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A CLASS OF COMPLEX ANALYTIC FOLIATE MANIFOLDS
WITH RIGID STRUCTURE

IZU VAISMAN

In 1957, R. Bott [1] proved that the complex projective spaces have a rigid
complex structure. On the other hand, in 1961 Kodaira and Spencer [9] ex-
tended the deformation theory to general multifoliate complex structures and,
particularly, to complex analytic foliations. But, so far as we know, no example
of a rigid structure of this kind has been provided. It is our aim here to prove
the rigidity of a class of complex foliate manifolds which generalizes the com-
plex projective spaces. Our class contains as a particular case any product of
two complexprojective spaces.

The complex manifolds under consideration will be compact Kahlerian, the
result being obtained by the general method initiated by Bochner, which con-
sists in studying the relations between curvature and cohomology. Namely, we
shall go along the lines of Calabi-Vesentini's paper [3] to prove first a gener-
alized Nakano inequality. In connection with our previous cohomology calcu-
lations of [13], [14], this will lead to the desired results.

Some other related remarks will also be made.
1. A complex analytic foliate (c.a.f.) structure <F of complex codimension

n on a complex (n + m)-dimensional manifold V is given by an atlas {Ua za

a, zl)
(a, b, = 1, , n u, v, = n + 1, , n + m), such that on Ua Π Uβ

Φ 0 one has, besides analyticity,

(1.1) dza

β/dzu

a=O.

Then the maximal connected submanifolds which can be represented locally
by Za = const, are the leaves of ^ \ and the images φa{Ua) C Cn of the sub-
mersions <pa: Ua —> Cn defined by φa(za

ay zf) = (z«) (C is the complex line) are
called the local transverse manifolds.

The tangent vectors of the leaves define the structural subbundle F of T(V)
with local bases Zu = d\dzu

a and transition functions (dz%/dzυ

a) T(V)/F = F'
is the transversal bundle with the local bases defined by the equivalence classes
[dIdz^] and the transition functions (dza

β/dzb

a).
Generally, we shall say that the elements depending only on the leaves are

foliate and, particularly, c.a.f. For instance, /: V-+C is foliate if df/dz« =
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ϊa = 0, and it is c.a.f. if, moreover, df/dί" = 0. A differential form is
c.a.f. if it does not contain dz", dzl and has local c.a.f. coefficients. A vector
bundle on V is c.a.f. if it has c.a.f. transition functions (for instance, the trans-
versal bundle is such), etc.

Now suppose that V is hermitian with metric ft. Then the orthogonal bundle
F1 of F, which is differentially isomorphic to F', has local bases of the form

(1.2) Za = d/dza - t%(d/dzu)

(the index a of the coordinate neighborhood will be omited) and we shall use
in the sequel the bases (Zα, Zu) to express different elements on V.

The corresponding dual cobases are

(1.3) dza , θu = dzu + tu

adza ,

and the metric can be expressed by

(1.4) ds2 = habdzadzb + huvθ
uθυ .

These cobases allow us to speak of the type (pv p2, q19 q2) of a differential form
by counting in its expression the number of dza, dza, 0U, θu. One also introduces
[13], [14] the complex type which is (px + qλ,p2 + Q2) and the mixed type

(Pι,P2 + Qι + <?2)
The fundamental form of ft is

(1.5) ω = ω' + ω" ,

where

(1.6) α/ = \ihahdza A dzb , ω" = \ihuvθ
u A θv ,

and it follows that A is a Kahler metric {d<a = 0) if and only if [14]

(a) Zchab - Zahcb = 0, (d) Zuhvw - Zvhuw = 0 ,

(1.7) (b) Zuhab - hUOZJl = 0 , (e) Z e * 2 - Z β £ = 0 ,

(c) Zahuv - hWΌZj™ = 0 , (f) huvZwtl - huw2χ = 0 .

2. On the manifolds V above, we can consider the classical scalar product
and the operators *, d, δ, L, Λ, C [4], and it is important here to get decom-
positions of these operators with respect to the mixed type.

In order to avoid considerations on the supports of the forms, we shall as-
sume hereafter that the manifold V is compact.

