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e-FOLIATIONS OF CODIMENSION TWO

JOSIAH MEYER

Introduction

A codimension-g foliation ϊF of the manifold M is an ^-foliation if a fram-
ing of its normal bundle Q can be chosen to be invariant under the linear
holonomy of each leaf. These structures occur as one extreme case in a ge-
neral theory of transverse //-structures for foliations analogous to the theory
of G-structures for manifolds.

In codimension one, ^-foliations are defined by a nonsingular closed 1-form.
There is a strong structure theorem for such foliations of compact manifolds
due essentially to G. Reeb [7] (also see [1, (5.5)]). L. Conlon [1] has inves-
tigated the properties of ^-foliations in higher codimension and has proven a
partial analogue of Reeb's theorem in codimension two.

We view an β-foliation as a foliation with transverse structure modeled by
a parallelizable manifold. In this spirit, we define a Lie foliation as a foliation
with transverse structure modeled by a Lie group.

Evidently, every Lie foliation is an ^-foliation. It is easy to see that the two
notions coincide in codimension one, but differ in codimension greater than
two.

The main result of this paper is that every codimension-two e-foliation of
a closed manifold is a Lie foliation. This additional structure enables us to
answer some questions left open by Conlon and essentially complete the struc-
ture theory for e-foliations of codimension two.

In § 1 we define ^-foliations and Lie foliations as special cases of a general
notion of transverse structures for foliations. § 2 is devoted to the proof of our
main result and the remainder of the paper consists of remarks on the struc-
ture of e-foliations in codimension two. In particular, an example of a Lie
foliation modeled on the affine group of transformations of Rι is constructed,
and a theorem of D. Tischler [8] is used to draw several easy but pleasant
corollaries of our main theorem.

Unless otherwise specified, all manifolds and mappings considered are as-
sumed to be diίϊerentiable of class C°°.

I would like to express my gratitude to my advisor, Lawrence Conlon, for
his help in this work and indeed for his own work from which this is derived.

Communicated by S. Sternberg, September 30, 1975.
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The unified treatment of transverse structures for foliations sketched in § 1
of this paper was suggested by Professor Conlon.

1. Transverse structures for foliations

In order to develop a notion of a natural geometric structure for foliations,
it is convenient to reformulate the description of a foliation in terms of a
Haefliger cocycle by building into the cocycle the notion of a modeling mani-
fold for the transverse structure of the foliation.

Definition. Let Nq be a smooth ^-dimensional manifold. An Nq-cocycle
on the manifold M is a collection of triples {(Ua, fa, gaβ)}a,βζA such that

( i ) {Ua}a€A is an open cover of M,
(ii) each fa is a submersion of Ua onto an open subset of Nq,
(iii) gaβ is a local difϊeomorphism of Nq such that for each x e Ua Π Uβ,

We say the Λ^-cocycle {(C/β, /α, gaβ)} represents the foliation <F of M if the
bundle E of tangents to the foliation is given locally by E\ Ua = ker /αH{ c
T(UJ. In this case, any additional structure supported by the manifold Nq,
which is preserved by the local difϊeomorphisms gaβ, can be interpreted as a
transverse structure for IF. For example, if we can find an iV^-cocycle repre-
senting J^ such that the gaβ's preserve some given Borel measure on Nq, we
say that J^ admits a transverse measure [6].

From this point of view, Conlon's notion of a transverse //-structure for a
foliation [1] may be defined as follows.

Definition. Let H be a Lie subgroup of GL(q, R). A codimension-g foli-
ation 3F is said to admit a transverse H-structure if an Λ^-cocycle represent-
ing SF can be chosen such that the gaβ's are local //-diffeomorphisms of some
//-structure on the manifold Nq.

We study the extreme case where H is the trivial subgroup e. An ^-struc-
ture for the manifold Nq is a framing of its tangent bundle (or an absolute
parallelism on NQ).

Definition. An e-joliation is a foliation which admits a transverse e-struc-
ture.

