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UMBILICAL SUBMANIFOLDS OF
SASAKIAN SPACE FORMS

DAVID E. BLAIR & LIEVEN VANHECKE

1. The purpose of this note is to prove the following theorem:

Theorem. Let N", n > 3, be an umbilical submanifold of a Sasakian space
form M**Y(c). If the mean curvature vector is parallel in the normal bundle, then
N™ is one of the following :

(i) N™is a real space form immersed as an integral submanifold of the con-
tact distribution, and N™ is totally geodesic when n = m.

(ii) The characteristic vector field of the contact structure is tangent to N*,
N™ is totally geodesic and N™ is a Sasakian space form with the same ¢-sectional
curvature.

(iii) ¢ = 1 and N™ is a real space form.

If the mean curvature vector is not parallel, then

(iv) N™is an anti-invariant submanifold, and if N™ has constant mean cur-
vature, then ¢ < —3 and N™ admits a codimension 1 foliation by umbilical
submanifolds of type (i).

The four cases of the theorem do occur. In fact, the first three can occur in
the odd-dimensional sphere S*™*!(1); for example S*™*Y(1) admits a great m-
sphere which is an integral submanifold of the usual contact structure [1] and
a codimension 2 great sphere such that the characteristic vector field is tan-
gent and the sphere inherits the contact structure of S$*™*!, Sasakian submani-
folds of Sasakian manifolds have been studied quite extensively; see e.g. [2], [4].
In R*™** with coordinates (x%, y?, z), the usual contact form 5 = $(dz — 3] y*dx?)
together with the Riemannian metric G = 7 ® » + % X (dx?)? + (dy?)?) is a
Sasakian structure with constant ¢-sectional curvature equal to — 3. The vector
fields 9/0y* span an integrable distribution whose leaves are integral submani-
folds of the contact distribution 7 = 0. Moreover these submanifolds are totally
geodesic (see e.g. [1]) and G restricted to these submanifolds is just the Eucli-
dean metric. Hence taking an (n — 1)-sphere > (»*)? = constant we have an
umbilical submanifold in R*™*'(—3). We devote § 5 to an example of type (iv).

2. Let M be a (2m + 1)-dimensional contact manifold with contact form 7,
ie., 7 A\ (dp™ # 0. It is well known that a contact manifold admits a vector
field &, called the characteristic vector field, such that (&) = 1 and dp(&, X) = 0.
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Moreover M admits a Riemannian metric G and a tensor field ¢ of type (1, 1)
such that

$#=—-I1+£Q7, G(@X, 9Y) = GX, ¥) — n(X)n(Y),
O(X, Y) et G(X, ¢Y) = dy(X, Y) .

We then say that (¢, &, 5, G) is a contact metric structure.
Let I/ denote the Riemannian connection of G. Then M is a normal contact
metric (Sasakian) manifold if

Fxp)Y = G(X, Y)e — y(Y)X,

in which case we have

~

Pet = —gX.

A plane section of the tangent space T,,M at m € M is called a ¢-section if it
is spanned by vectors X and ¢X orthogonal to &.

The sectional curvature K(X, $X) of a g-section is called a ¢-sectional cur-
vature. A Sasakian manifold is called a Sasakian space form, and denoted M(c)
if it has constant ¢-sectional curvature equal to c; in this case the curvature
transformation Ryy = [P 4, Fy] — tx,v] 1S given by

RyyZ = Hc + {G(Y, 2)X — G(X, Z2)Y} + (c — Dip(Xm(@)Y
2.1 — (Ym(2)X + GX, Z)(Y)é— G(Y, Zp(X)§
+ O(Z, Y)pX — O(Z, X)pY + 20(X, Y)PZ} .
Let c: N — M be an immersed submanifold, and g the induced metric. The

Gauss equation for the induced connection I and the second fundamental
form o(X, Y) is

Voxto ¥ =0, V3Y + o(X, Y).

For simplicity we shall henceforth not distinguish notationally between X and
t4X. Let R denote the curvature of . Then the Gauss equation for the cur-
vature of N is

g(RXYZ’ W) = G(RXYZ: W) + G(O‘(Xv’ W)’ U(Y9 Z)) - G(U(X9 Z)s G(Y’ W)) .

