HOMOGENEOUS CONVEX DOMAINS OF NEGATIVE SECTIONAL CURVATURE

HIROHIKO SHIMA

Let Ω be an affine homogeneous convex domain in a finite dimensional real vector space V, not containing any full straight line. Then we know that Ω admits an invariant volume element

$$v = Kdx^1 \wedge \cdots \wedge dx^n$$

and that the canonical bilinear form

$$D\alpha = \sum_{i,j} \frac{\partial^2 \log K}{\partial x^i \partial x^j} dx^i dx^j$$

defines an invariant Riemannian metric on Ω , [2], [6]. In this note we prove the following theorem.

Theorem. An affine homogeneous convex domain Ω not containing any full straight line has negative sectional curvature with respect to $D\alpha$ if and only if Ω is the interior of a paraboloid:

$$y^0 - \frac{1}{2} \sum_{i=1}^{n-1} (y^i)^2 > -1$$
,

where $\{y^0, y^1, \dots, y^{n-1}\}\$ is an affine coordinate system of V.

We first recall the construction of clans from homogeneous convex domains, [6]. In the following we assume that a homogeneous convex domain Ω contains the zero vector 0. Let G be a connected triangular affine Lie group which acts simply transitively on Ω , and let $\mathfrak g$ be the affine Lie algebra corresponding to G. For $X \in \mathfrak g$, we denote by f(X), q(X) the linear part and the translation vector of X respectively. Since q is a linear isomorphism of $\mathfrak g$ onto V, for each $x \in V$ there exists a unique $X_x \in \mathfrak g$ such that $q(X_x) = x$. We define an operation of multiplication in V by the formula

(1)
$$x \cdot y = f(X_x)y \quad \text{for } x, y \in V.$$

Then we have

Communicated by Y. Matsushima, June 30, 1975.

$$[L_x, L_y] = L_{x \cdot y - y \cdot x},$$

where $L_x y = x \cdot y$, or equivalently

$$(2') x \cdot (y \cdot z) - (x \cdot y) \cdot z = y \cdot (x \cdot z) - (y \cdot x) \cdot z.$$

We put

$$\alpha_0(x) = \operatorname{Tr} L_x \,,$$

and identify the tangent space of Ω at 0 with V. Then the value of $D\alpha$ at 0 gives an inner product \langle , \rangle on V such that

$$\langle x, y \rangle = \alpha_0(x \cdot y) .$$

By (2') and (4) we get

$$(5) \qquad \langle x \cdot y, z \rangle + \langle y, x \cdot z \rangle = \langle y \cdot x, z \rangle + \langle x, y \cdot z \rangle.$$

The algebra V together with the linear function α_0 is said to be a *clan* corresponding to Ω . If we define a bracket operation in V by

$$[x, y] = x \cdot y - y \cdot x ,$$

then V is a Lie algebra with respect to this bracket operation and q is a Lie algebra isomorphism of \mathfrak{g} onto V. Therefore we may identify \mathfrak{g} with V by means of q. Following Nomizu [4], we shall express the Riemannian connection, the curvature tensor and the sectional curvature of Ω in terms of its clan V; those expressions were originally obtained by Y. Matsushima (unpublished).

Proposition 1. The Riemannian connection ∇ for $D\alpha$ is given by

$$\nabla_x y = \frac{1}{2} (L_x - {}^t L_x) y ,$$

i.e., ∇_x is the skew symmetric part of L_x . Proof. According to [4], we have

$$V_x v = \frac{1}{9}[x, y] + U(x, y)$$
,

where $2\langle U(x, y), z \rangle = \langle [z, x], y \rangle + \langle x, [z, y] \rangle$. By (5), (6), we get

$$2\langle U(x,y),z\rangle = \langle z \cdot x - x \cdot z, y\rangle + \langle x, z \cdot y - y \cdot z\rangle$$

$$= \langle z \cdot x, y\rangle + \langle x, z \cdot y\rangle - \langle x \cdot z, y\rangle - \langle x, y \cdot z\rangle$$

$$= \langle x \cdot z, y\rangle + \langle z, x \cdot y\rangle - \langle x \cdot z, y\rangle - \langle x, y \cdot z\rangle$$

$$= \langle z, x \cdot y\rangle - \langle x, y \cdot z\rangle = \langle L_x y - {}^tL_y x, z\rangle.$$

Hence it follows that

$$U(x, y) = \frac{1}{2}(L_x y - {}^{t}L_y x) = \frac{1}{2}(L_y x - {}^{t}L_x y)$$
,

so that

$$\nabla_x y = \frac{1}{2}(L_x y - L_y x) + \frac{1}{2}(L_y x - {}^t L_x y) = \frac{1}{2}(L_x - {}^t L_x) y$$
.

