lying in the complement.
Then for any map x of V onto W with dil (x) < 1 there exists a map y: W—> V
such that the composition yoχ: V^J is homotopίc to the identity.

Proof The inverse image x~\Λ), where Ad W is sufficiently small, belongs
to a convex set, and so any map y defined originally only on the 0-skeleton of
an appropriate triangulation of W can be extended to W with the required pro-
perties.

Remark. Obviously, there exist maps Sm -• Sm with dilatation equal to 2
and with degree 1,2, , 2\ h = [\{m + 1)].

2.4. For oriented manifolds V and W of the same dimension n, the geo-

metric degree of a map x: V -+ W is defined as the integral x*(ω), where ω
Jv

is the oriented volume form. This definition does not suppose the manifolds to
be closed. It is obvious that geom. deg(x) < (dil (x))n Vol V, and equality holds
only for locally isometrical mappings. Let us prove the asymptotic version of
this remark.

Lemma. Let xt: K-» W be a sequence of mappings uniformly converging to a
map x: V-> W. If dil {xz) < 1, and geom. deg xt > Vol (V), then x is a lo-

/—>oo

cally isometrical map.
Proof. The obvious localization argument reduces the problem to the special

case where V and W are flat balls. In this case the lemma follows from the iso-
perimetric inequality for balls.

Theorem. Let V and W be closed oriented manifolds of dimension n with



HOMOTOPICAL EFFECTS OF DILATATION 307

Vol V = Vol W. //lim r f_ inf [(dil {d})n/\d\] = 1, then V and W are flat Rieman-
nίan manifolds.

Proof. The localization argument reduce the situation to the case where V
is a flat ball, and then flatness of W follows from the lemma. Applying the
lemma again, we conclude that V is also flat.

Remarks. (A) If V and W are flat tori of unit volume, then l i m ^ (dil {d})n/\ d \
= 1.

(B) If W is a flat torus, rank HX(V) = n, and there exists a map K-> W of
degree one, then there exists l im^^ (di\{d})nl\d\. This limit certainly depends
on V. Cf. Statement (A) in § 2.3.)

Proof. The first remark is obvious, and the second follows from the first.

3. The Hopf invariant

3.1. Let W be a sphere of even dimension n, and V a sphere of dimension
In — 1. Denote by dil {h} the minimal possible dilatation of a map V -> W
with the Hopf invariant equal to h.

Theorem. Q |λ| < (dil {h}fn < C21 A|, where Q α/irf C2 are positive constants
depending on V and W.

Proof. The second inequality (dil {h]fn < C2/z follows from the existence of
maps W ̂ ) with degree proportional to (dil)n

To prove the first inequality we fix an «-form ω on W with ω — 1. The
J w

Hopf invariant h(x) of a map x: V -+ W'\s equal to the integral x*{ώ) A η9

where η is any (« — l)-form satisfying the equation dη = x*(ω). Now the theo-
rem follows from the following obvious fact.

Lemma. Fix a norm \\ \\ in the space of all continuous forms on V. There
exists such constant C that for any exact form ω on V one can choose the form η
with dη = ω satisfying the inequality \\η\\ < C| |ω| | .

3.2. Let W be a simply connected manifold. According to D. Sullivan (see
[10]), any functional θ: πk(W) -+ R can be obtained by generalization of pre-
vious construction for the Hopf invariant. This generalization involves forms
o)i on W, forms x*(ωt), where x: Sk—> W is the map representing given element
of πk(W), integrals of forms x*(ω), products of resulting forms, etc. The value
θ[x] is equal to the integral over Sk of the fc-form obtained by such a procedure.
Combining this fact with the previous lemma and using the notation in § 1.6,
we reach

Theorem. // W is simply connected and V is a homotopy k-sphere, then N(λ)
< 1 + Cλrl, where C is a constant depending on V and W, r is the rank of the
group πk(W), and I is an integral number depending only on k. {One can take

l=2(k- 1).)
Proof of the theorem in § 1.6. Induction by the skeletons of a triangulation
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of V reduces the simply connected version of the theorem in § 1.6 to the above
theorem. The general case follows from the simply connected one.

4. The functional of length and volume

4.1. Proof of the theorem in § 1.4. Choose a triangulation of W, and re-
place Xby the space I c l o f piecewise linear loops. Xpossesses the natural
cell decomposition: a cell is the product of simplexes of the triangulation which
form a sequence where every two consecutive terms are the faces of one simplex.

Suppose that W is simply connected, and consider a smooth map a'.W^>W
homotopical to the identity and contracting the 1-skeleton of the triangulation
to a point. The associated map a: X —> X sends each /-skeleton of the cell de-
composition into the set F~ι[0, Ci] C X, where C is a constant depending on
W and a. This finishes the proof for the simply-connected case, and the general
case follows immediately from the simply-connected one.

4.2. Consider the space X of maps V^W. Let dim X = k, and let F(x)
be the A:-volume of the map x, i.e., the volume of Fwith the metrics induced
by x. The above argument shows

Theorem. If W admits a cell decomposition without k-cells, then dm (X) >
C(λ — 1), where C is a positive constant depending only on W.