We denote by F+ the connection in the normal bundle, and for the second
fundamental form ¢ we define the covariant derivative ‘F with respect to the
connection in the (tangent bundle) @ (normal bundle), by

(Vxo)(Y, Z) = Vi(o(Y, Z)) — oV xY, Z) — o(Y,VxZ) .
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Finally, the tangential and normal parts of a tensor field will be denoted by the
superscripts ¢ and | respectively.

For a contact manifold M it is well known that the (tangent) subbundle D
defined by 7 = 0 admits integral submanifolds up to and including dimension
n but of no higher dimension. D is generally referred to as the contact distribu-
tion of the contact structure 7. A more general class of submanifolds than the
integral submanifolds of D are those which satisfy dyp(X, ¥) = 0; these are
called anti-invariant submanifolds [3] since ¢ maps the tangent space into the
normal space.

3. We now consider an umbilical submanifold N with n = dim N > 3 im-
mersed in a Sasakian space form M(c) of dimension 2m + 1. The second fun-
damental form ¢ is then given by o(X, Y) = g(X, Y)H where H is the mean
curvature vector and the Codazzi equation becomes

Ryxr2)t = (Vxo)(Y, Z) — (Vyo)X, Z) = g(Y, ZWH — g(X, Z)W+H .

Since n > 3, for any X tangent to N we can choose a unit tangent vector field
Y such that Y is orthogonal to X and ¢X. Then

(RyyY): =V3H,
but from (2.1)
RyyY = i(c + )X + (c — DOEX)(Y)Y — p(Y)’X — 9(X)§) ,
and hence
3.1 VxH = —i(c — Dp(X)g* .

Thus if H is parallel in the normal bundle, we have either (i) N is an integral
submanifold of the Sasakian space form, (ii) ¢ is tangent to N, or (iii) ¢ = 1.

Case (i). From the Gauss equation we see that for an integral submanifold
of M(c) and an orthonormal pair {X, Y}

gRxyY, X) = 3(c + 3) + !—12 >

where g is the mean curvature, and hence that N is a real space form.
If ¢, and ¢, are normal vector fields, and A4, and 4, the corresponding Wein-
garten maps, then the equation of Ricci-Kiihn is

G(Ryyli &) = G(RErC: §) — g4y, 41X, ) .
Since N is umbilical, [4,, 4,] = 0 and since F+H = 0 we have
G(RyyH,$Y) =0.
(2.1) then gives
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Choosing Y orthogonal to X, we have
G(H,¢X)=0.

Thus either m > n or H is in the direction of &. But if N is not totally geodesic,
H cannot be in the direction of ¢, for if ¢(X, ¥) = g(X, Y)ué, p # 0, then

gX, Vp=GWyY,8) = —G(Y, V&) = G(Y,$X) = 0.

Therefore if m = n, N is totally geodesic.
Case (ii). If & is tangent to N, V.& = 0 implies V.§ + H = 0 and hence
H = 0. Now since N is totally geodesic

—gX = V3§ = Vxk,
that is, X is tangent to N. Setting ¢’ = |y,
§X, V)E — 9(V)X = Txp)Y = VxpY — 7 xY
= VX¢,Y_ ¢’/VXY = (VX¢,)Y3

and therefore N is Sasakian. Now by the Gauss equation we see that N is a
Sasakian space form with constant ¢-sectional curvature equal to c.

Case (iii). If c=1, M is a real space form and hence its umbilical submani-
folds are space forms of constant curvature 1 + 2.

4. Let @ = G(¢, H), and let p be the mean curvature. Then by (3.1)

4.1) Xy = XG(H, H) = —2G(i(c — Dyp(X)er, H) = —3(c — Dayn(X) .
Differentiating « twice we have
“4.2) Xa = —G(¢X, H) — G, X + i(c — Dp(X)EH) ,
YXa — PyX)a = —a(l + ¢ + i(c — D]+, Y)
+ i(c — DE(YG(BX, &) + 2anp(X)n(Y)
+ G@Y, X)|§HF — (XY |E4) .
Interchanging X and Y and subtracting (¢ # 1) we have
7(X)G($Y, &) — p(Y)G($X, &) + 2G(pX, Y)|¢HF
— (X[ + p(XN)Y[EH] = 0.

