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ANTIHOLOMORPHIC AUTOMORPHISMS OF THE
EXCEPTIONAL SYMMETRIC DOMAINS

H. A. JAFFEE

Introduction

A serious fault of the theory described in [8] and called "real forms of hermi-
tian symmetric spaces" was the lack of information about the exceptional sym-
metric domains. This gap has been filled, and the new results are given here.

Let me now express my thanks to Professor Kuga for having posed the pro-
blems of [7], [8], and to Professors Borel, Helgason, and Langlands for several
enlightening discussions about the present work. In particular, while the idea
behind the "hard part" of Lemma (2.4) is my own, Borel is to be credited for
adding the necessary rigor to my original argument. Various improvements in
my original paper were suggested by the referee, especially the use of Theorem
(2.10) in §4.

1. The problem

Let X denote a hermitian symmetric space of noncompact type (for short,
symmetric domain), xoe Xa base point, # the set of anti-holomorphic involutive
automorphisms of X, and ^ 0 = {σ € ^ | σ(x0) = x0}. If Gh is the group of holo-
morphic automorphisms of X, and Kh the isotropy group at xQ9 we have X «
Gh/Kh. For any σ e V, we call Xσ = {x <= X \ σ(x) = x} the real form of X as-
sociated to σ. Gh acts by conjugation on ^ , and Kh preserves # 0 . We call the
quotient tf/Gh the set of complex conjugations of X. Representing a conjugation
by a a e <€ (or even ^ 0 by Remark 2.3) we associate a real form to each con-
jugation. Another representative σf for the same conjugation is (/^-conjugate to
σ, hence the real form associated to a conjugation is well determined, up to
isometry.

In Theorems (4.3) and (4.4) we give ^/Gh and the associated real forms for
the two exceptional symmetric domains. The theorem in [8] on the conjugations
of a symmetric domain without exceptional factor now applies with no restric-
tion. It follows that, in general, distinct conjugations have nonisometric real
forms; we know no a priori reason for this.

The next section (§ 2) applies more generally than just to the exceptional sym-
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metric domains. Thus it also provides a sketch of a derivation of the (major)
results of [8], although these results were first obtained by much more ad hoc
procedures.

2. Preliminaries

(2.0) In § 1, we defined the set of complex conjugations ^/Gh of X; the con-
jugations fixing the base point x0 are &0/Kh. There is a hermitian symmetric
space Xu of compact type associated to X "by duality" (see [4] for details). Let
G\ be the (compact) group of holomorphic isometries of Xu, and K\ the iso-
tropy subgroup at some chosen base point of Xu (= G^K1^), ^u the set of
anti-holomorphic involutive isometries of Xu, <£* the subset of ^u with fixed
points, and ^° the subset fixing the base point. By results of Harish-Chandra
and Borel [4, pp. 311-322], we may assume the following has been done. The
domain X is holomorphically embedded as a bounded open subset of a C-linear
subspace p_ in the complexification of the Lie algebra of Gh, with the point xQ

going to the origin, and so that the isometries of X fixing x0 are restrictions to
X of i?-linear automorphisms of p_. (Elements of Kh are C-linear, and elements
of ^o conjugate linear.) We embed p_ as a Zariski open [2, § 4.3 (4)] in Xu,
with x0 ( = 0 e p_) going to the base point of Xu, and isometries of Xu which
fix xQ preserve the embedded p_ and the domain X inside it; we thus make
identifications Kh = K\y ^ 0 = ^l-

We choose a σ0 e tf0 = ^°u; the group Gal = {1, σ0} acts by conjugation on
Gh, on Kh = K*, and on G\. Gh acts by conjugation on <£, and Kh preserves
^ 0 ; G\ acts by conjugation on ^u and preserves the subsets ^ * and ^ == <€u

— ^ * of ^u, and K^ preserves the subset &„. An easy translation of the defi-
nitions (see, e.g., [9, p. 1-56]) gives

(2.1) Proposition. There are canonical identifications {after the choice ofσ0):

(2.1.1) V/Gh = ^ ( G a l , Gh)

(2.1.2) tfo/Kh = H\GsΛ9 Kh)

(2.1.3) VJG* = ^ ( G a l , Gh

u)

(2.1.4) %t\Gl = a subset Jϊi(GaI, G*) of H\Ga\, Gh

u)