In this case, we have a framing of the normal bundle Q c T*(M) of J^
by sections "parallel along the leaves of J ^ " [1] (a section ω e Γ(Q) is paral-
lel along the leaves of 3F if for each a,ω\Ua = fa*η for some 1-form η on Nq).

Via a choice of Riemannian metric on M, we may view Q as the subbundle
of T{M) orthogonal to the bundle of tangents of J^, Q = EL. Then a section
X e Γ(Q) c X(Λί) is parallel along the leaves of ^ if fa^X is a well-defined
vector field on fa(Ua) C Nq for each a. A useful equivalent formulation in
terms of a Bott-basic connection gives: X e Γ(Q) is parallel along the leaves
of & if for every Y e Γ(E), [X, Y] e Γ(E), [1].

The simplest example of an ^-foliation is the foliation of the total space
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of a fibration p: M —> N onto a parallelizable manifold by fibers. Indeed by
[1? (4.4)] these are the only e-foliations of compact manifolds which admit a
closed leaf.

As a final example of a transverse structure for a foliation, we ask that the
transverse structure be modeled by a Lie group.

Definition. Let G be a Lie group. A foliation IF is a Lie foliation modeled
on the Lie group G if it can be represented by a G-cocycle {(£/„, fa9 gaβ)} where
the gaβ's are (restrictions of) left translation by elements of G.

Since the underlying manifold of G supports an ^-structure given by left
invariant vector fields, every Lie foliation is an e-foliation.

If (ω19 , ωq) is an ^-structure for IF obtained by pulling back an ^-struc-
ture for the manifold G given by left invariant 1-forms, we have

( * ) do>ι = Σ c)ka)j Λ ωk ,
l<j<k<

where c)k are constants of structure for G.
Conversely, if (ωl5 , ωq) is a framing of the normal bundle of a foliation

J ^ and satisfies (*), then J^ is a Lie foliation modeled on G [4, (5.1)].
The equivalent formulation for Q c T(M) is : SF is a Lie foliation modeled

on G if and only if a framing (X19 , Xq) of 2 can be chosen so that the
g-component of the brackets [Xi9Xj] satisfies [X^X^Q = Σl=1CϊjXk where
Cfy are "dual" constants of structure for G.

2. The main theorem

The starting point of our analysis is the following.
(2.1) Theorem (Conlon [1]). Let IF be a codimensίon-two e-folίation of a

closed manifold M. Then the universal covering space of M has the form M
= A x R2 where A is the universal covering space of a typical leaf A of £F.
Furthermore, the lifted foliation & of M is the foliation of A X R2 by leaves
of the form A x point.

We remark that if we assume that !F is a codimension-two Lie foliation,
the above is a special case of (5.1) of [4].

(2.2) Theorem. Every codimension-two e-foliation !F of a closed mani-
fold M is a Lie foliation.

The proof will be a series of lemmas and observations. We choose a Rie-
mannian metic on M invariant under the natural parallelism along the leaves
of ίF (i.e., since IF admits a transverse ^-structure, it admits a transverse
0(2)-structure) and view Q as a subbundle of T(M). Let (Y1? Y2) be an e-
structure for ^ consisting of orthonormal vector fields Ύi e Γ(Q) c 3£(M),
and let (Yl9 Ϋ2) be a lifted ^-structure for # , f < e Γ(Q) C £(M).

