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REMARKS ON UNIFORMLY EXPANDING
HOROCYCLE PARAMETERIZATIONS

L. W. GREEN

Dedicated to the memory of Rufus Bowen

1. The analysis of Anosov flows on manifolds depends on the analysis of
the stable and unstable foliations associated with them, and these foliations have
interesting dynamical properties in their own right. In case these foliations are
one-dimensional, they give rise to flows, generalizing the horocycle flows on
surfaces of negative curvature. B. Marcus1 has shown that these horocycle flows
admit reparameterizations with especially nice properties, which he exploited
in proving unique ergodicity. However, he proved that the resulting systems were
smooth only rarely, forming closed, nowhere dense sets in appropriate classes
of flows. In this note we show that these sets consist essentially of single points.
Namely, we prove

Theorem A. Let {/J be a C2 Anosov flow on a compact connected three-di-
mensional manifold M with stable and unstable orientable foliations Ws and Wu

respectively. If Ws and Wu admit C2 uniformly expanding and contracting
parameterizations, then M supports the structure of a homogeneous space of a
Lie group with the flow and foliations induced by one-parameter subgroups.

The three-dimensional G-induced flows which are Anosov are known: they
occur in the classification in [1, Chapter III], and are either constant time sus-
pensions of hyperbolic toral automorphisms or are generalized geodesic flows
(i.e., flows finitely covered by geodesic flows on tangent bundles of surfaces of
constant negative curvature.)

If the flow on M was actually the geodesic flow in the unit tangent bundle
of a surface S of negative curvature, Theorem A fails to say much directly
about S itself, even though M turns out to be very special. However, it devel-
ops that in this case we need only assume one of the horocycle flows to be
uniformly reparameterizable :

Theorem B. Let S be a compact C°° surface with negative Gaussian curvature
K, and H be the vector field {in the unit tangent bundle) of its unit speed expand-
ing horocycle flow. If H admits a uniformly expanding C2 reparameterization,
then K is constant.
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1 [6], [7]; see also Bowen and Marcus [2], and the references cited in these papers to
work of Margulis and Lifshitz.
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The author is indebted to Brian Marcus for various suggestions; in particu-
lar, for the generality of the formulation of Theorem A. The author is especial-
ly grateful to the referee for supplying a more general proof of Theorem A and
pointing out a serious error in the author's original Theorem B (see the remarks
at the end of § 3.)

2. In this section we make precise the notion of uniformly expanding
parameterization, and prove Theorem A. The exposition and notation follows
Marcus [7] fairly closely. Proofs or references to proofs of the following facts
may be found in that paper.

Wu(x), the unstable manifold through x to the Anosov flow {/J, is charac-
terized by the relation

W»(x) = [F CS M l̂im P(ftxjty) = θ} ,

where p is some smooth metric on the manifold M. The stable manifold Ws(x)
through x is defined similarly, but for t approaching + oo. Under the assump-
tion that M is three-dimensional, each Wu(x) and Ws(x) is one-dimensional.
By requiring these foliations to be orientable, we ensure that there is a contin-
uous one-parameter group of homeomorphisms {φs} whose orbits are the un-
stable manifolds. A choice of such a one-parameter group is called a Wu flow
or Wu parameterization. The differentiability class of the function

φ:(s,x)->φs(x)

is the class of the parameterization.

Bczuse ft(Wu(x)) = Wu(ft(x))9 there is a function

s*:R X R X M-+R

such that

(2.1) ft ° φs(x) = <Ps*u,s,χ) °ft(x)

Definition. A uniformly expanding Wu parameterization is one for which

s*(t, s, x) = λ*s

for some constant λ > 1. λ is called the expansion coefficient.
If the Wu parameterization ψ is merely differentiate in s, it is possible to

define the vector field of the flow Eu by the equation

ds
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for smooth functions g. If ψ is C2, x -> E% is C1. X will always designate the
vector field of {ft}.

Proof of Theorem A. We let {ψj designate the uniformly reparameterized
flow corresponding to the stable manifolds Ws defined analogously to the {φs}.
Relation (2.1) may be restated for these flows by the equations

(2.2) ft°ψs — ψλts oft , ft°Ψs = Ψδts °ft ,

where the expansion coefficient λ > 1 and the contraction coefficient δ is in
(0, 1),. In terms of the vector fields Eu and Es of these flows, (2.2) may be re-
written as

(2.3) (fd*Eϊ = XEZ , (ft)*Ei = δ*Eit ,

where xt = /£(x). Since X, £ w , and Es are independent at every point of My

there are continuous functions a, b, and c such that

[£ w , £ s ] = aX + Z?£w + c£ s .