Thus from (1.5) we have L = L' + L", where V denotes the left exterior
multiplication by ωf and has the mixed type (1,1), and similarly L" has the
mixed type (0, 2).
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The operator d has an obvious decomposition [13], [14] into three parts of
the respective mixed types (1,0), (0, 1), (2, — 1):

(2.1) d = μ + λ + v .

It is important to remark that in the Kahlerian case the condition (1.7)(e) im-
plies v = 0, whence the differential forms of a foliate Kdhler manifold are
organized by mixed types as a double cochain complex.

Next, because * is not homogeneous with respect to mixed types, we shall
introduce the operator # defined by the composition of * with the complex
conjugation. # sends forms of the mixed type (p, q) to forms of the mixed type
in — p,n + 2m — q) and it allows to write the scalar products as

(2.2) (α,j8)= f

As in the classical theory [4] it follows:

(2.3)

(2.4)

hence

•

δ

λ*

r 1 * = <
δ =

= μ* + X* + V

. - l ) e * ° # <

-m ;

* , /x*

V*

where the terms have the mixed types ( — 1,0), (0, —1), (—2,1), and in the
Kahlerian case v* = 0.

It also follows

(2.6) Λ = Λ? + Λ" , Λ = Γ 1 ^ * > A" = Γ 1 ^ ^ ,

where the terms have the mixed types (—1, —1) and (0, —2).
Finally, in order to handle with C we write down a form φ of mixed type

(p, g) as

Q

(2.7) . 9 =• Σ ψp + h.q-h 9
/ι=0

where the indices denote the complex type of the respective terms. This gives

Q

which shows that C preserves the mixed type and that
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(2.9) c 1 = {-ιy-qc .

3. Let us proceed now to the derivation of the announced generalized
Nakano inequality. We suppose here that (V, h) is a compact Kahler manifold.

We start with the following fundamental formula of Kahlerian geometry [4]:

(3.1) Λd-dΛ= -CιδC .

Using the previous decompositions and identifying the different (mixed) homo-
geneous parts of this formula we get

Proposition l On a compact Kahler foliate manifold the following relations
hold:

Λ!μ - μJV + Λ"λ - λΛ" = -C'λ^C ,

Λ"μ- μΛ" = 0 ,

Λ'λ—λΛ' = -Cλμ*C .

Our main interest will be in the last of these formulas. If we apply it to an
homogeneous form of the mixed type (p, q) and use (2.8) and (2.9), we see
that the formula becomes

(3.2) A'λ - λΛ' = -iμ* ,

which is the relation to be used here.
Consider now a c.a.f. vector bundle SonV. Then # and the operators of

(3.2) make sense on 5-valued forms by componentwise application. If S is
given a hermitian metric a = (aaβ), (a, β, - = 1, , the dimension of the
fiber of S), then the product of the 5-valued forms φ — (φa) and ψ = (ψa) is
given by

(3.3) (φ,f)= J r fl^p Λ #ψ> ,

and we shall denote by + the adjointness with respect to this product.
For the following calculations, the operator μ*+ will be needed. To obtain

it, we consider 5-valued forms φ and ψ of the mixed type (p — l,q) and
(p, q). After putting

(3.4) α > ; , r j

(3.5) Dφ*'= μφa + ω'βΛφ* ,

one gets

d{amΛr A Uβ) = cιaβDψ" A W - ( - Όp+qaaβφ
a A
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whence by integrating along V we get

(3.6) /i*+ = D .

The geometrical interpretation of D is analogous to that of the classical case
[4]. It is easy to see that ωa

β defines a connection on S which is uniquely deter-
mined by the following conditions: 1°. the connection forms are of the mixed
type (1, 0) 2°. the metric a is invariant by parallel translations "transverse"
to the leaves. (Generally, this is not the metric connection of 5). Next, the
covariant exterior derivative D with respect to this connection is just

(3.7) D = D + λ,

which gives the interpretation looked for: D is the term of the mixed type (1,0)
ofD.

