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RESIDUES OF SINGULARITIES OF
HOLOMORPHIC FOLIATIONS

BOHUMIL CENKL

1. This note contains an algorithm for the computation of the residues
associated with the singularities of holomorphic foliations on compact com-
plex analytic manifolds. We assume that the singular set is a closed holo-
morphic sub variety, and we drop the requirement, which is essential in [1],
[3], that the dimension of the singular subvariety is one less than the dimen-
sion of the leaves.

First of all let us briefly review the known results in this direction. Let M
be a compact complex analytic manifold of complex dimension n, T the holo-
morphic tangent bundle, and F a holomorphic vector bundle of fibre dimen-
sion k, 1 <k<n. Denote by Ί_ and F the sheaves of germs of holomorphic
sections of T and F respectively. Suppose that/: F —> T is a holomorphic vector
bundle map such that: (1) the singular set Σ is a closed holomorphic sub-
variety of Λf, (2) f(F) IM — Σ is a holomorphic foliation 3F of codimension
n - k, (3) dimc Σ = k - r, r > 1, (4) the subsheaf / ( £ ) of the sheaf T is
integrable and full. See [1, p. 282]. The integrability guarantees that 2 is a
singularity of a foliation on M, and the fullness rules out any unessential sin-
gularities. Let φ be a symmetric homogeneous polynomial of degree /, n — k
< / < n, in n variables xl9 , xn, and φ the unique polynomial in the ele-
mentary symmetric functions σl9 , σn of xl9 , xn such that φ(σl9 , σt)
= (xl9 - - ,xn). Let Q = T/f(F), Cj(Q) = theyth Chern class of Q, and φ(Q)
= Φ(ci(Q), -—9Cι(Q))' Then there exists a homology class Res^ (&, 2 ) e
^2n-2i(J] I O which depends only on φ and on the local behavior of 3F near
Σ , [1]. Moreover, if μ^\ H2n_2l(Σ C) —> Hn (M; C) is the inclusion followed
by the Poincare duality, μ* Res,, (J^, Σ) = Φ(Q), ([1] and [3] for k = 1). One
of the basic problems is to compute this class in terms of the "local behavior"
of 2F near Σ All the results have been obtained ([1], [3]) under the assumption
r — 1, i.e., dim c J] + ί = dimension of the leaves of IF.

For r = 1 and k = 1 we have a foliation 3F by holomorphic curves with
a singularity set Σ being isolated zeros of a holomorphic vector field X# de-
fining &. If ΛxO), , λn(p) are the eigenvalues of the automorphism of Tp,
pe 2 J defined by X^9 then under the obvious regularity assumptions there
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is the formula (for reference see [1])

QZΣ λλ(p) . . λn(p)

The general case, r — 1 and 1 < k <n — 1, can be basically reduced to the
previous one provided that 2 is a closed holomorphic subvariety. Let {ΣΛe/
be the irreducible components of Σ> and [ Σ d the fundamental class of Σ *
At a regular point /?* of 2 * a transversal (n — k + l)-dimensional disk Πι

intersects J ^ in holomorphic curves with zero at p\ Therefore in Πί we have
the previous situation. If Rt denotes the residue associated to it by the above
formula, then ([1], [3]) Res, (J^, Σ ) = Σiei RilΣi] f ° r a n v polynomomial φ
of degree / = n — k + l.If n — k + 1 < / < n, then the general formula could
be derived from the examples, [1].

The residue problem has been studied also for the meromorphic vector
fields on compact complex analytic manifolds, [1], and many various results
have been obtained also in the real case by Baum and Cheeger and for the
Riemannian foliations by Lazorov and Pasternack.

