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GEOMETRY OF HOROSPHERES

ERNST HEINTZE & HANS-CHRISTOPH IM HOF

1. Introduction

Let M be a Hadamard manifold, i.e., a connected, simply connected, com-
plete riemannian manifold of nonpositive curvature. To be more precise, as-
sume that the sectional curvature K of M satisfies — b2<K< — a2, where
0 < a < oo and 0 < & < o o . I f p e M and z is a point at infinity (cf. Eberlein-
O'Neill [4], which we give as a general reference for Hadamard manifolds),
there exists a horosphere through p with center z. This is defined as follows:
Denote the geodesic ray from p to z by γ, and consider the geodesic spheres
through p with center γ(t), t > 0. As t goes to infinity, these spheres converge
to the horosphere. More precisely, the horospheres are the level surfaces of
the Busemann function F = limFt, where Ft is defined by Ft(p) = d(p, γ(t))
— t. In the flat case (a = b = 0), horospheres are just affine hyperplanes,
and in the case of constant negative curvature, using the Poincare model we
see that horospheres are euclidean spheres internally tangent to the boundary
sphere, minus the point of tangency. The main purpose of this paper is to
show that, to a certain extent, the geometry of horospheres in M may be
compared with that in the spaces of constant curvature — a2 and — b2, res-
pectively. We give two examples:

1. (Theorem 4.6). // jf is a horosphere and h denotes the distance in
Jf with respect to the induced metric, then for all p,q e j f

— sinh -^-d(p, q) < h(p, q) < — sinh —d(p, q) ,
a 2 b 2

where d is the distance function of M.
2. (Theorem 4.9). // γ is a geodesic tangent to a horosphere 34?, and if

p, q are the projections of γ{+ oo) onto Jή?', then
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We recall that we allow a = 0 and b = oo, corresponding to the possibili-
ties that there is only one or no curvature bound beside K < 0. In these cases
all our inequalities have to be interpreted in the obvious way, and eventually
become meaningless, e.g., h(p, q) < 2/a for a = 0.

Here we give a brief account of the content of the paper. In § 2 we prove
a comparison theorem for stable Jacobi fields, which is crucial for all the fol-
lowing estimates. Moreover, this theorem is of its own interest, especially be-
cause in contrast to former authors ([5, p. 117], [1, p. 132]) we get the opti-
mal bounds. § 3 is concerned with the C2-diίϊerentiability of Busemann func-
tions. Combining this with the comparison theorem for stable Jacobi fields,
we get estimates for the differential of the flow which moves M towards a
given point at infinity. In § 4, the main part of the paper, we formulate and
prove a series of geometric comparison theorems involving distances on horo-
spheres and their relationship to geodesies, as indicated by the examples above.

Notation. All nontrivial geodesies are assumed to have unit speed. For
p,q e M we denote by γpq the unique geodesic from p to q, and by d(p, q)
the distance between p and q. If m denotes a point different from p and q, then
$Lm(P>Φ denotes the angle in [0, TΓ] subtended by γmp(0) and γmq(0). Let
Af(oo) denote the points at infinity. If p e M and z e M(oo), there exists a
unique geodesic from p to z, denoted by γpz. Therefore the definition of angles
^CP(x9y) for /? e M and x,y e M U M(oo), p ψ x,y, makes sense.

2. Stable Jacobi fields

Definition 2.1. Let γ: [0, oo) —> M be a geodesic ray, and Y a Jacobi field
along γ. Y is said to be stable if || Y(0|| is bounded for t > 0.

Lemma 2.2 Let γ: [0, oo) —> M be a geodesic ray, and let v e Mp, p =
γ(0). Then there existis a unique stable Jacobi field Y along γ with Y(0) = v,
and we shall denote this stable Jacobi field by Yv.

Proof, (i) Uniqueness follows immediately from the fact that in a Hada-
mard manifold the length of a Jacobi field is a convex function.

(ii) Denote by Yn the unique Jacobi field along γ with Yn(0) = v and
Yn(n) = 0. Applying Rauch's comparison theorem to Yn — Ym (comparison
with the flat case), we get

\\Y'M - 7̂ (0)11 < i-||Yn(0 - Ym(0|| .