From known properties of connections [4], we can write

(3.8) D2φa = fl; Λ iff ,

where

(3.9) Ωa

β = dωa

β - ωr

β Λ ωa

r = λωa

β

are the curvature forms of the previous connection and have the mixed type
(1,1). This implies D2 = 0 and

(3.10) Dλ + λD = e(Ω) ,

where e(Ω) is the operator defined by the right-hand side of formula (3.8).
Now consider also the operator λ+. The space Jf(5) = ker λ Ω ker λ+ is

called the space of λ-harmonic forms, and the desired inequality is just for such
forms. Thus for a yl-harmonic S-valued form ψ of the mixed type (p, q) we can
repeat, in our situation, the calculations of [3], which gives

0 < Φφ, Dφ) = (μ*+Dφ, φ) = i{[Λ'λ - λΛ']Dφ, φ)

= KΛ'[λD + Dλ]φ, ψ) -KΛ'Dφ, λ+φ) =' i(Λ'e(Ω)φ, ψ) .

Hence using also the adjointness of Λf and U we have
Proposition 2 {The Nakano inequality for the foliate case). If V is a compact

c.a.f Kdhler manifold and S is a c.a.f. vector bundle on V, then for any S-
valued λ-harmonic form φ one has

(3.11) i{e{Ω)φ,L'φ) > 0 ,

equality holding if and only if Dφ = 0.
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In fact, this is a generalization of the inequalities of [3], which are obtained
ifm = 0.

4. We go over now to the rigidity problem. In [9] Kodaira and Spencer
showed that the infinitesimal deformations of a c.a.f. structure !F are the ele-
ments of the cohomology space Hι(V9 Θ), where Θ is the sheaf of germs of
vector fields on V such that the corresponding infinitesimal transformations
preserve the structure J*\

Such a vector field can be expressed as

<4 » ί=ί°ΐ-+| ΐ - + ' - ^ + ' ^
and must satisfy the conditions

Lς azw J dzv I dza J 3z c dzu

for some functions A and B, or equivalently
(a) the functions ηu are analytical (dηu/dza = dηu/dzv = 0),
(b) the functions fα are c.a.f. (dξa/dzb = 3fα/3ztt = 3fα/3zω = 0).
In particular, if we take fα = 0 and ηu analytical, the previous conditions

are satisfied so that, denoting by Φ the sheaf of germs of analytic sections of
the structural bundle F, Φ is a subsheaf of Θ.

On the other hand, left ψ be the sheaf of germs of c.a.f. sections of the
transverse bundle F'. Then we have a natural projection p: Θ —> Ψ which sends
the germ defined by (4.1) to the germ defined by fα[3/3zα], where the bracket
denotes classes in F'. .

It follows quite straightforward [13], [14]:
Proposition 3. For any c.a.f. structure !F there is an associated exact

sequence of sheaves:

(4.3) 0 •φ.-E_ > e-ΪUy •O.

Corollary. // Ή\V9 Φ) = H\V, Φ) = 0, then H\V, Θ) = H\V, ¥).
It is just this corollary which we plan to use. Namely we shall give con-

ditions for the hypotheses of the corollary to hold and at the same time for the
vanishing of H\V, Ψ). This last condition will be implied by Proposition 2
above, and the first conditions will be deduced from Griffiths' generalization
of the Kodaira vanishing theorem [6]. We arrive at our class of c.a.f. structures
by examining the mentioned theorems and their possible application for the
complex projective spaces.

5. First, from the just mentioned Griffiths' theorem [6, Theorem G'] it
follows that if

(5.1) Q(ξ, rj) = (m + l)RuviJξψvψ - (Ru

u

υ - Pίj)vψ \ξ\2 ,
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is a positive definite form in both ξ and η, where i, /, , = 1, , n + m, p
is the Ricci tensor of ( F , &), R is the curvature tensor of the metric connection
of some hermitian metric of the structural bundle F, and \ξ\ is the norm of ξ
with respect to this metric, then Hq(V, Φ) = 0 for q > 0.

Thus, if F has a hermitian metric guvξ
uξv which induces on the leaves Kahler

metrics of constant nonnegative holomorphic sectional curvature (h.s.c.) and
if the curvature forms of the corresponding metric connection of F have the type
(0,0,1,1), one has

W A/ ^-uvab == K u v a w = U ,

and (just as for the Kahler manifolds of constant h.s.c. [5])

(5.3) Ruvst = \k{guvgst + gutgsυ) , (A > 0) .