In the case r > 1 the "transversal disk" method is not the right tool for
the study of the residues. In this note we give an inductive construction which
to a compact manifold M of dimension n with a holomorphic foliation IF of
leaf dimension k with the connected regular (Definition 1) singular set Σ of
dimension dim c J] = k — r associates a compact manifold P, which is a pro-
jective line bundle p: P —» M with holomorphic foliation &p of the same leaf
dimension as J^, with regular singular set J]p = p~\Σι) °f dimension dim^ J]p

= k — r + 1. Then the relation between the residues for the two situations
(M, J S 2 ) and (P, ^ p , ΣP) can be expressed in the following way: Let φ be a
polynomial of degree / as above, and Res^ («^, 2 ) the residue. The inclusion
2 -> M and the Poincare duality give the map ζ*: i/.(Σ> C) -> /Γ(M, C),
and the residue defines the cohomology class ζ* Res^ (J^, 2 ) With a given
polynomial 0 we can associate a unique polynomial ψ of degree / + 1 (Prop-
osition 5) and the cohomology class f* ResΨ ( J ^ , 2 p ) defined by the residue
Resψ (J%, Σ P ) ; £*: # ( Σ p > C)-+H'(P, C) being defined by the inclusion ΣP

—> P and the Poincare duality. Denote by cλ{K) the first Chern class of the
holomorphic line bundle along the fibres of p: P —• M. Then the cohomology
class ξ* Res^ (J%, 2 p ) expands as a polynomial in ^(TΓ):

f* R e s + ( ^ p , Σ , ) = Φ° + />*£* Res, (.F, Σ ) ^ i W + Σ Φj<cλ(K)V .

If Σ i s n o t connected, then we have to take the sum over the connected com-
ponents.

2. Suppose that M is a compact complex—analytic manifold, dim^ M = n,
and 3* is a holomorphic foliation with the singular set Σ» defined in § 1.
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Furthermore we assume that dim^ Σ + r = dimα) IF (the leaf dimension of
. f a t a regular point), r > 1. Let W = M\Σ and let F=f(F)\M' be the
holomorphic subbundle of the holomorphic tangent bundle T' = T\M\ and
T®T = TR®BC, TR being the real tangent bundle of M. The quotient
bundle q: Q! = Tr\F'—• Λf' is a holomorphic vector bundle with fibre dimen-
sion n — k, where k is the fibre dimension of F. If β'* is the dual of Q', then

n-k

is the inclusion of the holomorphic line bundle /\ Q'* —> Λf' into the holomor-
phic vector bundle.

n-k

Because we want an extension of the line bundle f\ Q'* over the singular
set Σ> some regularity assumptions on Σ are needed.

Definition 1. A singular set Σ is regular if it is a closed subvariety of an n-
dimensional complex analytic manifold M such that

(i) dimc Σ < n - 4,
(ii) there exists a closed subset W of M9 Σ c ^ w i t n t n e property

W{W\ Z) ^ ^ ( ^ \ Σ Z) , 7 = 1, 2 .

We will assume that the singular set Σ is regular in the above sense. Then
by Theorem 2, proved in the last section of this note, there exists a holomorphic

n-k n-k

*extension f\ Q* —> M of the holomorphic line bundle /\ Q'* across the singu-
lar set Σ L e t P> p = HE) -> M be the projective bundle, with fibre CP\

n—k n—k

* 0 *associated with the vector bundle E — f\ Q* 0 [\ Q*.
Lemma 1. Let 3F be a holomorphic foliation on a complex-analytic manifold

M with regular singular set Σ» and let dim^ M = n, dimc Σ — dim(l) 8F — r,
r > 1. Then on the complex analytic manifold P with p: P —* M, there is a
holomorphic foliation «fp with the singular set Σp — P~\Σ) sucn tnat dim(l) i^^
= dimα) & and dimc Σp = 1 + dimc Σ

Before we give the proof, let us make some observations. Let U c Mf be a
coordinate neighborhood with coordinates z = (zl9 , zn), and (ω1, , ω71"^)
a holomorphic frame field of Qf* over CΛ The integrability of F is equivalent
to (on U)

dω* = nΣ ζί Λ ωι , dωj = 0 , ./ = 1, 2, . , n - k .
ί = l

A partial connection is a C-linear map

F: C°°(Qf* I U) -> CTO(F* 0 f * (x) β/>t: | C/) ,

such that F(f s) = p(df) (g) s + / F J , where p: Γ* -• F* is the projection. There
is a natural partial connection on g* | U, namely,