Then

However, using (2.3) we compute

Equating coefficients, we obtain

(2.4) aof_t

But since M is compact, the continuous functions a, b, and c cannot satisfy
these equations for all t and remain bounded unless b and c are identically
zero, λδ = 1, and α is constant o n / έ orbits.

To show that a is constant everywhere we apply a so-called "Mautner lem-
ma" argument: In the Banach space of continuous functions on M with the
supremum norm, the flows {ft} and {<ps} define groups of isometries {Ut}, {Vs}
respectively. ((Uta)(x) = a(fx), etc.).

The first equation of (2.2) may be written UtVs = Vλ-tsUt. Then, because
the function a is L^-invariant, and Ut is an isometry,

||α - F s α| | = \\Uta - UtVsa\\ = \\Uta - V^sUta\\ = \\a - Vλ.tsa\\ .

But, for each fixed s, as t —> oo, Vλ~tsa —> a in norm. Hence a is also invariant
under the flow {φ8}. Similarly, a is invariant under {ψs}.
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At any point x of M the map (t, u, s) —> (ft °φu° ψs)(x) is nonsingular at
(0, 0, 0). Hence its image contains an open neighborhood of x, throughout
which, by the conclusions of the previous paragraph, a is constant. By the con-
nectedness of M, a is constant on M.

We conclude that the fields X, Eu, and Es form a three-dimensional real Lie
algebra g with multiplication table (setting μ = log X)

(2.5) [X, Eu] = -μEu , [X, Es] = μEs , [E\ Es] = aX .

If a is zero, the corresponding algebra is solvable; otherwise g is isomorphic to
sl(2, R). The fact that M becomes a homogeneous space of the corresponding
group follows from Palais' theorem ([9], see also Loos [6, p. 34]), and the
proof is complete.

The referee has pointed out that the compactness of M may be replaced by
a much weaker hypothesis. Namely, call an open set 0 divergent in the positive
(negative) sense if for every compact set K C M there exists a Γ > 0 such that
/t(0) Π K is empty for all t > T (all t < -T).

Theorem A*. The conclusion of Theorem A holds if the hypothesis that M is
compact is replaced by the condition that no open set of M be divergent in either
the positive or negative sense.

This hypothesis is satisfied in the following situations (M is assumed separa-
ble):

(1) M is compact.
(2) Every point of M is nonwandering. (In particular, if the flow is topolo-

gically transitive.)
(3) M admits a finite invariant measure, positive on open sets.
3. In Theorem B, the manifold in which the geodesic flow takes place is

TXS9 the unit tangent bundle of the surface S. The assumption on the curva-
ture K has as consequences that the geodesic flow, whose vector field we des-
ignate by X, is an Ansov flow, and that the unit speed expanding horocycle
flow has a C1 vector field H. Rename H as H+ to distinguish it from the cor-
responding contracting field H~. These fields satisfy the relations

(3.1) [X, H+] = -uH+ , [Z, H~] = -QH- .

Here w, ΰ are C1 functions bounded away from zero—u positive, ΰ negative—
and both satisfy the Riccati equation

(3.2) X(v) + V2 + Koπ = 0.

where π is the projection from T±S to S. The construction of u and proof that
it is smooth are due to E. Hopf [5]; the subsequent definition of H+ is reviewed
in [3], The hypothesis on the reparameterization of H+ means that there exists
a nowhere zero C1 function g such that, if Eu = gH+, then Eu satisfies the
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commutation relation [X, Eu] = — μEu, with μ a positive constant. If we com-
pare this with the commutator computed using (3.1), we find that

(3.3) X(g) = (μ- μ)g .

Lemma 3.1. H~admits a C2 uniformly contacting parameterization with con-
traction coefficient e~μ.