Now by the convexity argument above, || Ym(t) \\ is monotone decreasing in the
interval [0, m], so that

-\\v\\ , for n < m .
n
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Thus {1^(0)} is a Cauchy sequence with limit w, say. If Yυ denotes the Jacobi
field along γ with Yv(0) = v and Y'υ(0) = w, it follows immediately that Yυ,
as the limit of the Yn, is stable. This completes the proof of the lemma.

Proposition 2.3. Let Y be a perpendicular Jacobi field along the geodesic
γ: R->M with Y(0) = 0. Assume as usual that the curvature Kof M satisfies
-b2 < K < -a2. Then for 0 < t < s

sinh bt || Y(i) || sinh at

sinh bs | | Y(s) \ | sinh as

A proof, using an idea of Bishop-Crittenden [2], may be found in Im Hof-
Ruh [6]. The assumption of positively pinched curvature in [6] is not essential.
The proof may be changed in an obvious way by replacing sin and cos by sinh
and cosh, respectively. As a consequence we get

Theorem 2.4 (Comparison theorem for stable Jacobi fields). Let γ: [0, oo)
—> M be a geodesic ray, and Yv the stable Jacobi field along γ with Yv(0) =
v gM r ( 0 ), v _1_ γ(0). Then

\\v\\e-b* < \\Yυ(t)\\ < \\v\\e-at .

Proof. If Yn denotes the Jacobi field along γ with Yn(0) = v and Yn(ή)
= 0 as above, then Yn(t) —> Yv(t) for fixed t. By the last proposition (applied
to Zn(t) = Yn(n - t)), we get

sinh b(n — t) . ||Yw(ί)|| . sinh a(n — t)

sinh bn 11^(0)11 sinh an

for 0 < t < n. Thus

sinh bjn - *) < \\Yυ(i)\\ < l i m sinh a(n - t)
e-u = < < l i m ^

sinh bn ~ \\v\\ ~ n^™ ύnhan

This completes the proof.

3. Radial fields and radial flows

In this section we fix a point z e M(oo) and consider the corresponding ra-
dial field Z defined by Z(p) = fpz(0). It is said to be radial in analogy to the
radial field Zq, which is given by Zq(p) = fpq(0) for a fixed point q e M and

P Φ <I>

In the following we will strongly need that Z is continuously differentiate,
a fact which has been proved by P.Eberlein in an unpublished paper [3]. For
the convenience of the reader we give here a new proof, which is also con-
siderably shorter. It is interesting to note that L. Green [5, p. 118] could
show that actually Z is of class C2, provided FR is bounded and the curvature
is strictly ^-pinched.
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Proposition 3.1 (Eberlein [3]). Let M be a Hadamard manifold, Z the ra-
dial field in direction of ze Λf(oo), and F a Busemann junction at z. Then Z
= - g r a d / s Z is C\ and VVZ = Y'υ(0) for all v e Mp, where p e M, and Yv

is the stable Jacobi field along γpz with YΌ(0) = v.
The basic idea of the proof, going back to P. Eberlein, is to carry over

statements for radial fields in the direction of finite points to the given field Z. If
q e M, and Zq is the corresponding radial field, then we have Zq = — grad Fq,
where Fq denotes the distance to q. Now if v e Mp, an easy 2-parameter var-
iation argument shows FυZ

q = — Fv grad/7 9 = Y'ίO)1, where Y is the Jacobi
field along γpq with Y(0) = v, Y(d(p, q)) = 0, and _L denotes the component
orthogonal to fpq(O). If q is replaced by a point at infinity, Fq has to be re-
placed by the Busemann function F, and Y by the stable Jacobi field "vanish-
ing at z".

Proof. Let γ be a geodesic with 7(00) = z, and pn = γ(ri), nsN.lt Fn is
defined by Fn(p) = d(pn9 p) — n, then F = lim Fn is a Busemann function
with respect to z, and Zn = —grad Fn is the radial field in the direction of pn.
Zn is defined and C°° on M — {pn}. We will show (i) the fields Zn converge
uniformly on compact sets to Z, and (ii) for any vector field V on M the co-
variant derivatives VvZn converge uniformly on compact sets to Yv, where
Yv(p) = γ;(0) and Yv is the stable Jacobi field along γpz with Yυ(0) = v =
V(p). This proves the uniform convergence of the first and second derivatives
of the functions Fn on compact sets. Thus F is C2, gradF = lim gradF w =
- Z , Z is C\ and FυZ = -Vv grad F = - l i m Fv grad Fn = Y'υ(0).