14 BOHUMIL CENKL

Vzω* = i'(Z)3ω> , Vκω* = f(£)Sω' = 0 ,

for Z <= C % F | £/) and 7Γ e C°°(Γ| t/). An extension of this partial connection:

Z W = i(K)Bω' = 0, Kε C~(T | U) ,

where /?(£/) = ζ/, is a basic connection.
Let al9 , αw_fc be the local coordinates of a point α e β'* | £7, #(α) = z,

with respect to the local frame (ω\ , ωn~k). We denote by X a holomorphic
section of F | C/, and by ^ = pλω

ι + + ρn.kω
n~k the horizontal section of

(/* I C/ over the integral curve χ of X through the point a. The functions pl9

-' -> Pn-k are defined along the holomorphic curve χ passing through z and
satisfy Dxp = 0. Because Dxp = i(X) 2 ? " ί dPi A ωι + 2 ? j ί i /Oif*Wωι, and
f \{X) = ζj(Z), the equation Z ) ^ = 0 is equivalent to the system

(2.2) X(^) + 5 p£ί{X) = 0 , i = 1, 2, , n - k ,

along the integral curve χ of X. Let Z(α) be a vector tangent to the section p
at α. Then

X(a) = X(z) + X(Pl)(z)ωι + . + X(pn_k)(z)ωn-k .

By (2.2) we have X(a) = JSΓ(z) - Σjzf p / z V , and

(2.3) X(a) =

Now we associate with the holomorphic vector field X the vector field X de-
fined by (2.3). As X is holomorphic and ωj is a holomorphic function, the vector
field X is also a holomorphic vector field on g * | U.

Because the curvature KXtY = DXDY — DYDX — DίXiY1 is zero for any vector
fields X, Y € C°°(F| U), the horizontal lift JP | U of the distribution F | U is inte-
grable and holomorphic. Finally as Q'* —> M ' is holomorphic and AΓy.r = 0,
I , 7 e C 0 0 ^ ) , is a global condition we conclude that F is a holomorphic dis-
tribution on Q'* -> M\ q^F = F. This proves

Proposition 1. 0/z ίΛ^ holomorphic vector bundle q: Qr* —> M 7 ί/ẑ r̂  w α Λofo-
morphic k-dimensional integrable distribution F such that q*(F) = F.

Next step in the proof of Lemma 1 is
n-k

Proposition 2. On the holomorphic line bundle q: f\ Q'* —» Mf and the holo-
morphic vector bundle E \ M', there is a holomorphic integrable distribution which
projects onto F.
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Proof. The basic connection D: C°°(Q'*) -> C~(T* 0 f * (x) Q'*) extends as
a derivation and defines a connection DA on the holomorphic line bundle
n-k

Λ Q'* -> M'

W-fc

n-k

for any ^ Λ Λ sn_k e C°°(/\ g'*). The curvature satisfies K£iY = 0 for
X,Γ <= C°°(F), and D Λ gives a unique connection Z)°: C°°(£ | Mf) -> C°°(Γ* 0 T*
(x) £ I MO, where again # V r = 0 for X, Y e C°°(F). The rest of the argument
is exactly the same as in the proof of Proposition 1.

Now let us return to the situation from the proof of Proposition 1. Let
a, b € β '* I U, and q(a) = q(b) = z0 <= U, such that for some c € C, bt = avc,
i— 1,2, ,n — k. Let p, σ be the horizontal sections over the curve χ passing
through α, b respectively. The components pt and <sι of p and a satisfy (2.2)
and the initial conditions pt(zQ) = au σ<(z0) = bt. The functions c-p^z) satisfy
(2.2) also, and c pi(z0) = σι(z0) = Z?̂  From the uniqueness of the solution of
(2.2) it follows that c pt(z) = σjiz). Hence if a curve p{z\ z 6 χ, is on the leaf
of the foliation # given by F, so is the curve c-p(z).