Proof. Because the C1 functions g, u, ΰ are all bounded away from zero and
u is positive, ΰ negative, the function h defined by the equation

h = [g(u - U)Γ

is C1 and everywhere positive. Using (3.2) and (3.3), we compute that

X(log/*) = -X(logg) - X(\og(u - ΰ))

= -{μ - μ) - (u - ΰ)-\-u2 - Koπ + ΰ2 + Koπ)

= -u + μ - [u - u\-\ΰ2 - u2)

= — u + μ + [ΰ — ύ\~ι[U — u][ΰ + u] = ΰ + μ .

Now set Es = hH~. Inserting this in the second equation of (3.1) we find that

[X, Es] = X(h)H~ + h[X, H~] = (ΰ + μ)hH~ - hUH~ = μEs .

This result allows us to apply Theorem A to the flow.

Lemma 3.2. [Eu, Es] - X.

A consequence of this lemma is that the Lie algebra involved is sl(29 R). That
we must be in the semi-simple case would also follow from consideration of
the fundamental group, but we need the stronger result that the constant a
which arose in Theorem A is actually 1.

Proof of Lemma 3.2. Recall the definitions of H+ and H~ in terms of the
basic and fundamental vector fields of Tλ{S) (see [3], [4] for their geometric
meanings and explication of their brackets):

H+ = Y + uA , H- = - Y - UA .

Here Y is the basic field complementary to X, A is the fundamental field cor-
responding to rotations of the fiber, and the orientation is such that

[Y, A] = X.

In the following computation, only terms ultimately involving X will be expli-
citly retained, since Theorem A says the others will vanish — i.e., " = " will
denote "congruence modulo {Y, A}".
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aX = [E\ Es] = [gH\ hH~] = gH+(h)H- - hH~(g)H+ + gh[H\ H~]

= gh[Y +uA,-Y- ΰA] = -gh{u[A, Y] + ΰ[Y, A]}

= gh(u - u)X = X .

The last equation is a result of the definition of h in Lemma 3.1.
Abusing the notation, we let X, Eu, Es represent both the fields on TX(S) and

the corresponding left invariant fields on G, the universal covering group of
SL(2, R). There is a diffeomorphism

v:Tl(S)->G/Γ ,

where Γ is a discrete subgroup of G isomorphic to the fundamental group of
Tλ{S). The one-parameter subgroup of G defined by gt = exp (tX) satisfies

(3.4) η°ft = grη,

where the operation on the right is multiplication. Let v be the measure induced
in G/Γ by Haar measure, normalized so v(G/Γ) = 1. If Ω is the measure in
Tλ(S) induced by the Riemannian structure of S (the kinematic density), we
also normalize to it give total measure 1. Now η*Ω is a smooth measure on
G/Γ, invariant with respect to the flow {gt}, since Ω was invariant with respect
to {ft}. Hence η^Ω = cv, for the latter is a smooth ergodic measure, and by
the above normalization, c = 1.

Lemma 3.3. f uΩ = μ .
JT1(S)

Proof. Integrating the relation X(\og g) = u — μ along an {ft} trajectory
we find that

i) - (\ogg)(x0) = Γ u(ft(x0))dt - μ ,
Jo

where xλ = /i(xo) Now integrate both sides of this equation with respect to β,
using the fact that Ω is invariant with respect to the flow.

0 = f f u(ft(x0))dtΩ - f μΩ

= Γ ί u(ft(x0))Ωdt - μ = \ uΩ - μ .

(This is an old trick of E. Hopf's; compare [5, p. 608].)
This lemma just rederives in this case the known relation between the local

coefficient of expansion and the entropy (Sinai [11, Theorem 7.1]). For μ is the
entropy of {/J with respect to Ω. Because of the isomorphism η, it is also the
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entropy of {gt} on G/Γ with respect to v. But we can compute the entropy of
this latter flow another way. Because Γ is the fundamental group of TλS, its
algebraic structure is completely determined by the Euler characteristic of S [1,
p. 24, Theorem 4.5]. Hence in G there is a one-parameter subgroup R contain-
ing the center of G such that RΓ is closed. Then, if S' = R\G/Γ, S' is a surface
homeomorphic to S. But S' has a natural Riemannian metric of constant
negative curvature Kr induced by the hyperbolic metric on R\G. The geodesic
flow in T1S

/ is the flow {gt} in G/Γ, and it leaves the measure v invariant, since,
by an argument similar to that preceding Lemma 3.3, that is the kinematic
density of the Riemannian structure of S\