Let ί c M b e compact and nQ e N, such that pn$K for all n > n0.
(i) Let p <Ξ K and Λ > n0. Then | | Z n - Z\\ (p) = \\fPPnφ) - tpz(0)\\ goes

to zero uniformly on K, if the angles ^p(pn,z) do so. But this is an easy
consequence of the uniform boundedness of the distances d(pn, γpz) by the
c o n s t a n t m a x {d(γ(0), p)\p € K ) .

(ii) Next, consider for p € K and n > n0

\\VvZn - Yv\\ (p) = IIF, g r adF . - Y;(0)|| = || Y^(0) - γ;(0) | | ,

where v = V(p), YPPn is the Jacobi field along γPPn with YPPn(0) = v and
YpPn(d(p, pn)) = 0, and _L denotes the component orthogonal to fPPn(O), which
also depends on n. But an easy computation shows

which goes to zero uniformly on K as « tends to infinity. Thus it is enough to
show ||Y;Pn(0) - Y;(0)|| ->0 uniformly on K. For T > 0 let Xτ

PPn be the
Jacobi field"along γpPn with ΓJPn(0) = K(p), Xτ

VPn(J) = 0, and define Xτ

pz ana-
logously. Then
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\\γ'PPn(0) - Y'M\\ < || γ^,(0) - x

+ \\XT;M -

By Rauch's comparison theorem

;Λ < 1 \\v(P)\\,

if n is sufficiently large so that d(p, pn) > T. The same argument yields
\\X%(0) - Y;(0)|| < \\V(p)\\/T. Thus the problem is reduced to show that,
for fixed Γ, the difference | | ^ n ( 0 ) - -X£(0)|| goes to zero uniformly on K,
as n tends to infinity. Using a lower curvature bound on Kτ = {p e M | d(p, /£)
< Γ} it is clear that d(qn(p), q(p)) -> 0 uniformly on ϋC, where <?„(/?) = γPPn(T),
q(p) = γpz(T). By the differentiable dependence of Jacobi fields and their de-
rivatives on the boundary values, the result now follows.

The radial flow. Now we want to study the flow generated by the vector
field Z, which we call the radial flow (with respect to a fixed z e M(oo)) and
denote by ψ or {ψt}. Since the geodesies going to z are the integral curves of
Z, this vector field is obviously complete, and ψ is given by ψ = πoφo(lRχ Z):
R' x M —• M, where φ denotes the geodesic flow, and π the canonical projec-
tion. Proposition 3.1 implies immediately that ψ is C1.

The following properties of ψt^ are infinite versions of the lemma of Gauss
and the comparison theorem of Rauch.

Proposition 3.2. ( i ) If a vector u e Mp is parallel to Z(p), then ψt%(u)
is parallel to Z(ψt(p)), and | | ^ i H i (w) | | = \\u\\.

(ii) // a vector v e Mp is orthogonal to Z(p), then ψt*(y) is orthogonal to
Z(ψt(p)), and the following inequalities hold

\\v\\e-bt<Πt*(v)\\<\\v\\e-*' fort>0 .

Proof, (i) It is enough to show ψίsiί(Z(p)) == Z(ψt(p))9 but this is true,
since the geodesies going to z are the integral curves of Z.