If we apply this to the bundle E | Mf we can have
Proposition 3. On the projective bundle P\M' there is a holomorphic foliation

!Fv of the same leaf dimension k as the foliation IF on Mr.
Lemma 1 follows from these two propositions.
3. We succeeded in replacing the compact manifold M with a foliation IF

and the singular set 2 such that dimα ) !F — dim c J] = r by another compact
manifold P and a foliation FP with singular set ΣP s u c h ^ a t dimα ) ίFP —
dim c 2 ? = r — 1 . If this procedure is repeated (r — l)-times we end up with
a compact complex analytic manifold with a holomorphic foliation whose
singular set is a closed regular subvariety of complex dimension one less than
the leaf dimension of the foliation. That is the situation where the residue
can be explicitly computed, [1], [3].

Let us recall [1] the definition of the residue for a foliation «f o n M with a
connected regular singular set Σ Let U be an open subset of M such that
J c [ / and Σ is a deformation retract of U. Recall that the quotient bundle
q: Q! -» Mr is a holomorphic vector bundle which is equivalent to a normal
bundle of IF on Mf. Let Es, E8_l9 , Eo be C°° complex vector bundles over
U such that over U' = Ϊ7\Σ there is an exact sequence of vector bundles

μ/s being vector bundle maps. (3.1) is a resolution of Q! over £/'. Furthermore,
suppose that there are C°° connections
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(3.2) F«: C-(Et) - C~(Γ*(£/) <g> £,) , i = 0, 1, . , s,

T* = T* ® T, and a basic connection V_x on g ' over £/' such that for some
compact subset Uo of U, with Σ contained in the interior of Uθ9 the exact
sequence of vector bundles (3.1) is compatible with these connections over
U\ UQ. Let Ko, KU - - , Ks be the curvatures of the connections

Fo, F l f , F,, ̂  6 Λ Γ * ® E n d ^ i » Ϊ = 0, 1, , J .

Now we define the differential forms κl9 9ιcn9Ki being a 2/-form on U, by

Π Q ( d e t ( / + K t ψ " = l + K l + ... + K n 9 e(i) = ( - 1 ) * .

Suppose that φ is a symmetric homogeneous polynomial of degree /, n — k
< / < n, and ^ is the associated polynomial as in § 1. Then the closed dif-
ferential 2/-form (JV— l/π)1 φ(/cl9 , κt) with support Uo defines a cohomo-
logy class (JΛ/— l /^) z [^ i 5 * •> κι)] in the compatibly supported cohomology
H2

c

ι(U, C). The Poincare dual of this class is a class in the homology group
H2n-2i(Έx> Q J a s Σ i s t n e deformation retract of U by assumption. It is called
the residue and denoted by

(3.3) Res, OF, Σ) = D{Qj=\lπ)ι[fal9 , Kι)]} .

It was proved that this homology class depends only on φ, 2 a n ( i ^ in a
neighborhood of 2 on M.

Because we want to relate the residues corresponding to the situation given
by Σ, ^ on M and Σ P > ^ > o n P for various polynomials φ, we must con-
struct a resolution of the normal bundle of Σ P > analogous to (3.1), and also a
sequence of connections compatible with that resolution as closely related to
the Fi's (3.2) as possible.

Let V = p-\U\ and V = V\ Σ P , let K -> K C P be the bundle of vectors
tangent along the fibre, and let Et = / r 1 ! ^ , / = 1, 2, , s, and ^ 0 = P~ιE* Θ ^ .
If F is the distribution tangent to the holomorphic foliation ^P9 then the bundle
normal to &P is equivalent to Qf = T{Pf)\F, and β 7 is equivalent to q~ιQ'®K.
Hence the exact sequence (3.1) gives immediately the exactness of the sequence