This gives

(5.4) Q{ξ,η) = \{m-\

Hence, if we also ask that (V, h) has positive definite Ricci tensor, Q will be
positive definite and the corresponding cohomology conclusions hold.

Next, let us look for conditions implying H\V, ψ) = 0.
Since the transverse bundle F' is foliate, we have from our previous calcu-

lations of the cohomology spaces of a c.a.f. manifold [13], [14] that H\V, Ψ)
= j(?Ql(F') so that we must look for conditions under which every ^-harmonic
(0, l)-form vanishes.

Let g' = (g'ab) be a hermitian metric on Fr and consider the connection ωb

a

associated with g' by (3.4), for which we use the notation of § 3.
Now let us first suppose that the corresponding curvature forms Ω\ have the

type (1, 1,0,0), i.e., the curvature coefficients satisfy the conditions

(5.5) Ra\u = Ra\Ό = 0 .

From (3.9) it follows easily that this is equivalent to asking ωb

a to be foliate
forms (i.e., to have foliate, not necessarilly analytic, coeficients), which means
that ω is a projectable connection [10], i.e., ω induces connections on the local
transverse manifold of the foliation.

Next, keeping in mind the complex projective space, we are led to ask that
the connection induced by ω on any local transverse manifold be a projective
euclidian connection (which means that it has vanishing WeyΓs projective
curvature tensor [5]). By calculations similar to those of [5, pp. 206-207] one
then gets

(5.6) Ra

b

cd = —L—(Radfi* + Rcdδ
b

a)
n + 1
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on the local transverse manifold, Rad being the corresponding Ricci tensor.
Since (5.6) is clearly also valid on V, we can lower the index b by the help of
g' which, as in [5], gives

(5.7) Rabcd = R {g'adg'ch + g'abg'cd) ,
2n(n + 1)

where

(5.8) R = \g'abRab

Suppose next that the metric g' can be extended to a Kahler metric h! on V
and that we use this new metric for the definition of local bases on V. Then
it is clear that formulas (5.5), (5.7) remain valid and we shall use this h! in
(3.11).

Now let

(5.9) φ = φ%dlh + f*uθ'u + χaj'u ,

where ff are the forms playing the role of θ with respect to h\ be a ̂ -harmonic
F'-valued (0, l)-form. Put V = \ie(L) where

(5.10) L = g'abdza A dzb ,

and e denotes the left exterior multiplication. (5.10) together with (5.5), (5.7)
gives

(5.11) Ω% == R (δiL + M) ,

2n(n + 1)

where

(5.12) M = δ«cg'bddzc A dzd .

Suppose that R > 0, which is equivalent to the fact that Rab is a positive
definite tensor. Then (3.11) becomes

(5.13) (e(L)φ, e{L)ψ) + (e(M)φ, e(L)φ) < 0 .

Here the first term is obviously nonnegative. Let us prove that the same is
true of the second term. Since the scalar product of two forms can be expressed
by integrating the punctual scalar product of the respective tensors [4] we see
from (5.9), (5.10) and (5.12) that the second term of (5.13) is given by integrat-
ing along V the quantity

(5.14) g'cg^ψlφl - ψlψl + έaog'^ruΨl + g'abg'VΎutv ,
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where g'vu are the components defined by the metric h'.
The last two terms of (5.14) are obviously nonnegative. As for the others,

we see that ψ%φ\ = φlφl, which is therefore a real quantity, and that if it is
nonpositive, the whole expression (5.14) is nonnegative. If, on the contrary,
φabψb

a > 0, we consider unitrary frames, which allow us to get, for the first two
terms of (5.14),

(
Σψlψ
a,c

( / / _ l/2

Σψψή [ΣψίΦt) Σ
a,c / \b,d / a,b

where we denote φ% = φh

a. The above quantity is again nonnegative in view of
the well-known Schwartz inequality.

Hence (5.14) is nonnegative at every point of V, which implies

(e(M)φ, e(L)φ) > 0 ,

and by combining this argument with (5.13) we get

(5.15) (e{L)φ9 e(L)φ) = 0 , (e(M)φ, e(L)φ) = 0 .