(ii) We recall that Z = — grad F, where F is a Busemann function at z,
and that the horospheres centered at z are the level surfaces of F. Therefore
the complements M^ = {v e Mp\v ±_ Z(p)} are the tangent spaces of the ho-
rospheres, and ψt maps horospheres onto parallel horospheres. This implies
the first part of (ii). In order to prove the inequalities, we now compute ψt%(v)
for vεMp explicitely. By definition ψt*(v) = ^ o ^ o Z ^ ) . We use the
identification TSM ^SMφTMφTM given by πs X π* X K, where SM de-
notes the unit tangent bundle, TΓ̂  : TSM —> SM is the canonical projection,
π* : TSM -> TM is the differential of π: SM -> M, and K: TSM -> TM is the
connection map. Then Z*(v) = (Z(p), v, Γ^Z) = (Z(p), Yv(0), Yi(0)), where
Yυ is the stable Jacobi field along γpz with initial value Yv(0) = v, (compare
Proposition 3.1). Therefore we get φt^oZ*(y) = (Z(^Q?)), Yυ(/), Y;(/)) and
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•ψt*(v) = Yv(t). By the comparison theorem for stable Jacobi fields we con-

4. Distances on horospheres

Generalities. Since Busemann functions, and therefore horospheres, are
at least C2, the notions of distance and geodesic curves are denned with re-
spect to the induced metric. As level surfaces of a Busemann function, horo-
spheres are closed and therefore complete in particular, we always have mini-
mal geodesies joining two points. In the case of constant negative curvature
horospheres are flat, but in the other symmetric spaces of rank 1 and negative
curvature this is no longer true. In these spaces horospheres may be represent-
ed as nonabelian nilpotent Lie groups with a left invariant metric, and there-
fore have curvatures of both signs (J. Wolf [9]) and even conjugate points (J.
O'Sullivan [7]).

In the following we will estimate some distances on horospheres arising in
special geometric situations. Still assuming — b2<K<—a2,we will use as
comparison manifolds the spaces Ha and Hb of constant curvature — a2 and
— b2, respectively.

Two asymptotic geodesies. Let γ0 be a geodesic, and denote by ^f \ the
horosphere trhough γQ(t) with center ^0(°°) Obviously we have jft = ψt(^o),
where ψt is the radial flow in the direction of ^0(°°) Now consider an asymp-
totic geodesic γ19 and choose the origin γλ(0) on j ^ 0 . Then γx(t) e Jt?t, and we
can define h(t) to be the Jfrdistance of γo(t) and γx(t). As a first application
of Proposition 3.2 we give an estimate for h(f).

Propositson 4.1. For t > 0 we have

h(P)e~bt < h(t) < h(0)e~at .

Proof. Let μQ: [0,1] -> JfQ be a minimal ̂ -geodesic joining ?Ό(0) and ̂ (0).
Then μt = ψto μ0 is a curve on jft from γo(t) to γ^t), and we have

h(t) < Kμt) - Γ ||μ t\\ = Γ l l Ψ ^ o l l < e~at f llA>ll = e~ath(0) .
Jo Jo Jo

The proof of the inequality on the left hand side is similar.
Remark. Combining the above result with Theorem 4.6 below we immedi-

ately get, for d(t) = d(γo(t), γx(f)) and t > 0,

— arcsinh —h(0))e-bt < d(t) < h(0)e~at .
b 2 )

As H. Karcher remarked, this can be improved by a different method to

d(0)e~bt < d(f) < (— sinh —
\ a 2
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Two estimates for the Busemann function with geometric applications. We
consider a Busemann function F at an infinite point z. To compare F with
Busemann functions in spaces of constant curvature, we study the restriction
/ = Foγ for a given geodesic γ. While / measures the deviation of γ from a
fixed horosphere with center z, the derivative /' = (j, grad F> measures the
angle between γ and the horospheres centered at z.

In the following, fa and fb denote functions defined analogously in the spaces
Ha and Hb, respectively.

Lemma 4.2. Given that f, fa9 fb are as described above. Assume /(0) =
/α(0) = /δ(0) and f (0) = fα(0) = fδ(0). Then fa(s) < f(s) < fb(s) for s > 0
and fa(s) < f(s) < fb(s) for s e R.

Proof. For s > 0 consider the triangle Δ determined by p = γ(0), q = γ(s)
and z. The angles a = <^p(q, z) and β = <£q(p, z) satisfy cos a = —/'(0) and
cos β = f(s). Let σ be the geodesic ray from p to z, and denote by Δ(i) the
triangle determined by p, q and σ(t). The angle β(t) = ^q(p,σ(t)) converges
to β as soon as t tends to oo.