Proposition 2. Let S_x be the symmetric part of L_x , i.e., let $S_x = \frac{1}{2}(L_x + {}^tL_x)$. Then we have

$$(i) S_x y = S_y x,$$

and the curvature tensor R and the sectional curvature k are given by

(ii)
$$R(x, y) = -[S_x, S_y],$$

(iii)
$$k(x, y) = \frac{\|S_x y\|^2 - \langle S_x x, S_y y \rangle}{\|x\|^2 \|y\|^2 - \langle x, y \rangle^2},$$

where $||x|| = \sqrt{\langle x, x \rangle}$.

Proof. (i) is equivalent to (5). In fact we have

$$2\langle S_x y, z \rangle = \langle (L_x + {}^tL_x)y, z \rangle = \langle x \cdot y, z \rangle + \langle y, x \cdot z \rangle = \langle y \cdot x, z \rangle + \langle x, y \cdot z \rangle = \langle (L_y + {}^tL_y)x, z \rangle = 2\langle S_y x, z \rangle.$$

Since $R(x, y) = [\nabla_x, \nabla_y] - \nabla_{[x,y]}$, by Proposition 1, (2) and (6) we get

$$\begin{split} R(x,y) &= \tfrac{1}{4}[L_x - {}^tL_x, L_y - {}^tL_y] - \tfrac{1}{2}(L_{[x,y]} - {}^tL_{[x,y]}) \\ &= \tfrac{1}{4}\{[L_x, L_y] - [L_x, {}^tL_y] - [{}^tL_x, L_y] \\ &\quad + [{}^tL_x, {}^tL_y] - 2[L_x, L_y] + 2{}^t[L_x, L_y]\} \\ &= -\tfrac{1}{4}[L_x + {}^tL_x, L_y + {}^tL_y] = -[S_x, S_y] \; . \end{split}$$

From (i), (ii) we obtain

$$\langle R(x, y)y, x \rangle = \langle -[S_x, S_y]y, x \rangle = \langle -S_xS_yy + S_yS_xy, x \rangle$$

= $\langle S_xy, S_yx \rangle - \langle S_yy, S_xx \rangle = ||S_xy||^2 - \langle S_xx, S_yy \rangle$.

which together with $k(x, y) = \frac{\langle R(x, y)y, x \rangle}{\|x\|^2 \|y\|^2 - \langle x, y \rangle}$ gives (iii).

A clan V is said to be elementary if V satisfies the following conditions:

(E.1)
$$V = \{u\} + P$$
 (direct sum of vector spaces),

$$(E.2) u \cdot u = u , u \neq 0 ,$$

(E.3)
$$u \cdot p = \frac{1}{2}p$$
 and $p \cdot u = 0$ for $p \in P$,

(E.4)
$$p \cdot q = \Phi(p, q)u$$
 for $p, q \in P$,

where Φ is a positive definite symmetric bilinear form on P.

The domain Ω corresponding to an elementary clan is the interior of a paraboloid (cf. [5], [6]):

$$\Omega = \{au + p; a - \frac{1}{2}\Phi(p, p) > -1 \text{ for } a \in \mathbb{R}, p \in P\}$$
.

To prove our theorem, therefore, it suffices to show

Theorem. Let V be a clan. Then the following conditions are equivalent:

- (i) The sectional curvature k < 0.
- (ii) V is an elementary clan.