5. Additional remarks

5.1. Immersions. Denote by dil7 [x] the infimum of dilatations of smooth
immersions V —> W homotopic to x.

Theorem. If V and W are parallelίzable, and dim W > dim V, then dil7 [x]
— dil [x] (see notation in § 2.2.).

Proof can be easily obtained by using convex integration (see [2]).
5.2. Imheddings. For an imbedding x: F-> W denote by distor (x) the

maximal value of the sum

dist (vl9 v2) + dist {x(vx\ x(v2)) V v e V
+ ^ Vί,v2eV .

dist (X^), x(v2)) dist (vl9 v2)

Theorem. If W is simply connected and dim W > f dim V + 2, then the
number of distinct imdebdings V' —• W (up to an isotopy) grows at most poly-
nomially as distortion grows.

Proof. The theorem follows from the theorem in § 1.6. and the Haefliger
imbedding theorem (see [4]).

Remark. When the group of knots Sn -> Sq is infinite, then there exist in-
finitely many knots with uniformly bounded distortion.

5.3. The Dirichlet functional. A linear map Of: Rn -> Rq is uniquely char-
acterized (up to orthogonal transformations of Rn and Rq) by numbers λ^iβ)

> - - - > λn(Q)) > 0. (These numbers are the diagonal elements of the
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diagonal matrix corresponding to Q) under the proper choice of orthonormal
basises in Rn and Rq.) For a map x : F - > ^ w e denote by λ^x): V-* R+ the
function λi(x)(v) = Xt{Sfv{x))9 where @v denotes the differential of x at v e V.
Let us note that dil (x) = max υ e F ^i(^)(v).

Denote by σ/x): K-> /?+, j = 1, 2, , they-th symmetric function of Xt(x),

and by D)(x) the integral (tf/*))'. For some of the functional D){x) the pre-
J v

vious argument can be applied to establish polinomial estimates for the growth
of dm (X) and N(λ).

Theorem. Let X be the space of maps V —» W9 and let F(x) = Drj(x).
(A) If W is k-connected, j < k, and dim V < rj\ then N(λ) grows at most

polynomίally (cf. § 1.6).
(B) If W admits a cell decomposition without cells of dimensions k, k + 1,

• , dim V, j > k, and dim F > rj, then dm (^) grows at least as Cλ, C > 0 (c/.
§ 4.2).

5.4. Density. Consider a map x\ V ^ W and the smallest number ε > 0
such that the ε-neighborhood of the image of x is dense in W. Let us denote
dens (x) = 1/e.

Theorem. Lei Jf &e ί/z<? space of maps V ^ W and let F(x) = dens (x). Let
i be the inclusion of the space of all maps V —> W\w0, wQ e W, into X. If there
exists a cohomology class a e Hr(X, A), r > 0, with aj Φ 0,j = 1, 2,
wfr/ί z*(a) = 0, w/zβre v4 is any ring, then άm(λ) grows at most as Cλn, n =

Proof Consider points wu w2 wd e W and a map y\ K-+ X with y*(a)
Φ 0. It is clear that there exists such k € K that all points w19 , wd belong to
the image of the map x = y(k): V-> W. To finish the proof, it is enough now
to choose sets {wί9 , wd} forming the ε-nets with ε ^ d~1/n.

Remarks. (A) The theorem can be applied, for example, to the loop space
of a sphere.

(B) The argument in § 4 shows that for F(x) = dens (x) the invariant dm (X)
always grows at least as Cλ\ I — dim W — dim V9 C > 0.

References

[ 1 ] D. Gromoll & W. Meyer, Periodic geodesies on compact Riemannian manifolds, J.
Differential Geometry 3 (1969) 493-519.

[ 2 ] M. Gromov, Convex integration of differential relations, Izv. Akad. Nauk SSSR 37
(1973) 329-434.

[ 3 ] , Three remarks on geodesic dynamics and fundamental group, Preprint.
[ 4 ] A. Haefliger, Plongements differentiates de varietes dans variέtes, Comment. Math.

Helv. 36 (1961) 47-82.
[ 5 ] D. Kan, A combinatorial definition of the homotopy groups, Ann. of Math. 65

(1958) 282-312.
[ 6 ] W. Klingenberg, Lectures on closed geodesies, Grundlehren Math. Wiss., Vol. 230,

Springer, Berlin, 1978.
[ 7 ] N. B. Lawson, Jr., Stretching phenomena in mapping of spheres, Proc. Amer. Math.

Soc. 19 (1968) 433-435.



310 MIKHAEL GROMOV

[ 8 ] R. Oliver, ϋber die Dehnung von Spharenabbildungen, Invent. Math. 1 (1966)
309-390.

[ 9 ] J. Reitberg, Dilatation phenomena in the homotopy groups of spheres, Advances in
Math. 15 (1975) 198-200.

[10] D. Sullivan, Differential forms and topology of manifolds, Preprint.

STATE UNIVERSITY OF N E W YORK, STONY BROOK