Now consider the analogous data in Ha and Hb. For sufficiently large /,
Toponogov's comparison theorem implies βa(t) > β(t) > βb(t), so that βa >
β > βb and therefore fa(s) < f(s) < fb(s). The second statement of the prop-
osition follows by integration. (If s < 0, consider the inverse geodesic γ_(s)
= γ(-s) and observe fa(s) > f(s) > fb(s)).

Lemma 4.3. Given that /, fa9 fb are as before. Assume /(0) = /α(0) = /δ(0>
and f(l) = fa(l) = h(l). Then

his) < f(s) < fa(s) for s e [0, /] .

Proof. Fix s e [0, /] and look at the triangles A1 = (f(0), γ(s), z) and Δ2 —
(^(1), γ(s), z). In one of thet riangles, say in J 1 ? the angle β at γ(s) is not smaller
than the corresponding angle βa in Ha. Suppose for the moment that β equals
βa. Then Lemma 4.2, applied to A19 implies f(s) < fa(s). This is a fortiori if

β > βa
The proof of the inequality on the left hand side is similar.
Remark. Since in the flat case f0 is linear, the above lemma gives another

proof of the convexity of F.
For the geometric applications consider triangles Δ with two vertices p, q e

M and one vertex z at infinity. Such a triangle gives rise to the following data:
/ = d(p, q), a = <£p(q, z), and β = ^ Q ( p , z). The lengths of the infinite sides
are not defined. However, we can measure their difference. We define d =•
F(q) — F(p), where F is a Busemann function at z. This (oriented) difference
is independent of the choice of F. Now we reformulate Lemmas 4.2 and 4.3
as comparison theorems for triangles with one vertex at infinity.

Proposition 4.4. Given that Δ is as described above. In the spaces Ha and
Hb there exist unique triangles Δa and Δb (up to isometries) with I = la = lh

and a = aa = ab. For these triangles we have
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da <d <db and βa < β < βb .

Proof. Existence and uniqueness of Δa and Δb are obvious.
Let γ be the geodesic ray with -(O) = p and γ(l) = q, and assume that F

is normalized such that /(0) = 0, where again / = Fo γ. Then /(/) = d, /'(/)
= cos β, and Lemma 4.2 applies.

Proposition 4.5. Given that Δ is as above. In Ha and Hb there exist unique
triangles Δa and Δb (up to ίsometries) with I = la == lb and d = da = db, and
for these triangles we have

ab <a <aa and βb < β < βa .

Proof. With the same notation as above, Lemma 4.3 implies

ft(0) < /'(0) < fα(0) and /;(/) > /'(/) > fail)

These give the estimates for a and β, since f(0) = — cos a and f (/) = cos /3.
Distances on horospheres. Our next aim is to compare the ^-distance

h(p, q) of two points p, q on a given horosphere Jf7 with their usual distance
d(p, q). If moreover p and q lie on a different horosphere 3tf"\ then their <#"-
distance /ẑ /?, ̂ r) may be different from h(p, q). However, the following theorem
gives estimates independent of the chosen horosphere.

Theorem 4.6. Assume p,q € J^ and denote their J>f-distance by h(p, q).
Then

A sinh ±d(p, q) < h{p, q)<^ sinh ±-d(p, q) .
a 2 b 2

Proof. First we prove the inequality on the left hand side. We choose in
Ha two points pa and qa lying on a horosphere ^ α , such that their jfVdis-
tance ha(pa, qa) equals Λ(p, q). Let γa: [0,1] -> Ha be the geodesic from pa

to <?α, and ̂ α : [0,1] —> ̂ fα the projection of ^α onto Jfa along the geodesies
orthogonal to Jfa. Then /(^α) = ha(pa,qa) and ^(s) = ψα(—/α(j),^α(j)),
where ψα denotes the radial flow associated with J f α, F α is the Busemann
function vanishing on jfα, and fa = Faoγa.