Thus from the second equation of (5.15) expressed by integrating (5.14) we
get ψl — χl = 0, and from the first equation of (5.15), which is given by the
integral of

we get φa

c = 0 if n Φ 1. Hence under the mentioned conditions, there is no
nonzero harmonic F'-valued (0, l)-form and H\V,Ψ) = 0.

So, using the corollary of Proposition 3 and summing up the previous discus-
sion we have

Proposition 4. Let IF be a c.a.f structure of complex codimension different
from 1 on a compact manifold V such that the following conditions are satis-
fied : (a) V admits a Kάhler metric h of positive definite Ricci curvature tensor,
(b) V abmits a Kάhler metric h! which induces in the transverse bundle F' a
hermitian metric whose connection (3.4) defines on the local transverse mani-
folds a projectively euclidean connection with a positive definite Ricci curvature
tensor, (c) the structural bundle F admits a hermitian metric, whose curvature
forms have the type (0, 0, 1, 1) {with respect to h) and which induces on the
leaves Kάhler metrics of constant nonnegative h.s.c. Then this c.a.f structure
has no nonzero infinitesimal deformation.

6. We shall see now that one can obtain a nicer result if all the conditions
of Proposition 4 are imposed on a single Kahler metric on V. In fact, if (V, h)
is a hermitian manifold, and !F a c.a.f. structure on it, we introduced in [14]
a canonically associated connection, called the second connection of V, which
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is characterized by several geometric properties and is given, in the notation

of § 1, by

a>l = (hdbZchad)dzc , ωl = (Zuφdza + (h»ZJιutW° ,
(6-1)

ωl = ωl = 0 .

This second connection satisfies the following metric conditions:

dhab - hcbω
c

a - ha(β% = 0 (mod θu = θ* = 0) ,

dhuυ - hwvω
w

u - huwω
ι» = 0 (mod dzα = dzα = 0) .

Now from (3.4) and the first formula of (6.1) we see that h induces on the
transverse bundle (which can be differentially identified with the orthogonal
bundle FL) a metric whose connection (3.4) is just ωb

a of (6.1).
Also, if h is a Kahler metric it follows from (1.7) and the second equa-

tion of (6.2) that ώ°u of (6.1) is just the metric connection of the hermitian
metric induced by h on the structural bundle F.

Hence by Proposition 4 we get the following desired result.
Theorem. Let IF be a c.a.f. structure of complex codimension n ψ\ on a

compact manifold V. Suppose that V has a Kahler metric h of positive definite
Rίcci curvature tensor, which induces on the leaves of JF Kahler metrics of
constant positive holomorphic sectional curvature and is such that for the second
connection of V with respect to (h, ^) the following conditions hold: (a) the
structural part of this connection has curvature forms of type (0, 0, 1, 1), (b)
the transversal part of this connection induces on the local transverse mani-
folds projective euclidean connections of positive definite Ricci tensor. Then
IF has no nonzero infinitesimal deformations.

From known results about Kahler manifolds [8], it follows that for m = 0,
V is just a complex projective space so that we have a generalization of Bott's
result which has been mentioned in the introduction, and we shall see that this
is a real generalization since it covers other cases too.

Remark first that by a result of Kobayashi [7], the manifold V of the theorem
must be simply connected since it is compact Kahler and has positive definite
Ricci curvature tensor. Also, by a theorem of Bott [2] and Molino [10], some
of the Chern classes of the transverse bundle Ff must vanish. (Namely Chern h{Ff)
= 0 for h > ή).

A second remark is that condition (b) of the theorem is implied by the
condition that hab induces on the local transverse manifolds Kahler metrics of
constant positive h.s .c , in which case ωb

a is (following the first equation of
(6.2)) the corresponding metric connection. The fact that hab induces metrics
on the local transverse manifolds is obviously equivalent to

(6.3) Zuhab = 0 ,
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which means that h is a Reinhart (bundle-like) metric [11], [14]. Hence, in
view of (1.7) (b) and (e), FL is integrable in the sense of the complex Frobenius
theorem of Nirenberg [9], [14], and this implies that FL defines on V a
differentiable foliation with complex analytic M-dimensional leaves.