(2.1.5) WJG* = fΓJ(Gal, G%) = ίT(Gal, GJ) - ^ ( G a l , GJ) .
αei n

We will use the abbreviations H\Gh) for /P(Gal, C?71), ̂ /c.
(2.2) Theorem. ΓAβ' diagrams below are identical by Proposition (2.1). 77ze

c1 and c2 are bijectίons. Hence ^jGh is bijective to both ^O/Kh and
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(2.2.1) H\Kh)

(2.2.2)

(2.3) Remark. The proof of Theorem (2.2) requires a lemma, but first we
note several things. If a has a fixed point x, and gx = x0, then gσg~ι fixes xQ.
The surjectivity of cλ and c2 then follows from the fact that Gh and G\ are
transitive on X and Xu, respectively (and is a restatement of the fact that a
σ e & or <*ί* is GΛ- or GJ-conjugate t o a α ' e # 0 ) .

(2.4) Lemma. Lei σ e tf0 or <g*. Then the fixed point sets Xσ and Xσ

u of' σ on
X and Xu are connected.

Proof. For X, let x1 and x2 be fixed by σ, and γ the unique geodesic seg-
ment joining x1 and x2. Since a is an isometry γ must be preserved, and since
the endpoints are fixed, γ is fixed pointwise.

For XU9 Remark (2.3) says that without loss of generality we may assume
σ e ^°u as explained above, σ preserves a Zariski open set, say C, centered at
x0 and isomorphic to Cn. The restriction of σ to C decomposes as a direct sum
( + 1 ) 0 ( — 1), where the (+l)-eigenspace D is isomorphic to Rn, and Zariski
dense in C. Let xx be any fixed point of σ in Xu, outside of C. σ preserves an-
other Zariski open C", centered at xλ and isomorphic to Cn. Let Df be the fixed
point set of σ in C". We have D U ^ C x£, and will show that D Π D' is non-
empty. But C Π C7 = C/ is Zariski open in, say, C. Therefore D Π C/ is non-
empty; hence D ί l C and also D Π iX. This proves the lemma.

Proof of Theorem (2.2). We have already the surjectivity of cx and c2. We
shall prove the injectivity of el9 the proof for c2 being completely analogous.
By [9, Cor. 1, pp. 1-65], ker (O may be identified with the quotient of (Xu)

σ°
by (Gt)σ° = the centralizer of σ0 in G£. We have x0 e (Xu)

σ°; let xx e (Xu)
σ° and

(using Lemma (2.4)) let γ be a geodesic (in (Iω)σ°) from x0 to xx. By [4, Th. 3.3,
p. 173] we identify γ with a ray in the Lie algebra of (G£)σ°, orthogonal to that
of K%, and by exponentiation obtain an element of (Gffi0 which transforms x0

to xv This shows ker (^) is trivial. Now cx is also the canonical map ^0IKh —>
^*/G^, so we may repeat the argument for any other σ £ tfQ (applying Lemma
(2.4) to each) to get that all fibres of cλ are trivial. This proves Theorem (2.2).

The following theorem of de Siebenthal implies that there are only a finite
number of real forms of a symmetric domain.

(2.5) Lemma (de Siebenthal) [10, pp. 57-58]. Let G be a compact Lie group,
Go the identity component, σ0 e G, and T a maximal torus of the centralizer (G0)

σ°
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of σ0 in GQ. Given any σ in the component of G containing σ0, there are a t e T
and a g <= Go with σ = g(σQt)g-\

(2.6) Remark. If σ0 and σ are involutions, then t2 = 1.
(2.7) Theorem. The set ^JGh

u = H\Gl) is finite.
Proof Let G be the compact group generated by GJ and σ0. If σ e ^u is in

the same component of G as σ0, then by Lemma (2.5) σ is G0-conjugate, and
therefore ^-conjugate, to some σot, and t2 = 1 by (2.6). If / = rk (Γ) with Γ
defined in Lemma (2.5), then there are only 2ι such elements t. If G has only
two components, then we would have card (^JG^) < 2ι. If not, let σλ e ^ w be
an involution in a different component of G than σ0. Then G is also generated
by G\ and σ1? and we can apply the above argument to the component of σγ.
Clearly, this process will bound card (tfJG%) by a (finite) sum of powers of 2,
and finishes the proof.