Conlon's analysis continues with the observation that the group of covering
transformations πλ(M) maps leaves of # to leaves of # , and preserves the
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induced e-structure (Y1? Y2) on M. In particular, this defines a representation

The crucial observation for the present results is that the transverse e-struc-
ture (Y15 Y2) induces a framing of the tangent bundle of R2 (i.e., an absolute
parallelism or ^-structure for the manifold R2) by the complete vector fields
Xu i = 1,2, given by projecting the corresponding Ϋt along the leaves of # .
Thus for φ e πλ(M), p(φ) e Diίf+ (/?2) is an automorphism of the absolute par-
allelism (Xl9 X2) on R2, i.e., we have a representation p: TΓ^M) —> Aut (Xl9 X2)
< Difϊ+ (R2). The advantage of this is that the group Aut (Xl7 X2) is particu-
larly amenable to study. Indeed we have the following:

(2.3) Theorem (Kobayashi [5]). Let G be the group of automorphisms of
an absolute parallelism on the manifold M. Then G is a Lie group. Further-
more G acts freely on the manifold M, and the orbits of this action are {re-
gular) closed submanifolds of M. In particular, dim G < dim M.

Following Conlon, we observe that the kernel of the representation p may
be identified with the fundamental group of a typical leaf A e !F. We desig-
nate the group ker (p) by πx(A), and notice that the quotient group T Γ ^ M ) / ^ ^ )
may be identified with the relative homotopy set πx(M,A).

Let G be the group of automorphisms of the absolute parallelism (Xl9 X2)
on R2 induced by the ^-structure (Yu Y2) for the foliation !F. Then dim G < 2
and πλ(M,A) ^ p(πλ(M)) < G.

To prove our theorem, we must show that an ̂ -structure (Y[, Y'2) for SF can
be chosen to satisfy [Y[, Yf

2]q = CλY[ + C2Y
f

2. We divide the argument into
three cases corresponding to the possible dimensions of the group G associated
to our original choice of e-structure.

(2.4) Lemma. // dim G = 2, then !F is a Lie foliation modeled on the Lie
group G.

Proof. Since G acts freely on R2 and the orbits of this action are closed
in R2, the mapping of G into R2 which takes g e G to ^(0)(0 e R2) is a diffeo-
morphism of the underlying manifold of G onto R2. Let (Z1? Z2) be a framing
of the tangent bundle of R2 by vector fields invariant under the action of G.
Then [Z19 Z2] = C1Z1 + C2Z2 where Ct are constants of structure for G, and
since p(πx(M)) < G it follows that (Z1? Z2) is associated to an ^-structure
(Yί, YD for the foliation & such that [Y'19 Y'2]Q = C,Y[ + C2Y'2.

(2.5) Lemma. // dim G = 0, then there is a smooth fibration s : M —> T2,
and !F is the foliation of M by the fibers of s. In particular, 3F is a Lie foli-
ation modeled on the Lie group R2.

Proof. A foliation given by the fibers of a fibration onto a Lie group is
always a Lie foliation modeled on the universal covering group. Since T2 is
the only compact parallelizable 2-manifold, by (4.4) of [1] it suffices to show
SF has a closed leaf.

Since the orbits of G and hence of p(πx{M)) are closed regular 0-dimensional
submanifolds of R2, the union of all leaves of <# covering a particular leaf A
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of 3F is a closed regular submanifold of M. Hence the leaf A is proper, and
A is closed by [1, (4.2)]. q.e.d.

To complete the proof of (2.2) we may now assume that dim G = 1. For
this case, the proof will be accomplished by a series of lemmas.

Let Go be the connected component of the identity in G, and let X € £(R2)
be the complete vector field that generates the action of Go on R2. Let < , )
be the Riemannian metric on R2 for which (Xλ, X2) is an orthonormal frame,
and let X1 <ε 3i(R2) be the unit normal to X with respect to <(, > such that
(X£,XP) determines the same orientation as (Xlp,X2p).

(2.6) Lemma. X1 is invariant under the action of G on R2.
Proof. Since Go is a 1-dimensional normal subgroup of G and X is a basis

of the Lie algebra of Go, for g e G we have ad (g)X = fg-X for some 0 Φ fg

e R. It follows that the diffeomorphism ψg satisfies φg*pXp = fg-Xψg{v).
Since ψg preserves the fields Xλ and X2, it preserves the orientation of R2

determined by (Xl9 X2). Since for p e R2 at least one of (Xp, Xlp) or (Xp, X2p)
is a framing of TP(R2), it follows that /̂  > 0 for all g s G. Hence (^*PZ^-,
Z ^ ( p ) ) determines the same orientation as (X^g{p),Xψg{p)).