Taking X and Y orthogonal to &' we see that for £ not tangent to N, G(¢X, Y)
= 0. Y = &, and X orthogonal to & yields

“4.3) |E°F X&' = (2 — [§'P)G(E", X) -
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On the other hand,
XG(g', &) = 2G(—¢X — Vx&% &) = 2AG($E", X) + G(E-, 7 xE")
= 2G(g&", X) + an(X)) .
Comparing this with (4.3) we have for X orthogonal to &
2|8 G(g8', X) = (2 — [€)G(g8", X)

and hence G(¢&%, X) = 0 or |&‘F = 2/3 which also implies by virtue of (4.3)
that G(¢&*, X) = 0. Therefore, G(¢.X, ¥) = 0 for all tangent vectors X and Y,
i.e., N is an anti-invariant submanifold of M.

Now if N has constant mean curvature, then (4.1) gives ¢ = 0, that is, ¢(X, Y)
= g(X, Y)H is orthogonal to & and hence the Weingarten map for the normal
&L vanishes. Therefore F/ &+ = FL&L, but

Vbt =V — &)= —¢X — V58" — g(X, §HH .

Since ¢X is normal, we see that I/ x&* = 0 and hence g(Ry..&%, X) = 0. Taking
X to be unit and orthogonal to &¢, the Gauss equation yields

0 =GRy, X) + I8'f 4
= 3(c + I EP + 1(c — D=1 + 167 2,
or assuming &% =+ 0, in particular assuming VtH = 0,
@4) L4 4 3 — DA — (&P =0,
Clearly ¢ < 1 and writing (4.4) as
e+ 3+ 4 — e —DgrE=0,

we see that ¢ + 3 < (¢ — 1) &'} < 0 or ¢ < —3. Moreover V& = 0 implies
that the distribution or subbundle on N orthogonal to & is integrable with to-
tally geodesic leaves giving the foliation of N.

5. First let us continue the analysis of the previous section. Since & = 0,
(4.2) gives G(¢X, H) = 0 for X orthogonal to &%, and comparison with (4.4)
yields G(¢&!, H) =|&* |2 Thus if n = m, H and ¢&* must be collinear; so taking

the inner product of |£§‘I with ¢&* we see that H = ¢&°/(1 — |&*") and
17

_ g
EE T g

Substituting this into (4.4) we have
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4
S
B =t

Consequently the mean curvature of an umbilical submanifold N™ of type (iv)
of constant mean curvature is determined exactly by c¢. Moreover note that

5.1 7&‘ t l&l ¢
(5.1) § =

We now review the notion of a C-loxodromic transformation [6]. By a C-
loxodrome we mean a curve y with unit tangent 7, in an almost contact metric
manifold satisfying 7, = a5(r,)ér4, @ = constant. Note that such a curve
makes a constant angle with the characteristic vector field &. Since & has con-
stant length, (5.1) shows that the integral curves of &' are C-loxodromes. A
local diffeomorphism f: M — M’ is a C-loxodromic transformation if it maps C-
loxodromes to C-loxodromes. The main result of [6] is that a Sasakian mani-
fold M is locally C-loxodromically equivalent to Euclidean space if and only if
M is a Sasakian space form. In this case the respective connections I/ and §//
are related by

VY =FyY + (Xp)Y + (Y¥D)X — i — D0(X)$Y + 7(Y)$X)

for some function p. In particular, we see that an umbilical submanifold of type
(i) is mapped to an umbilical submanifold of M.

Now since an umbilical submanifold N™ of type (iv) of M*™*(c) admits a
foliation by umbilical submanifolds of type (i) with a normal field & of C-
loxodromes, it is determined by a locus of (m — 1)-spheres and a C-loxodrome
of the appropriate curvature in Euclidean space E*™*!,
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