(3.4) o > Es\ V' i E,_X\V' - H λ±+^\v> Λ+Q\γ> > 0 ,

where ^ = /2f, the lift of μi9 i = 1, , s, and λ0 will be defined below.
Now we define the connections Pi9 i = — 1,0,1, , s, which are compatible

with the bundle maps in (3.4), and such that V_x is a basic connection on Q'.
First, let us start with the construction of V_λ. The injection κ\ K—> T(P) to-
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gether with the projection τ\ T(P') -> Q = T(P')\F on the quotient defines a
subbundle K = τ-tc(K) of Q'. In fact, g ' / ^ i s equivalent to /Γ1^)', and if we
identify Qι with ?-1^' 0 # then

Λo: Eo = p-*E0 ®K-^Q' = p~ιQ' Θ K

is a bundle map defined by λ0 = β0 Θ 1, /20 = P~^oP- Note that on eachpull
back /?"1-Eί and on ^ ~ 1 β / there is a natural pull back of connections Ft =
(p-'top^oΓtop, i= - 1 , 0 , 1, . . . , j .

Proposition 4. O« ί/ze quotient bundle Q there is a basic connection V_x such
that ii maps the subbundle K of Q; Into itself and on the quotient bundle it is the
pull back V_λ ofV_λ via the isomorphism ε\ Q\K -+ p~xQf.

Proof. Let F: C°°(g') -> C°°CF* Θ f *(P0 ® 2 0 b e t h e partial connection
associated with the foliation !F v on P. It is characterized by the following two
properties:

(1) i(X)F(τ(Y)) = τ([X, F]), X e C~(F), Y € C"(Γ(P)),
(2) F i s of type (1,0).
For any 7eC°° {K*)9 K' = K\P', and X € C°°(^) the bracket [ΛΛ, 7] €

C 0 0 ^ 7 Θ F) as A:7 Θ F is an integrable distribution defining the foliation p~\^)
of codimension k on P'. This shows that the partial connection induces a par-
tial connection Vf on the subbundle K of g ' . It is flat along the leaves of SFv.

It remains to show that the partial connection V can be extended to a basic
connection D_x with the same properties as V on K and at the same time on
the quotient Q!\K it should be F_1# This is done as follows: The partial con-
nection V on K! extends to a connection Vf: C°°(K) -> C°°(Γ*(P0 θ f *(P0<8)^)
F 7 is again flat along !Fp. Then the connection

(3.5) F_1 = (F_1oe®n^9

where ^: Q —* β 7 ^ θ A is an isomorphism, has the required properties as both
defining connections are flat along J ^ v .

The isomorphism of vector bundles τ κ\ K—>K over Pf and the connection
Vf on A over Pr define a connection on K over P 7 . Let F o = p~1U0 be the com-
pact subset of P, VQ C V, containing Σ P in its interior. As K is a vector bun-
dle defined over the whole P we can choose extension F of F' such that V
restricted to P\V0 is F. Then define the connections

Vi^ViJ= 1,2, . . . , * , Fo-FoθF.
Proposition 5. ΓAe ̂ xαc/ sequence of vector bundles (3.4) £y compatible with

the connection Fi9 i = — 1, 0, 1, , s over F\ Vo.
Proof In order to systematize the notation we denote Q' by E_λ and F_x o ε

simply by F_λ. Then the problem is to show that over V\ VQ for i = 0,1, , s
the following diagram commutes:
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Let a € C-φίI F\ Vo\ £t =zp-lEt@K9 and β = ^ + Λ^. For ί = 1,2, . ,*
the proposition follows from the compatibility of (3.1) with the F/s, and for
/ = 0 we have

Uβ) = (A> θ \){a) = βo(aE) + ak .

From the compatibility of (3.1) with Fo over J7\ Uo we get

^-iΛW - (F-i θ F)(μo(aE) + aκ)

= V-φι(aE) + F(aκ) = μ0F0(aE) + V(aκ)

= (βo θ 1)(ΓO θ Γ ) ( ^ + ^ ) = ^oFoW

Now we can compute the formula relating the residue Res^ (3F, 2)> where
φι is a symmetric homogeneous polynomial of degree /, n — k < / < n, with
the residue Res^ («^*P, 2 P ) 5 where ψ ί is a symmetric homogeneous polynomial
of degree t, n — k + l < t < n + l . The connections F ί 5 / = 0, 1, , s can
be extended to the connections over the whole P. We keep the same notation
for the extensions. The curvature from Ωo of the connection Fo is the matrix-
valued form on P