The lemma follows from the definition of X1 and the observation that φg

preserves the metric < , ) .
(2.7) Corollary. X 1 w complete as a vector field on R2.
Proof. By definition, X1 is a nowhere zero section of the normal bundle

of the codimension-one foliation J% of R2 given by the orbits of the action
of Go. Since XL is invariant under the action of G, it is invariant under the
action of Go, and hence is parallel along the leaves of J%.

Since p(πλ(M)) is a subgroup of G, it acts on R2 as a group of difϊeomor-
phisms preserving the foliation J% and the field XL. Hence the codimension-
one foliation p~ι(JF<ύ of M (where p is the projection p: M —> i?2) and the
field p - ^ Z 1 ) (i.e., p - ^ Z 1 ) e Γ(Q) and p^ίp-^Z 1 )) = Z x ) are invariant un-
der the action of πγ(M) on M. This defines a codimension-one ^-foliation
# ( = ^(p'^J^o))) of ^ which is integral to the foliation 3F (i.e., the leaves
of J^ are tangent to the leaves of jF) and whose e-structure (π^(p'ι(Xλ))) is
carried to the field XL via lifting to M and projection along the leaves of # .
In particular, X1 is a complete vector field on R2.

(2.8) Corollary. There is a system of coordinates (x, y) on R2 such that
d/dx = X1 and 3/dy = X.

Proof. X1 and X are complete everywhere linearly independent vector
fields. By (2.6), [X, X1] = 0, hence they are coordinate vector fields.

q.e.d.
Notice that with respect to this coordinate system, the action of Go on R2 is

given by translation in the y-direction.
(2.9) Lemma. G/Go^ Z.
Proof. G/Go acts freely on R1(= G0/R2) as a group of automorphisms of

the Lie group structure on Rι given by projecting the vector field X1 along
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the leaves of J v Hence G/Go is realized as a subgroup of the Lie group R.
Since the orbits of G are closed in R\ it follows that the orbits of G/Go

are closed in R1 and hence that G/Go ^ Z r , r = 0 or 1.
Since M is compact and p: M -> R2 induces a continuous map p: M =

τr1(M)\M-^ /o(ττ1(M))\i?2, we conclude that /o(τr1(M))\i?2 is compact. The in-
clusion of ^(^(M)) into G induces a continuous map p{πλ{M))\R2 —• G\i?2.
Hence G\i?2 is compact.

Since G\J?2 ^ (G/G0)\(G0\/?2) ^ (G/G0)\R\ G/Go is nontrivial. Hence
G/Go = Z. q.e.d.

By replacing XL by some constant multiple cX1 we can assume that the
action of a generator g e G/GQ on Rι ^ G0\/?2 is given by g(x) = * + 1.

(2.10) Lemma. G is a semi-direct product of R by Z(G = R XφZ). More
precisely, G ^ {(t, ή)\t e R,neZ} with group operation given by (tl9 nλ) o (t2, n2)
= (tι + anit2, nx + n2) where a =/= 0 is a real number.

Proof. The lemma follows easily from the exact sequence of Lie groups :

0 > R(^ G0)-^G-U Z(9Z GjG,) > 0.
Let g e G/Go be a generator and choose g e G such that j(g) = g. Then

λ: Z -+ G given by λ(n) = gn splits the exact sequence and is a Lie group
homomorphism. Since R = Go is a normal subgroup of G, we can define a
homomorphism ψ : Z —> Aut (R) by ^(π): 11-> gntg~n. By identifying Aut (1?)
with the multiplicative group of real numbers, we find some a ψ 0 such that
φ(l) is multiplication by a.

It follows that ψ: R χφZ —>G defined by ψ(t, n) = tgn is a Lie group iso-
morphism.