(2.8) Corollary. The number of complex conjugations c(X) = card {^jGh) of
a symmetric domain X is finite.

Proof. By Theorem (2.2), ^\Gh is isomorphic to the subset %t\Gh

u of <g JGh.
We will make extensive use of the classification of symmetric spaces, together
with Theorem 2.10 below, to determine the isometry types of the real forms
X\ Similar techniques were used in [5].

For now, let X denote a hermitian symmetric space which is purely non-
Euclidean, σ an isometry, Xσ the set of fixed points of σ, and let xQe Xσ. Let
G(X) be the identity component of the isometry group of X, K(X) C G(X)
the isotropy subgroup at x0, and G(X)σ and K(X)σ the respective centralizers of
σ. Let G(Xσ) and K(Xσ) be the full isometry and isotropy groups for Xσ, with
base point x0. Denote by ®(JΓ), ®(JT), etc. the Lie algebras of G{X\ K(X\ etc.

If g 6 G(X)σ and y e X% then g(y) e Xσ. By restriction, we associate an iso-
metry p(g) of Xσ to g. Denote by p: G(X)σ -> G(Zσ) and ίfy: ©W' 7 -> ®(Xσ)
the homomorphisms thus defined. If s e G(X) is the symmetry in I at a point
jμ € X", then σ^ίj"1 has differential —1 at y; thus s € C/pQ*, and ^o )̂ is a geo-
desic reflection for Xσ at j \ This shows that Xσ itself is a globally symmetric
space, and a symmetric subspace of X

(2.9) Proposition. With the above notation, the pair (dp{®(X)σ), dp{^(X)σ)) is
an orthogonal ίnvolutίve Lie subalgebra (in the sense of '[11, p. 235]) of the ortho-
gonal involutive Lie algebra of the component of Xσ containing x0.

Proof The point is that the orbit of x0 under G(X)σ is the entire component
of Xσ containing x0. This follows from [4, Theorem 3.3] as in the proof of
Theorem (2.2). If X is of noncompact type, this fact is [12, Theorem 2.4.1]; the
author is thankful to the referee for pointing this out.

Now if σ is an antiholomorphic involution, Xσ is connected by Lemma (2.4).
Moreover dimΛ Xσ = dim c X since multiplication by the complex structure /
of X, along X\ defines an isomorphism between the tangent and normal bundles
to Xσ. For the same reason, a holomorphic isometry of X is the identity if its
restriction to Xσ is the identity. This implies that the maps p and dp above are
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injective, as far as we are concerned in this paper.
(2.10) Theorem. Let X be a hermίtian symmetric space as above, and σ an

antίholomorphίc involutίve ίsometry. If®(X)σ is semi-simple, or of the form Rι X
semi-simple, then the orthogonal Lie algebra of Xσ is isomorphίc to (&(X)% ®(X)σ).

Proof By injectivity of dp, the subalgebra in Proposition (2.9) is isomorphic
to (©(Z)*, S(X)σ) In the semi-simple case, [11, Lemma 8.2.3] says that this
subalgebra is maximal, which gives the required statement. In the other case,
the classification of orthogonal Lie algebras [11, Theorem 8.2.4], and of the
Euclidean ones [11. Theorem 8.2.10], gives the same thing.

3. Descriptions of EIΠ and EVΠ

There are two irreducible hermitian symmetric spaces with exceptional iso-
metry groups; they are the Riemannian symmetric spaces EIΠ and EVΠ of
(complex) dimensions 16 and 27. Their Lie algebras are given [4, p. 354] in the
noncompact form as (e6(_14), so(lO) + R) and (en_2δ)9 e6 + R), and the respec-
tive ranks are 2 and 3. The groups Kh and Gh are connected in each case [3,
Theoreme H].

The space EVΠ is described in [1, pp. 525-527] as a symmetric subspace of
ή28, the Siegel space of genus 28. The action of the group Gh is given there.
The same picture is given in [5], where a bounded version (cf. § 2.0 above) is
also given. We will denote this bounded symmetric domain by Z. The group Kh

for Z is described using Jordan algebras. If a is the exceptional central simple
reduced (nondivision) Jordan algebra ([6, p. 80] for the definition) of dimension
27 over R, Aut (α) is the compact Lie group F 4 . Then Kh is a subgroup of
GL(a (x) C): Kh = {exp (iL(x)) V \ V e Aut (α) and L(x) is left multiplication by
a n π α}. The center T1 of Kh is {exp (iL(ξ 1)) 11 = identity of α, ξ e R}, and
Kh = TιΈQ (see [11, p. 315]); the intersection Tι Π E% = (ε) is the center of
EQ, which is cyclic of order 3 [11, Cor. 8.9.28] generated by, say, ε.