K°
R

where Ko = p*KQ9 and R is the curvature 2-form of the connection F defined
on the holomorphic line bundle K. Hence we have

det (/ + Ωo) = det (7 + Ko) det (/ + R)

where 1 is the identity in End (K), and for / = 1, 2, , s, Ωt = , p * ^ is the
curvature of the connection F 4. The product

„ ^ Π ((det (/ + Ωd)^ = (1 + *χ + + «n)(l + Λ)
(3.6) i=o

= 1 + tt)i + ω2 + + ωn+1 , e(ι) = (— 1)* ,

where ^ = p*κu i — 1,2, , n, are 2z-forms on P.
The total Chern class of the virtual bundle E = Σ | = o (— iy£t is defined by
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c(E) = Π {c{Ed)'m ,
ί = 0

and the Chern classes cx (E), , cn+1(E) are determined by

c(E) = 1 + cλ{E) + + cn+1(£) .

The 2/-form ωt is closed and represents the z-th Chern class c^E):

[ωt] = {iπl^XYclE) .

As above let ψ ί ? n — k + 1 < t < n + 1, be symmetric and homogeneous poly-
nomial, and let ψt be the associated polynomial in the elementary symmetric
functions. Then ψt(E) is defined by

(3.7) ψt(E) = ψt(c

and [1, Theorem 2] implies that

(3.8) ψt(E) = Σξ*

where the summation is over the connected components J]p °f Σ P > a n ( i f*
is the composition of i^.: H.(ΣP> O -^ ̂ . (Λ C) induced by the inclusion with
the Poincare duality. Similarly if E = J]l=o (— l)*^i is t n e virtual bundle over
Λf, and ĉ ^E1) is its i-th Chern class, then for any symmetric and homogeneous
polynomial φt of degree /, n — k < / < n, we define

(3.9) φt(E) = fac

and [1, Theorem 2] gives the relation

(3.10) φ t ( E ) = Σ f ^

where the summation is over the connected components of 2? a n d ζ* is the
composition of i^: H.(Σ, C) —> H.(M, C) induced by the inclusion i: Σ~^ M
composed with the Poincare duality.

The cohomology class ψt{E) is represented by the 2ί-form ψt(ωl9 , ωt),
where

α>! = κλ + R , ύ)2 = «2 + κ 1 Λ Λ , ,

ωn = Λn + ̂ _ ! Λ R , o)n+1 = % Λ R .

Before we proceed any further, few algebraic observations are needed. Let
σl9 , σL be the elementary symmetric functions in the n variables xl9 -, xn9

I < n, and let pl9 , pt be the elementary symmetric functions in the n + 1
variables xl9 ,xn,y. These two sets of the elementary symmetric functions are
related by the formulas



20 BOHUMIL CENKL

(3.12) pi = σλ+ y , pj = σj + a^γy , j = 2, 3, , /.

Then for any /-tuple of nonnegative integers a19 a2, , at such that ax + 2a2

+ + lat = /we define the homogeneous polynomials pίx...«ι9./ = 0, 1, ,
in the elementary symmetric functions σ19 , σx by the formula

(3.13) fr+1fi • . pΐ* = p°ai...aι + pl^.aj + (*) ,

where (*) stands for the terms of higher orders in y. Let us denote plx...aι

simply by pai...«r

Proposition 6. Let β19 β29 , βt be a sequence of nonnegative integers such
that βx + 2β2 + + lβt = I. Then the monomial σfrσξ* σfι can be written
as a polynomial, with rational coefficients, in the polynomials pai...aι for various
sequences of nonnegative integers al9 , at satisfying ax + 2a2 + + lat = l9

where I is a fixed positive integer.