Proof. We first prove that (i) implies (ii). Since V is a clan, there exists a nonzero element $u \in V$ such that (cf. [5])

$$(7) u \cdot u = u ,$$

$$(8) V \cdot \{u\} \subset \{u\} ,$$

and moreover putting $P = \{ p \in V ; p \cdot u = 0 \}$ we have:

(9)
$$V = \{u\} + P$$
 (orthogonal decomposition),

(10) L_u leaves P invariant, and the eigenvalues of L_u on P=0 or $\frac{1}{2}$.

Let p be an element in P such that $L_u p = 0$. By (7), (8) and (9) we obtain

$$\langle S_u u, q \rangle = \frac{1}{2} \langle (L_u + {}^t L_u) u, q \rangle = \frac{1}{2} \langle u, q \rangle + \frac{1}{2} \langle u, u \cdot q \rangle = 0$$

for all $q \in P$, so that $S_u u \in \{u\}$. Put $S_u u = \lambda u$ $(\lambda \in \mathbb{R})$. Then it follows from Proposition 2(i) that

$$\langle S_u u, S_p p \rangle = \langle \lambda u, S_p p \rangle = \lambda \langle S_p u, p \rangle = \lambda \langle S_u p, p \rangle = \lambda \langle u \cdot p, p \rangle = 0$$
.

Therefore by Proposition 2 (iii) we have

$$k(u, p)(\|u\|^2 \|p\|^2 - \langle u, p \rangle^2) = \|S_u p\|^2 - \langle S_u u, S_p p \rangle = \|S_u p\|^2 \ge 0$$
.

Since k < 0, we have p = 0. Hence it follows from (10) that the eigenvalues of L_u on P are equal to $\frac{1}{2}$. By [5] this means that

(11)
$$p \cdot q = \Phi(p, q)u \quad \text{for } p, q \in P,$$

where Φ is a positive definite symmetric bilinear form on P. Since $\langle x, u \rangle = \alpha_0(x)$ for all $x \in V$, u is the principal idempotent of V and $V = \{u\} + P$ is the principal decomposition of V, [6]. Therefore V is an elementary clan.

Conversely we shall prove that (i) follows from (ii). Let $u_0 = \frac{1}{\sqrt{\alpha_0(u)}}u$, p_1, \dots, p_{n-1} be an orthonormal basis of V such that $p_i \in P$. Then we have

(12)
$$u_{0} \cdot u_{0} = \frac{1}{\sqrt{\alpha_{0}(u)}} u_{0} , \qquad p_{i} \cdot p_{j} = \frac{\delta_{ij}}{\sqrt{\alpha_{0}(u)}} u_{0} ,$$

$$u_{0} \cdot p_{i} = \frac{1}{2\sqrt{\alpha_{0}(u)}} p_{i} , \qquad p_{i} \cdot u_{0} = 0 ,$$

 δ_{ij} being Kronecker's delta. Let $x = \lambda_0 u_0 + \sum_{i=1}^{n-1} \lambda_i p_i$ and $y = \mu_0 u_0 + \sum_{i=1}^{n-1} \mu_i p_i$ be elements in V where $\lambda_j, \mu_j \in \mathbf{R}$. By (12) we get

(13)
$$x \cdot y = \frac{\lambda_0 \mu_0 + \sum_{i=1}^{n-1} \lambda_i \mu_i}{\sqrt{\alpha_0(u)}} u_0 + \sum_{i=1}^{n-1} \frac{\lambda_0 \mu_i}{2\sqrt{\alpha_0(u)}} p_i ,$$

and therefore

$$\langle S_{x}y, u_{0}\rangle = \left\langle \frac{1}{2}(L_{x} + {}^{t}L_{x})y, u_{0} \right\rangle = \frac{1}{2}\langle x \cdot y, u_{0}\rangle + \frac{1}{2}\langle y, x \cdot u_{0}\rangle$$

$$= \frac{1}{2} \left\langle \frac{\lambda_{0}\mu_{0} + \sum_{i=1}^{n-1} \lambda_{i}\mu_{i}}{\sqrt{\alpha_{0}(u)}} u_{0} + \sum_{i=1}^{n-1} \frac{\lambda_{0}\mu_{i}}{2\sqrt{\alpha_{0}(u)}} p_{i}, u_{0} \right\rangle$$