/I 0 0\
The space EIΠ is a holomorphic subdomain of Z. Let, for example, 0 0 0

\0 0 0/
be a (primitive) idempotent of a (see [5], [6] for details). The Peirce-decompo-
sition a = α0 + ax + α1/2 is associated, which is the eigenspace decomposition
for the idempotent. Define a e FA c Kh as

+ 1 o n α 0 + α M and — 1 on α1/2

Let c denote the geodesic reflection of Z at 0 β α (x) C; c{z) = — z. The space
Y of fixed points of c o a on Z is shown in [5] to be isomorphic to the hermi-
tian symmetric space EIΠ.

For determining tf/Gh and the associated real forms for the two symmetric
domains described above, we shall use an explicitly constructed element σ0 e

Define σ0 by z ^ — z in the nonbounded versions of [1] and [5] and by
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z »-• z in the bounded version Z. If 0 e Z denotes the base point referred to
above, we have σ0(0) = 0. In the notation of [1], σ0 is represented by the matrix

f—̂  J. Conjugation by σQ on Kh is the involutive automorphism π(σ0):
\ U — 128 /

exp (iL(x)) -V^exp (~iL(x)) V ,

so the centralizer (Kh)σ° has identity component F4.

4. Computations of ^/Gh and the real forms

We first compute the set of complex conjugations ^jGh for the space Z (cf.
§ 3) of type EVIL By (2.2.2), this set is bijective to ̂ ,\Kh. %0 is the set of ele-
ments of order 2 in the component Kh σ0 of K = Kh U Kh σ0, where σ0 e ̂ 0

is defined at the end of § 3. ^O/Kh is thus the set of ZΛ-conjugacy classes of
elements of order 2 in Kh-σQ. The automorphism π(σ0) of Kh = Γ 1 - ^ leaves
the "factors" invariant. Thus the subset A = E6 U E6-σ0 oΐ K is a, subgroup.
Define π: A —> Aut (£6) through the adjoint action (hence the symbolism π(σ0)).
Aut(E6)/Irm(Eβ) « Z/2Z by [11, Cor. 8.11.3], and π(σ0) fixes a subgroup (F4)
of nonmaximal rank in E6, so τr(<70) is an "outer" automorphism. Hence π is
surjective, with ker (π) = (ε).

(4.1) Proposition. Any element λe σ0 € Kh σ0 (λ e T\e e E6) is Kh-conjugate
to e σ0.

Proof. Conjugate λe-σ0 by any V λ ~ι in T1. Then use σ0V λ = V λ ~ισ0.
(4.2) Proposition. The elements σx = eγ σ0 and σ2 = e2-σ0 are Kh-conjugate

if π(σ^) and π(σ2) are ad (E^-conjugate in Aut (E6).
Proof. Suppose 3# € ad (E6) with π(σ^) = aπ(σ2)a~1. Lift a to any α 6 π~\ά)

and obtain ^ε* = άσ2a~ι for some ε* 6 (ε). Now apply Proposition (4.1) to σ^
= e"Vi with Λ = ε""*.

Computing ^/G'7' now reduces to finding the ad (i^-conjugacy classes of outer
involutive automorphisms of E6. These are determined in [11, p. 288] as part of
the classification of symmetric spaces of E6. Each such automorphism is ad (E6)-
conjugate to either π(σ0) or another automorphism, say 7r(<7i) , and the Lie al-
gebras of the centralizers in Eβ of σ0 and σλ are1 respectively^ and sp(4). By
Proposition (4.2), σ0 and σλ represent all conjugations of Z; strictly speaking
as yet they might be ^-conjugate. We will find that the associated real forms
are nonisometric, hence σQ and σλ are not G^-conjugate.