(2.11) Lemma. For (t,n) <= G ^ R XΨZ and (x, y) the coordinate system
of (2.8), φ(t,n)(χ9 y) = (x + n> a7ly + t + cn) where cn is a constant depending
on n and the above choice of g.

Proof. We have already noted that φitt0)(x, y) = (x,y + t). Let c(x) be the
function defined by φi0ιl)(x9 0) = (g(x), c(x)) = (x + 1, c(x)). Since d/dx = XL

is invariant under the action of G, it follows that c(x) is the constant function
d Then

P ( o , i ) C * > y ) = ^ ( O . D ^ y . O ) ^ 0 ) = ^ ( α 2 / , θ ) ^ ( o , i ) U ? 0 ) = ( ^ + 1 , ^ + ^ 1 ) *

^ ( 0 f n ) ( ^ ^ ) = P ( 0 . n - i > ( * + l » ^ + C l ) = * * *

= (x + n, any + α^-1^ + an~2cλ + . . . + Cl)

= (x + n, any + c j .

The formula follows from writing φit>n) = ^(ί)0) °̂ (o,n) q.e.d.
We can now compute ^ ^ ( ^ ( d / d y ^ ^ ) = αnO/3y)so(ίfn)(U,y)). Recall

that from (2.6) we had written φg*pXp = fgXΨg(P) where ^ > 0, hence a > 0
and we can define the field ax(d/dy).

Let Zx = XL = d/dx and Z2 = flx(a/ay). Then Zx and Z2 are everywhere
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linearly independent complete vector fields on R2, which are invariant under
the action of G. Since piπ^M)) < G, the absolute parallelism (Z1? Z2) on R2

is associated to an ^-structure (Yί, Yζ) for &. Finally since [Z19 Z2] = log (ά)Z19

it follows that [Yϊ, Y'2]Q = log (a)Y[. This completes the proof of (2.2).
(2.12) Corollary. Let ^ be a codimension-two e-joliation of a closed

manifold M. Then SF is defined by a 2-form ω = ωλ Λ ω2 such that either
dωx = 0 = dω2 or dωx = ωλ Λ ω2 and dω2 = 0.

Proof. There are only two simply connected 2-dimensional Lie groups,
R2 and the 2-dimensional affine group 21.

3. An example of a Lie foliation modeled on the affine group SI

In [1], Conlon had remarked that a codimension-two ^-foliation which ad-
mits a closed leaf is a Lie foliation modeled on the Lie group R2 (in Conlon's
terminology, a foliation with a "strong transverse ^-structure")- In addition,
assuming πλ(M, A) was abelian, he showed that a codimension-two e-foliation
of a closed manifold M always admits a C° strong transverse ^-structure (i.e.,
there exists an 2?2-cocycle of class C° representing the foliation such that the
gaβ's are restrictions of translations in R2).

Notice that for a codimension-two Lie foliation of a closed manifold M,
modeled on the Lie group G, we have realized πλ(M, A) as a subgroup of G
such that the space πλ(M, A)\G is compact. Since G is either R2 or the affine
group 21, and since 21 does not contain an abelian subgroup which compactifies
it, we have the following corollary of (2.2).

(3.1) Corollary. A codimension-two e-folίation of a closed manifold M is
a Lie foliation modeled in the Lie group R2 if and only if π^M, A) is abelian.

The loss of differentiability in Conlon's approach resulted from applications
of a theorem of Sacksteder where one must introduce a possibly new diίϊer-
entiable structure on the manifold.

Conlon also conjectured that every codimension-two e-foliation of a closed
manifold M admits a strong transverse ^-structure and noted that a codimen-
sion-two ^-foliation for which the group πλ(M, A) was not abelian would give
a counterexample to this conjecture. By our present results, such a foliation
would be a Lie foliation modeled on the Lie group 2ί. We have the following
example.