If, as a stronger condition, F1 is analytic, which means that tl are analytic
functions, then (1.7) (b) implies (6.3) and FL defines a c.a.f. structure ^rA-
which is complementary to &. It is simple to derive that the Kahlerian char-
acter of the metric together with the analyticity of Fx also implies that the
second connection is the Levi-Civita connection of (F, h) and induces on the
transverse bundle the metric connection of the induced metric. In this case, V
has a complex local product structure (almost product complex analytic inte-
grable structure) and, by a change of the complex coordinates, we can consider
%l = 0. Then, by (1.7), V is a decomposable Kahler manifold [8] and, by the
corresponding de-Rham decomposition theorem, V (which is compact and
simply connected) is the product of two complete Kahler manifolds of constant
positive h.s .c, i.e., V is the product of two complex projective spaces, [8].

Moreover, if on the product of two complex projective spaces we consider
the sheaf Θf of germs of the infinitesimal transformations which preserve the
complex local product structure, then the germs of & can be represented by
(4.1) where one also has dηu/dza = 0, and it follows that & is the direct sum
of two sheaves Φ' and Ψ which both behave like the sheaf Ψ of the previous
sections. Hence by the same proof we shall get Hι(V, Θf) •= 0, which means
that the considered complex local product structure has no nonzero infinitesimal
deformations. (The author was not able to find a proof of this fact which would
be essentially simpler than the proof of the previous sections). Thus we have

Proposition 5. Let V = CPm X CPn (m, n ψ 1) be a product of two com-
plex projective spaces, J be the complex structure of V, fFn be the natural
foliate structure of codimension n ^ m be the natural foliate structure of
codimension m, and $*' be the natural complex local product structure of V.
Then the structures J,3Fn,ίFm, and 8F' have no nonzero infinitesimal defor-
mations.

In fact the result was proved for J^ n , SP'm and ίFr, and for / it can be seen
to be a consequence of Lemma 4 of [3] or it can be obtained by remarking
that the cohomology of the sheaf of germs (4.1) with analytic coeficients ξa, ηu

is equal (by the classical Dolbeault-Serre theorem) to the cohomology of the
elliptic complex

where K(m) is the complex of vector valued (0, )-forms, β ( m ) is the complex
of scalar (0, )-forms on CP m , and Kw, Ωm are the similar complexes for CPn.
Then we get the desired result using the Kunneth formula for elliptic complexes
(see for instance [12]), the rigidity of the complex structure of CPm and known
results regarding the vanishing of the cohomology spaces of Ωim) for CPm [7].
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7. From the previous section, we see that it is important to know whether
a c.a. foliation admits an analytic complementary distribution. Obviously, this
happens if and only if the exact sequence of vector bundles

(7.1) 0 — * F —>T(V) >F' >0

admits an analytic splitting (then the sequence (4.3) also has an analytic split-
ting), it is known that such a splitting exists if and only if some cohomological
obstruction vanishes. This obstruction has been calculated for the general case
of an analytic subbundle of a vector bundle on V (see for instance [6]), but we
want here to express it, in our case, in a simpler manner.

Consider a c.a.f. manifold V with the notation of § 1. Even without the in-
troduction of a metric, one sees that a complementary subbundle FL of F in T(V)
can be described using local bases of the form of Za given by (1.2), where ίj
are locally defined functions. By technical calculations, one derives that on an
intersection J7β Π Uβ Φ 0 of coordinate neighborhoods one has

(7.2) a=*LKL + a**-KL.
β dza

β dzi a dza

β dzi

Then it follows that any other complementary bundle F of F is generated by
local vector fields

(7.3) Zα = d/dza - (tΐ + qΐ)(d/dzu) ,

where q% define a global section of the bundle Horn (F', F).
Now we see that a complementary analytic distribution of F exists if and

only if there are functions q% such that

(7.4) dfi = -dal .

But from (7.2) it follows that

(7.5) ωu

a = djtl

defines a global 1-form ω on V with values in Horn (F', F), which is d2-closed,
hence it gives a cohomology class w ε H\V, 0(Hom (F', F))) (in view of the
Dolbeault-Serre theorem [4]).

By (7.4) we now see that the obstruction looked for is just w. Hence we have
Proposition 6. The foliation 3F admits a complementary analytic distribu-

tion if and only if w = 0 (or ω is a d2-exact form).
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