Proof For a fixed sequence al9 , at we rearrange the terms in the poly-
nomial paχ...aV First start with the monomials involving σj with the highest in-
dex y, and order these monomials with the decreasing powers of σj. Therefore
the term involving the σj with the highest index j and in the highest power will
be first. We call this term the leading term of paχ...aι. After all terms with σj9j
being the highest index, are exhausted, repeat the same procedure with the σk's
where k is the next highest integer, etc. If there are two monomials with the
same σj with the same highest index and having the same powers, then look at
the next highest index of σk in those monomials. The one whose next highest
index is higher comes first.

Now we order all the polynomials paχ...aι for various sequences a19 9at

satisfying aλ + 2a2 + + lat = I for fixed /, ordered in the above manner,
according to the leading terms as follows: Start with the monomial p which
has the leading term containing σx in the highest power. Then order all those
polynomials p whose leading term contains σx according to the decreasing
powers, and continue in the same manner with those polynomials p whose
leading term contains σ2, etc. If two different polynomials have the leading
terms involving the σ3 with the same highest index j in the same highest power,
then look at the σk's in those leading monomials with the next highest indices.
If they are different, then the polynomial with the leading term involving σk in
the higher power will be first, etc.

Let, for example, cl9 , cr9 r < /, be a sequence such that cλ + 2c2 +
-f rcr — /. The leading term of pcl...CrO...o is equal to (c1 + l)σf σc

r

r. The
other monomials in pCl...CrO...o are constant multiples of σl1 a\r

9 bx + 2b2 +
• + rbr = /, bL > cx. But these terms, possibly with different constant coef-
ficients, already occured as leading terms in the previous polynomials of our
ordering. Hence we have a system of N linear equations with N unknowns,
where N is the number of partitions al9 , at such that ax — 2a2 + +
lat = I. The above ordering puts the matrix of the coefficients of this system
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into the triangular form, with zeros above the second diagonal and with non-
zero elements along the diagonal. In fact the elements along the diagonal are
precisely the coefficients of the leading terms. Therefore we can solve this regu-
lar system for the leading terms. It remains to be mentioned that each monomial
ffi1 Oι\ βi + 2/32 + + lβι = I, actually appears as the leading term of
the polynomial

1
-Pβi-βi '

βι+

Corollary. Let σlf , σt be the elementary symmetric functions in xlf , xn,
and let φt be the polynomial associated with symmetric homogeneous polynomial
φt of degree I so that φι(xu , xn) = φι(σlf , σt). Then with any polynomial
φι can be associated a polynomial Ψι+ι(pι, , pi) of degree I + 1 in the vari-
ables xlt , xn, y with pi given by (3.12) such that

Ψι+ι(Pι> - '9 Pi) = Φ°ι(<Ί> ' ' ' > σι) + Φι(σι> '"9 <*i)y
(3 14) + Σfc , ^ ,

where φ\ has degree / + 1, and φ{ has degree I — j + 1.
Now we are ready to prove
Theorem 1. Let φt be a symmetric homogeneous polynomial of degree I, n — k

< / < n, and ψt+1 the associated polynomial. Then the residue cohomology class
corresponding to the situation (P, SF'P, J]P) has an expansion as a polynomial in

ResΨ ί + 1 (JFP, Σr)

) •
(3-15) =φ\ + p* Σ f * Res ( J f Σ r

Proof If φι is the polynomial associated with φu then the cohomology class
φι (E) given by (3.9) is represented by the de Rham cocycle

(3.16) Q / ^ T / π y ^ , . . . 3 ^ ) ,

where κx, , κt are the forms on M defined by the connections Vt given by
(3.2). From the vanishing theorem [1] it follows that the support of (3.16) is
in the compact subset Uo of U. Hence p^φ^, •••,«i) = φι(ιcl9 , κt) has sup-
port in VQ. From (3.11) and (3.14) it follows that there exists a symmetric ho-
mogeneous polynomial ψι+1 such that

Ψi+ifai, , t ) φ\(l9 , ι) φι(l7 , I )
( 1 1 7 ) + Σ^fe ^ M ^ ,

where Rj = R Λ Λ R (y-times), and φ{, j = 0, 2, , are polynomials of
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degree I - j + 1. Since $,(k,, . . . , k,) has support in V,, from the vanishing 
theorem [l] it follows that also $,+,(w,, . . . , w,) has support in V,. 