Now let μ: [0,1] —> Jf7 be a minima] Jf-geodesic from p to q satisfying
]|μ|| = | |^α | | , and define the curve γ: [0,1] -^ M from p to # by ^(J) =
ψ( — fa(s), μ(s)), where ψ denotes the radial flow associated with Jf\ Since

fα(s) = -fα(j) gradF α + tf*μa(s) , f(j) = -fα(j) gradF + ψίϊ|c/i(j) ,

where / — —fa(s) > 0 and F denotes the Busemann function vanishing on Jf7,
Proposition 3.2 implies HfO)!! < ||fαW||? and hence /(^) < l(γa). Now we have
d(p,q) < Kγ) < l(γa) = d(pa,qa). A computation in hyperbolic geometry
shows (cf. [8, p. 106]): ha(pa, qa) = (2/a) sinh (a/2)d(pa, qa). Therefore we get
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— sinh ^-d(p, q) < — sinh ^-d(pa, qa) = ha(pa, qa) = hip, q) .
a 2 a 2

In order to prove the other inequality we start with the geodesic γ: [0,1] —> M
from p to q and its projection μ: [0,1] —> Jf. Then /z(p, q) < l(μ), and (with
the same notation as above) γ(s) = ψ( — f(s), μis)). Now we choose two points
pb and qb in Hb lying on a horosphere Jfδ such that hb(pb, qb) = l(μ). Let
μb: [0,1] —> J^ δ be the J f &-geodesic from p δ to ς δ , and consider the curve
γb: [0,1] -+ Hb from p δ to qb defined by γb(s) = ψδ(—fis), μb(s)). As before,
Proposition 3.2 implies d(pδ, qb) < l(γb) < l(γ) = d(p, q), and therefore

Oh Oh
h(p, q) < Kμ) = hb(pb, qb) = — sinh — d(p6, ^δ) < — sinh —dip, q) .

/? 2 D 2

Projection of a geodesic onto a horosphere. Let $P be a horosphere with
center z, and F the Busemann function vanishing on 2tf. Then the projection
η: M —• jf7 along the geodesies going to z is defined by 57 = ψ o (F X lM),
where ψ is the radial flow in the direction of z. Now given a geodesic γ, we
estimate the length of its projection curve μ = ηoγ and the Jf-distance be-
tween its endpoints.

Proposition 4.7. Let ^ be a horosphere and γ a geodesic starting on Jf.
Assume β < π/2, where β denotes the angle between f(0) and gradr(0) F. De-
note by l(s) the length of μ\[0, s], and by h(s) the Jf-distance between μ(0)
= γ(0) and μ(s). Then fors>0

I f ™1 ) < h(s) < us) < I f ™1 ) .
b \ coth bs + cos β I a\ coth as + cos β /

Proof. First we prove the inequality on the right hand side. Consider the
same data as above in Ha and fix s > 0. Lemma 4.2 implies fis) > fais) and
β(s) < βai

s)> where / denotes the restriction F o ^ , and βis) the angle between
fis) and grad r ( s ) F. Now we compute | |/iθ)| | We decompose fis) into cos βis)
• grad r ( s) F and an orthogonal part fLis) of length sin βis). Then μis) = η^ifis))
= y^if1^)) = Ψt^iϊ1-^)) for t = fis). Therefore Proposition 3.2 implies \\μ(s)\\
< sin βis) e~α ' ( s ). Similarly we get \\μa(s) || = sin βa(s) e~a^a{s\ which together
with fis) > fais) and βis) < βais) yields ll/i^H < \\μa(s)\\ and, by integration,
his) < hais), where hais) is the corresponding function for Ha, as usual. Now
an easy computation in Ha gives hais) = a'1 sin β (coth as + cos /3)'1.

Next we prove the inequality on the left hand side. Consider the same data as
above in Hb, and assume his) < hbis) for a certain s > 0. By Lemma 4.2
we have /C?) < fbis). In i?6 there is a unique point gδ with Fbiqb) = fbis) and
ηbiqb) — μbihis)). Denote by γ'b the geodesic segment from μbφ) to qb, and
by sb its length. The assumption his) < /zδ(^) implies ^ < s. Now consider
the curve γ' in M lying over an ^f-geodesic from /i(0) to μis) with F o γ/ =
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Fb o fb9 and denote its length by s'. Proposition 3.2 implies (as in the proof of
Theorem 4.6) s' < sb. By its construction the curve γ' joins μ(0) to a point q
with the properties F(q) = fb(s) and η(q) = μ(s). Since f(s) < fb(s), the con-
vexity of the distance function d(μ(0), •) implies s < d(μ(0),q) < s\ which
contradicts s' < sb < s. Hence h(s) > hb(s).