Let φ: T2 —> T2 be the diffeomorphism induced by the linear mapping

φ: R2 —> R2 given by multiplication by the matrix (- A, and let M3 be the

manifold Γ x [0, l]/(p, 0) ~ (<p(p), 1). Then R* = M3 and ^(M 3 ) is the group
of diffeomorphisms generated by
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and

Let X,Ϋ,Ze Xtfp) be given by

v> _ /3 + V T y y V T - l e , d \
V 2 M 2 "97 + ^Γ/ '

Then the fields X, Ϋ and Z are everywhere linearly independent and are in-
variant under the action of π^M). Hence the fields X — π*X, Y = π^Ϋ and
Z = π^Z e 36(M), (where π: R* —> M3 is the projection), are well defined.

Let !F be the codimension-two foliation of M3 given by integral curves to
the vector field X. We compute [X, Y] = [π+X, π*Y] = π*[X, Ϋ] = 0 and

and conclude that (Y, Z) is an ^-structure for !F. Furthermore since

^ is a Lie foliation modeled on SI.
For the coordinates

on R\= M3), # is the foliation of R3 by lines parallel to the x'-axis QM ^
R\xΊ X R\y>,zΊ as in (2.1)), and the induced action of π^M3) on R\y,,zΊ is
given by

and
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That is,ττ χ(M) ^ TΓ^M, ,4) ^ p(πx(M)) = Z2 XΨ Z 1 where ψ(l) is multiplication
by ((3 - VT)/2).

Since Y e Γ ( β ) is parallel along the leaves of &, the bundle E 0 span (Y)
is the tangent bundle of a codimension-one foliation ^ F of M.

It is interesting to note that in the example the codimension-one foliation
^ γ is an ^-foliation of M3 (it is the foliation of M3 by the fibers of a bundle
T2 <=—> M3 -> S1). However the codimension-one foliation <Fz admits a trans-
verse //-structure where H is a discrete subgroup of GL(1), but does not ad-
mit a transverse ^-structure. Indeed E. Fedida [3] points out that this foliation
has every leaf dense in M3, but not all leaves are diίϊeomorphic—some leaves
are diίϊeomorphic to R2 and some to S1 X R1.

4. A structure theorem for codimension-two e-foliations

Let ^ be a codimension-two ^-foliation of the closed manifold M. Then
the lifted foliation £ of M is the foliation of M by the fibers of a fibration
p: M -> G (G = R2 or §ί). To study a leaf A e^, we study the orbit of a
leaf A e ^ covering A under the action of π^M). This is just the inverse
image under p of the orbit of a point g e G under left translation by elements
of the subgroup πλ(M, A) < G. In particular, the closure A in M of a leaf
A e ίF corresponds to an orbit of the closed subgroup πλ(M, A) < G.

If the Lie group πx(M9 A) is 2-dimensional, then πι(M9 A) = G and the or-
bits of TΓiCM, ̂ 4) are dense in G, and it follows that the leaves of IF are dense
in M.

If πλ(M, A) is O-dimensional, then πx{M, A) = TΓ^M, ^4) and it follows as
in (2.5) that every leaf of ^ is closed, and !F is the foliation of M by fibers
of a smooth fibration s: M —• Γ2. In this case TΓ^M, 4̂) = Z 2 .

If π^M^A) is 1-dimensional, then the arguments of (2.10) show that

7Γi(M, A) ^ R χφ Z. Furthermore, each leaf L of the codimension-one e-foli-
ation # of M in the proof of (2.7) is closed in M and is itself e-foliated (in
codimension one) by the leaves of &. Then by Reeb's theorem W is the foli-
ation of M by fibers of a smooth fibration s: M —> S1 and the group π^M, L)
^ Z 1 . Each leaf v4 € ^ is dense in a leaf LeF and πx(L, ̂ 4) ^ Zk, k > 2.
It follows that πλ(M, A) ^ Z fc X^ Z 1 .