Now multiply (3.17) by (+-/z)~+' and observe that ( + ~ / T ) [ R ]  = cl(K). 
We get 

where stands for the cup product, and c,j = cl . . . cl (.j-times). Hence 
we have 

Finally if we denote @! = p*@(E) and @{ = p*#{(E), then the relation (3.15) 
follows from (3.8) and (3.10). 

Remark. Similar construction and formulas can be obtained in a real situ- 
ation for differentiable foliations with singularities on a compact differentiable 
manifold. 

In order to illustrate this situation we give an example of a differentiable 
foliation of an n-sphere Sn by (n - 4)-dimensional manifolds with singularity 
s n - s  for n 2 8. 

Let T: S7 + S4 be the Hopf fibration of the 7-sphere by the 3-spheres S3, 
and let S7 be the unit sphere in Rs. If we join each point of a fibre S3 on S7 with 
the origin 0 E R8 we get a foliation of the disk Ds by 4-dimensional submani- 
folds with singularity 0. Glue two copies of this foliated disk D8 along the 
boundaries S7 in such a way that the foliations smoothly match. This gives 
a differentiable foliation of Ss by 4-dimensional submanifolds which has two 
singular points. Let these points be the antipodal points on the unit sphere in 
R9. Now join each point of a leaf of the foliation of S8 by segment with 0 E R9. 
We get the foliation of Dg by 5-dimensional submanifolds with the singularity 
being 1-dimensional segment. Gluing two copies of D9 along S8 SO that the 
match of the foliations gives the foliation of S9 by 5-dimensional submanifolds 
with singularity S1. The inductive procedure produces the above example. 

If we look at S7 as at a unit sphere in C4, then one can show, using quater- 
nions, that the foliation of C4 by cones constructed by projecting the leaves 
S3 on S7 from 0 E C4 is a foliation by complex analytic submanifolds of com- 
plex dimension 2, which is real analytic in the direction transversal to the leaves. 

4. In this last section we prove the theorem used in part 2 of this paper 
in the construction of the projective bundle P. The theorem is actually a cor- 
ollary of the theorem proved by Sheja [2]. 
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Theorem 2. Let M be a complex analytic n-dimensίonal manifold, Θ the struc-
ture sheaf {sheaf of germs of holomorphic functions), and Σ a closed subvariety
of M which is regular (in the sense of Definition 1). Then there is an isomorphism

H\M, 0*) — H\M\Σ, &*) .

In other words; any holomorphic line bundle L —> M\Σ can be holomor-
phically extended to a line bundle K -^ M in such a way that K\(M\Σ) is
holomorphically equivalent to L.

Proof. Using the Cech cohomology with coefficients in a coherent sheaf,
Sheja [2] proved that if dim Σ < n — 4 then we get a bijection

H>(M, Θ) -> H'(M\Σ, 0) , 7 = 1 , 2 .

From the excision theorem we get the isomorphism

H*(M- U,(M\Σ)~ U;Z)^-

where U = M — W, W being a closed subset of M from the definition of reg-
ularity of 2 , and the comparison of the cohomology sequences for the pairs
(W, W\Σ) a n d (M, M\Σ) respectively shows that from (ii) in Definition 1
follows the isomorphism

W(M9Z)^W(M\Σ,Z), 7 = 1,2.

The exact sequence 0—> Z —> Θ ̂  Θ* —> 0 leads to the commutative diagram

> H\M,Z) - H\M,Θ) -> H\M,φ*) — H\M,Z) -> H\M,Θ) -> •

Y Ψ Y y
• — ΉWXΣ ,Z) -> ίΠ(M\Σ ^ ) — H\M\Σ ,Θ*) -> H\M\Σ ,Z) — H\M\Σ ,0) -> •

with exact rows and isomorphisms fl5 /2, /3, /4. Hence by the five lemma * is
an isomorphism.
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