$$+ \frac{1}{2} \left\langle \mu_{0}u_{0} + \sum_{i=1}^{n-1} \mu_{i}p_{i}, \frac{\lambda_{0}}{\sqrt{\alpha_{0}(u)}} u_{0} \right\rangle$$

$$= \frac{1}{2\sqrt{\alpha_{0}(u)}} \left(2\lambda_{0}\mu_{0} + \sum_{i=1}^{n-1} \lambda_{i}\mu_{i} \right),$$

$$\langle S_{x}y, p_{k}\rangle = \left\langle \frac{1}{2}(L_{x} + {}^{t}L_{x})y, p_{k} \right\rangle = \frac{1}{2} \langle x \cdot y, p_{k}\rangle + \frac{1}{2} \langle y, x \cdot p_{k}\rangle$$

$$= \frac{1}{2} \left\langle \frac{\lambda_{0}\mu_{0} + \sum_{i=1}^{n-1} \lambda_{i}\mu_{i}}{\sqrt{\alpha_{0}(u)}} u_{0} + \sum_{i=1}^{n-1} \frac{\lambda_{0}\mu_{i}}{2\sqrt{\alpha_{0}(u)}} p_{i}, p_{k} \right\rangle$$

$$+ \frac{1}{2} \left\langle \mu_{0}u_{0} + \sum_{i=1}^{n-1} \mu_{i}p_{i}, \frac{\lambda_{k}}{\sqrt{\alpha_{0}(u)}} u_{0} + \frac{\lambda_{0}}{2\sqrt{\alpha_{0}(u)}} p_{k} \right\rangle$$

$$= \frac{\lambda_{0}\mu_{k} + \mu_{0}\lambda_{k}}{2\sqrt{\alpha_{0}(u)}}.$$

Thus

(14)
$$S_{x}y = \frac{1}{2\sqrt{\alpha_{0}(u)}} \left\{ \left(2\lambda_{0}\mu_{0} + \sum_{i=1}^{n-1} \lambda_{i}\mu_{i} \right) u_{0} + \sum_{i=1}^{n-1} (\lambda_{0}u_{i} + \mu_{0}\lambda_{i}) p_{i} \right\},$$

from which it follows that

$$\|S_x y\|^2 - \langle S_x x, S_y y \rangle$$

= $\frac{1}{4\alpha_0(u)} \Big\{ \Big(2\lambda_0 \mu_0 + \sum_{i=1}^{n-1} \lambda_i \mu_i \Big)^2 + \sum_{i=1}^{n-1} (\lambda_0 \mu_i + \mu_0 \lambda_i)^2 \Big\}$

(15)
$$-\left(2\lambda_0^2 + \sum_{i=1}^{n-1} \lambda_i^2\right) \left(2\mu_0^2 + \sum_{i=1}^{n-1} \mu_i^2\right) - \sum_{i=1}^{n-1} 4\lambda_0 \mu_0 \lambda_i \mu_i$$

$$= -\frac{1}{4\alpha_0(u)} \left\{ \left(\sum_{i=1}^{n-1} \lambda_i^2\right) \left(\sum_{i=1}^{n-1} \mu_i^2\right) - \left(\sum_{i=1}^{n-1} \lambda_i \mu_i\right)^2 + \sum_{i=1}^{n-1} (\lambda_0 \mu_i - \mu_0 \lambda_i)^2 \right\}.$$

Therefore, if x and y are linearly independent, then we have k(x, y) < 0 by Proposition 2 (iii) and Schwarz's inequality. Hence our theorem is completely proved.

References

- [1] E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974) 23-34.
- [2] J. L. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France 89 (1961) 515-533.
- [3] —, Ouverts convexes homogènes des espaces affines, Math. Z. 79 (1962) 254-259.
- [4] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954) 33-65.
- [5] H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math. 13 (1976) 213-229.
- [6] E. B. Vinberg, The theory of convex homogeneous cones, Trudy Moskov Math. Obshch. 12 (1963) 303-358; English transl., Trans. Moscow Math. Soc. 13 (1964) 340-403.

YAMAGUCHI UNIVERSITY, JAPAN