As in § 2, extend each of σ0 and σλ to the compact dual Zu of Z. Let Zσ

u

ι

(i = 0, 1) be the respective fixed point sets. The centralizers G{Zu)°ί are such
that the quotients G(Zu)/G(Zu)

σi are symmetric spaces of G(ZU) = ad (E7). By
classification of these [11, table, p. 285] the only possibilities for ®(Zu)

σί are

i r rhe hidden fact here is that 3OΊ e π-1(τr(ί71)) with σλ

2=l. F4 c A, and F 4 c centralizer of σQ,
so τr|^4 is an isomorphism. By [11, p. 288], π(σ{) = π(φ) o π(σ0) with π(φ) e 7τ(F4) and π(φ)2 = 1.
The unique lift ψ <= T Γ " 1 ^ ^ ) ) then satisfies φ2 = 1, ψσQ = σoφ. Now σλ = φ o σ0 is as required.
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(1) R X ee, (2) su(S), (3) so(U) X su{2).
By Theorem (2.10), the orthogonal Lie algebra ®(Z^) is isomorphic to one of
these. Since dim Z** = 27, rk (Z'O < 3, and ®(Z*<) « / 4 or sp(4) (i = 0, 1),
we see that the classification of symmetric spaces with Lie algebras (1), (2), or
(3) uniquely determines ®(Z£). Namely, ®(Z?) = (R X eβ,/4), ®(Z£) = (ΛΊ/(8),
5/7(4)). By duality, we get the real forms Zσ° and Z ' 1 .

(4.3) Theorem. There are 2 complex conjugations of the symmetric domain
Z = (e7(_2β), £6 + Φ ^Ae associated real forms are R X (e^_2^f^), and (su*(β),
sp(4)) both of rank 3.

We next compute the set ^/Gh for the domain Y (see § 3) of type EIII. Let
Yu be the compact dual. By (2.2.2) we have ^\Gh « ^ ί/GJ. It is shown in
[11, p. 316] that every isometry of Yu has a fixed point; thus ^ * = ^u. Now
^/G7 1 « tfJGu' The identity component Zs0 of the isometry group Is of Yu is
isomorphic to ad (E6) by [11, Theorem 8.7.9]. Is(Yu) has 2 components [3, Theo-
rem H] and some element of Is — Is0 gives rise to an outer automorphism of
E6 [11, p. 316]. Hence there is an isomorphism ψ: Aut (E6) ^t Is(Yu). Now ψ
defines an isomorphism between &JGZ and the ad (£6)-conjugacy classes of
outer involutive automorphisms of E6. As quoted before, the latter are repre-
sented by ττ(σ0) and π{σ^), so that τ0 = ψ(π(σ0)) and τγ = ψ(π(σj) represent the
complex conjugations of Y under &JGI ^t ^/Gh.

We will find the associated real forms on Y by working on Yu and then du-
alizing. The centralizers ®(Yu)

Tί 0' = 0, 1) are isomorphic to fA and sp(4).
Hence by Theorem (2.10) the orthogonal Lie algebra ®(F^) is isomorphic t o / 4

and sp(4) for / = 0, 1. The classification of these orthogonal involutive Lie al-
gebras, together with dim 7^ = 16, rk(F^) < 2, again uniquely determines
®(Γ;0 Namely, ®(yj) = (/;? so(9)i © ( y j ) = ( ^ ( 4 ) ) sp(2) x ^(2)). By duality,
we have

(4.4) Theorem. There are 2 complex conjugations of the symmetric domain
Y — (eβ(-i4)> so(lO) + R). The associated real forms are (/4(_2o)5 so(9)) of rank
1, and (sp(2, 2), sp(2) X sp(2)) of rank 2.

5. Retrospections

One of the conjugations of Z is represented by the involution σ0 which was
defined explicitly in § 3. We would like explicit definitions also for σl9 τ0, τx

whose real forms are given in Theorems (4.3) and (4.4). For Z, E4 is a subgroup
of Kh. An involution β e F 4 (the "quaternion" case) is defined in [6, Theorem
13] β and σ0 commute. The author suspects that β o σ0 represents the same con-
jugation of Z as (7i

σ0 commutes with the defining isometry ί o ^ o f Y, hence leaves Y invariant.
It is not difficult to show using [6] that the restriction of σ0 to Y represents the
same conjugation as τ0. The author suspects that β o σQ also leaves Y invariant,
and that the restriction is conjugate to τx.
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