Lemma 3.4. μ2 = — 4π2χ(S), where χ(S) is the Euler characteristic of S.
Proof. In view of the topological equivalence of S and S', it is sufficient to

prove the lemma with S' in place of S. But for constant curvature this has been
done by Sinai [10, Theorem 3]. One could also proceed directly by noticing that
the constant function v = μ, being the geodesic curvature of the horocycles in
this metric, satisfies the Riccati equation (3.2) with Kf in place of K. But the
Gauss-Bonnet theorem says that

[ (K' o π)v = 2π ί K'ω' = 4τr2χ(S") ,
J G/Γ J S'

if we designate the area form of S' by ω'.
We are now ready to complete the proof of Theorem B. Integrating (3.2) on

Tβ, first along the flow and then with respect to Ω, just as in Lemma 3.3, we
find that

0 = ί [i/fo) - u(xo)]Ω = ί f X(u)(ftx0)dtΩ
J τxs J τλs J o

= - f Γ u\ftx0)dtΩ - ί f {Koπ){ftχ,)dtΩ
J TtS JO J TtS J 0

= - f u2Ω - [ (Koπ)Ω = - f u2Ω - 2π [ Kω .

Hence using the Gauss-Bonnet theorem again on the original metric of S, and
substituting the value of the Euler characteristic obtained in Lemma 3.4, we
find that

ί u2Ω = μ2 .
Jτ1s

Interpreted in U^S, Ω), this says that the norm of u is μ. Lemma 3.3 claims,
however, that in the same Hubert space, (w, 1) = μ. The Schwarz inequality
then implies that u is proportional to 1 almost everywhere. Hence the contin-
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uous function u is constant and (3.2) leads immediately to the conclusion that
K is constant.

Remarks. 1. Just as in § 2, there is a Theorem B' which covers the case
when S is a complete surface of finite area. In order to ensure the existence
and smoothness of the functions u and w, it is convenient to assume that the
curvature lie between negative bounds. This also guarantees that an extended
Gauss-Bonnet formula holds, and the rest of the proof goes through unchanged.

2. In an earlier version of this paper the conclusion of Theorem B was as-
serted even if S was simply-connected. That such a result is false may be seen
from the following construction: at a given point in the simply-connected,
complete surface S construct all the expanding horocycles through that point.
The unit vectors normal in the expanding direction to all these curves form a
surface F in TλS which is a global cross-section to the geodesic flow. Then one
may prescribe arbitrary smooth values on F to the function log g and integrate
(3.3). The resulting function provides a smooth reparameterization of the ex-
panding horocycle flow.

4. Further remarks and conjectures. W. Perrizo has pointed out that the
techniques of Theorem A, applied to the Riccati equation (3.2), yield a proof
of the fact that, if the function u is constant on fibers (of the unit tangent bun-
dle), then the curvature of the surface is necessarily constant. For, using the
fields introduced in the proof of Lemma 3.2, and the relation

[A, X]=Y,

we find that, applying A to (3.2),

Y(u) = [A, X]u = -A(u2 + Koπ) - XA(μ) = 0 ,

under the assumption that A(u) = 0. Similarly, X(u) = [Y, A]u = 0, so u is
constant. (3.2) then implies that Γ̂ is constant. This observation may be given
a differential-geometric formulation as follows :

Theorem C. Let S be a complete surface with negative curvature bounded
away from zero. If at every point the geodesic curvatures of the horocycles pass-
ing through that point coincide, S is a surface of constant curvature.

The assumption on the curvature is to ensure the existence of the horocycles
and the differentiability of the function u. Generalizations to higher dimen-
sions leap to mind; the following conjecture seems nontrivial.

Conjecture. If V is a simply-connected manifold of bounded negative sectional
curvatures such that the mean curvatures of the horospheres through each point
depend only on the point, then V is a symmetric space of rank one.

Finally, we remark that the assumption A(u) = 0 has another interpretation,
as pointed out in [3]. Namely, the natural measure in the tangent bundle is
preserved by the horocycle flow if and only if A(u) = 0. Thus Theorem C is in
agreement with (but certainly does not provide an independent proof of) that
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application of Proposition (6.5) in Marcus [7] which states that the unique

horocycle invariant measure is smooth if and only if the parameterization was

uniform.
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