We have the following theorem.
(4.1) Theorem. Let ^ be a codimension-two e-foliation of a closed mani-

fold M. Then one of the following holds:
( i ) every leaf is closed and is the fiber of a smooth fibration s: M —> T2

and the group πλ(M, A) = Z 2 ,
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(ii) the closure of every leaf is a fiber of a smooth fibration s: M —• S1

and the group πλ(M, A) ^ Zk Xψ Z1, k > 2,
(iii) every leaf is dense.

Remark. If & is a Lie foliation modeled on R2, then πγ(M, A) = Zk,
k > 2. If IF is a Lie foliation modeled on 21, then we can choose an ^-struc-
ture (Yl9 Y2) e Γ(Q) c 36(M) such that [Yί9 Y2]Q = Yλ. In particular &Yl is
a codimension-one e-folation of M, and for L <= J ^ F l we have πλ(M, A) =
πx(L,A) χφπι(M,L). For case (iii) of (4.1), we have πλ(M,A) = πx(JL9A) Xψ

Zk, k > 2 where πx(L,A) is a torsion free abelian group. We do not know
if πx(L, A) is necessarily finitely generated, or indeed if there exists a Lie foli-
ation modeled on 21 of a closed manifold with every leaf dense.

We also remark that Conlon had proven a C° version of (4.1) under the as-
sumption that πx{M,A) was abelian, [1, (4.5)], and that (4.1) is a special
case of a theorem of Fedida on the structure of Lie foliations [3].

Added in proof. K. M. de Cesare [On transversely parallelizable, codi-
mension-two foliations, preprint] has announced that a Lie foliation modelled
on the Lie group of a closed manifold cannot admit a dense leaf and has stated
a refinement of Theorem (4.1). We also remark that P. Molino [Etude des
feuilletages transversalement complets et applications, Ann. Sci. Ecole Norm.
Sup., to appear] has stated a similar structure theorem for codimension-two
e-foliations as a particular case of a structure theorem for transversally com-
plete foliations.

5. Tϊschler's theorem and some corollaries

In this section, we use (2.12) to draw some immediate but pleasant corol-
laries of the celebrated theorem of D. Tischler.

(5.1) Theorem (Tischler [8]). Let M be a closed manifold. Suppose M ad-
mits m linearly independent nonvanishing closed 1-forms. Then M is a fiber
bundle over Tm.

(5.2) Corollary. // M supports a codimension-two e-folίation, then M is a
fiber bundle over S1. In particular dimΛ Hι(M, R) > 1.

(5.3) Corollary. M supports a Lie foliation modeled on R2 if and only if
M is a fiber bundle over T2. In particular dimΛ Hι(M, R) > 2.

Tischler also shows that a codimension-one ^-foliation of a compact mani-
fold M with dimΛ H\M, R) = 1 must have every leaf closed [8, Theorem 2].

Since a codimension-two e-foliation is always tangent to a codimension-one
e-foliation, we have

(5.4) Corollary. // M supports a codimension-two e-foliatiotion 3F and
dimΛ Hι{M, R) = 1, then £F is a Lie foliation modeled on 2ί, and the closure
of every leaf of 3F is a fiber of a smooth fibration s: M —• S1.

Notice also in this case, the fiber F of the above fibration is itself ^-foliated
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in codimension one, hence by (5.1) there is a fibration p: F —> Sι but the
manifold M does not fiber over T2.

6. Codimension-two ^-foliations of 3-manifolds

Let M3 be a closed oriented 3-dimensional manifold, and J^ a codimension-
two e-foliation of M3.

(6.1) Proposition. // no leaf of ^ is closed, then M3 is a T2-bundle over
S\ and πλ(M3) is the semi-direct product of Z2 by Z1.

Proof. Since no leaf of 3F is closed, every leaf is diffeomorphic to Rι and
πλ(M3) ^ πλ(M3, A). In particular πλ(M3) is a subgroup of either R2 or 21.