From now on we assume a > 0, i.e., the curvature of M is bounded away
from zero. In this case the point μ(oo) is defined to be the intersection with
Jί? of the unique geodesic from f(oo) to z. Denote by I the length of μ, and
by h the Jf-distance between μ(0) and μ(oo).

Corollary 4.8. Assume β < π/2 as before. Then

Z? 1 + cos /3 α 1 + cos ^

Finally we look at the special case, where γ is tangent to J^. Then the en-
tire geodesic γ lies outside of Jf, and we may apply the above results to the
whole projection μ = η o γ.

Theorem 4.9. Let γ be a geodesic tangent to a horosphere 2tf. Denote by
I the length of the projection curve μ, and by h the J<?-distance between μ(— oo)
and μ ( + oo). Then

λ<h<l < A .

Proof. The inequalities 2/b < I < 2/a follow from Corollary 4.8, by ob-
serving 3̂ = 0. Here we prove h > 2/b.

For s > 0 there are points p = γ(—s_) and q = γ(s+), such that s_ + s+

= 2s and /(—s_) = f(s+). Consider the same situation in Hb, and look at the
points pb — γb( — s) and qb = γb(s). Then fb( — s) = fb(s), and Lemma 4.2 im-
plies f(s+) < fb(s) (provided s+ < s_ otherwise, we have f(—s_) < fb(—s)).
Denote by h(s) the Jf-distance between η(p) and η(q), and assume h(s) <
2hb(s).

Now choose points p'b and qb on the horosphere 3tf"b = F^if^s)), such that
the ^ δ -distance between ^δίp^) and ^δ(^δ) is Λ(^), and join pb and ^ 6 by the
geodesic segment γb. The assumption h(s) < 2hb{s) implies that the ^ - d i s t a n c e
between p'h and qb is strictly smaller than the Jf ^-distance between p δ and qb.
Therefore l(γb) = d(p'b, qb) < d(pb, qb) = 2s. Now define a curve / over an
^-geodesic from η(p) to η(q) by F o / = F δ o /6. As in the proof of the pre-
vious proposition we have /(/) < l(γb). Denote the endpoints of / by pr and
q'. Since η{p') = η(p), η(q') = v(q), and F(p7) = FfaO = / 6 ( J ) > / ( J + ) = F(p)
= F(q), we get 2s = d(p9 q) < d(p', qf) < l(r

;). This contradicts %') < l(/b)
< 2s hence A(5 ) > 2hb(s) = 2 (Z? coth fo)"1, according to Proposition 4.7.
Passing to the limit we get h > 2/b.

As an application of Theorem 4.9 we give the following example. Let T:
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M —> M be a parabolic isometry (cf. [4]) with fixed point z, and 2? a horo-
sphere with center z. Denote by hτ the Jf-displacement function of T restrict-
ed to jf.

Proposition 4.10. Assume a > 0. // inf hτ > 2/a (sup hτ < 2/fe), ί/zen
/or all x e M(oo), x φ z, the geodesic γ from x to T(x) intersects Jf (does not
intersect <#?).

Proof. Denote by σ the geodesic from x to z, and assume that σ(0) lies
on the horosphere jf09 which has center z and is tangent to γ. Then T o a joins
Ύ(x) to T(z) = z, and Γ o σ(0) lies on ^ 0 (cf. [4, p. 83]). Let Jt?t be the horo-
sphere parallel to J^o and containing the points σ(t) and Toσ(t), and denote
by hit) the Jf rdistance between these two points. According to Theorem 4.9
we have 2/b < /z(0) < 2/a, and Proposition 4.1 implies h(t) < h(0)e~at for
t > 0 and /z(ί) > h(0)e~at for ί < 0. Now for t > 0 tft does not meet γ and
/ι(ί) < /ι(0)^"αί < h(0) < 2/a, whereas for t < 0, ^f 4 intersects γ and /z(ί)
> h(0)e~at > h(0) > 2/b. This completes the proof.
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