By (5.1) there is a fibration p: M3 -> Sι. The fiber F is a closed oriented
surface hence is determined by its genus. From the exact homotopy sequence
for fibrations we have 0 -^ πx(F) —> π^M3) -+ πλ(Sι) —> 0. Hence TΓ^F) is iso-
morphic to a subgroup of either R2 or SI. In particular the commutator sub-
group of πλ(F) is abelian. From the classification of the fundamental groups
of surfaces, it follows that F is a surface of genus < 1. Since M3 = R3, F Φ
S2. Hence F = T2 and we have the exact sequence

0 -> Z2(= πx(T2)) -> π,(M3) — Z ( = TΓ^^1)) -^ 0 . q.e.d.

The following is a special case of [2, Corollary 4].
(6.2) Corollary. // π^M3) is abelian and no leaf of SF is closed, then M3

= T3.
Proof. Since IF is a Lie foliation modeled on R2, by (5.3) we have a fi-

bration S1 —> M3 —> T2. By a standard spectral sequence argument we conclude
that this bundle is nontrivial if and only if rank H\M3, Z) = 2. Since by (6.1),
πλ(M3) = Z 3 = H^M 3, Z) it follows that M3 = T3.

(6.3) Corollary. // π^M3) is nonabelian and no leaf of 3F is closed, then
rank Hι(M3, Z) = 1.

Proof. We have 0 > Z2 - ^ πx(M3) - ^ Z > 0 and TΓ^M3) < 21.
Write 21 = {(j, ί) e i?21 fo, O o (j2, ί2) = (Sί + a^s2, tλ + t2), 1 φ a > 0}. The
commutator subgroup C of TΓ^M3) is nontrivial and consists of elements of the
form (s, 0). Since C < i(Z2) and z(Z2) is abelian, it follows that i(Z2) is gene-
rated by elements (sl9 0), (s2, 0) for sl9 s2 rationally independent real numbers.

Let (s, t) <ε ^(M 3 ) be such that j(s, t) is a generator of Z, (t Φ 0). Then
^(M 3 ) is generated by (sl9 0), (s2, 0), ( ,̂ ί). Computing the commutators of the
generator we get (^(1 — a1), 0) and (s2(l — a1), 0) are rationally independent
elements of the commutator subgroup of πλ{M3) and it follows that rank
H\M3,Z)<\. q.e.d.

If & admits a closed leaf, then by [1, (4.4)] & is the foliation of M3 by
fibers of a fibration S1 c=—> M3 —> T2. In summary we have

(6.4) Proposition. Let M3 be an oriented 3-manifold, and ̂  a codimen-
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sion-two e-foliation of M3. // βι = dim^ H\M3, R), then 1 < 8X < 3 and each
of the following holds.

( i ) β1 = 1 // and only if !F is a Lie foliation modeled on% (5.4). In this
case the closure of every leaf of ^ is a fiber of a smooth fibratίon T2 <=—>
M3->Sι.

(ii) β1 = 2 if and only if !F is the foliation of M3 by fibers of a nontrίvial
boundle S1 ^—> M3 -> T2.

(ϋi) βx = 3 if and only if M3 = V.
Remark. In case (i) above, we can choose an ^-structure (Yl9 Y2) for 3F

satisfying [Yl9 Y2]Q = Yx. Then &r

Yl is the foliation of M3 by fibers of a fibra-
tion T2 <=—> M3 -^ S\ and the foliation J^ F 2 has every leaf dense in M3.

A theorem of J. Plante's [6] asserts that for M3 as above, if β^M3) < 1
and the group ^(M 3) has non-exponential growth, then every transversely
oriented foliation of M3 has a compact leaf. In our case, since J Γ

F a has no
closed leaf, it follows that π^M3) must have exponential growth.

Plante also remarks that construction of § 3 of this paper with the matrix

(1 2) r e P * a c e d by an integer matrix of determinant ± 1 whose eigenvalues

are on the unit circle but different from one yields a 3-manifold satisfying the
hypotheses of his theorem. In particular, these are T2 bundles over Sι which
do not admit codimension-two ^-foliations.
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