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APPROXIMATE EIGENFUNCTIONS OF THE LAPLACIAN

J. V. RALSTON

Introduction

Let M be a compact orientable (n + l)-dimensional riemannian manifold,
and let Γ be a closed geodesic on M. We say Γ is stable if the Poincare map
associated with JΓ (this is defined in § 1) splits into a direct sum of rotations
through distinct angles θl9 , θn, 0 < θt < 2π, θt Φ 2π — θs for all i, /. Let
Δ denote the Laplace-Beltrami operator on M. Guillemin and Weinstein [5]
have recently proved the following.

Theorem I. // there is a stable closed geodesic on M of length L, then,
given any multi-index a, there are at least two eigenvalues λm of J , counted
by multiplicity, satisfying \/~ λ^ = km + 0(m~*), where km = L~\2πm +
(&i + \)θx + - - - + (an + \)θn + πp0). Here p0 = 0 or 1 and is determined
by the behavior of the Jacobi fields along Γ.

Since a rotation through an angle θ can turn into a rotation through 2π — θ
if one changes bases, there is a technical condition that determines which of
these rotations one chooses in selecting θ19 , θn in Theorem I. We omit this
here see § 2.

Guillemin and Weinstein's proof of Theorem I is based on the construction
of an isometry from L\Sι) to L\M) that approximately intertwines d2/dθ2 and
J . The isometry is a Fourier integral operator of a new type developed by
Guillemin in [4].

Our objective here is to prove Theorem I and its analogue for nonorientable
M by constructing approximate solutions um to the equations (J + k2

m)u = 0.
The functions um are probably very close to the image of {eίmθ}Z=i under the
isometry used by Guillemin and Weinstein. However, we construct them by
beginning with the ansatz of geometrical optics and using a complex phase
function ψ with Im ψ > 0 off Γ and Im ψ = 0 on Γ. The resulting um are
very small outside a tube around Γ with radius 0(ra~*). The construction is
quite explicit, expressing the um in terms of the Jacobi fields along Γ.

Our approach is derived from the work of Babich and Lazutkin [2] who used
a similar method to prove Theorem I in the case n = 1. We found the idea
which enabled us to carry out the construction for general n in the paper [6]
of Hδrmander.
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In § 4 we sketch the extension of these results to the case of a closed piece-
wise geodesic arc Γ reflected off dM at its corners. In the case that Γ consists
of two copies of a single arc invariant under reflection in dM, the functions um

are known as "bouncing ball waves". Such waves were discussed by Keller
and Rubinow in a paper [8] which' introduced the idea that closed ray paths
could be used to predict eigenvalues of the Laplacian. As in the case of a closed
geodesic, when n = 1 the results in § 4 for bouncing ball waves are due to
Lazutkin [9] and also Smith [10].

The significance of the approximate eigenfunctions um is not clear. In [1]
ArnoΓd has given an example (in the case of bouncing ball waves with n = 1)
where they approximated no true eigenf unctions of Δ. In § 5 we point out that
in all cases (even when M is not compact) the um for m large are the amplitudes
of very long-lasting standing wave vibrations of M. This observation also ap-
pears in [1].

The author is indebted to Professor Alan Weinstein for many helpful discus-
sions of this work.1

1. Description of method

We will look for approximate solutions to (Δ + kz)u = 0, which have the
form

(1.1) K = eίk^(a0(x) + ai(x)/k + - + aN(x)/kN) .

Whenψ is real-valued, (1.1) is the standard ansatz of geometrical optics. The
only novelty here is that we allow 1m ψ > 0.

In local coordinates the principal symbol of Δ has the form

P(x, ξ) = Σ 8is(x)ξtξj ,

where the line element ds2 = £ gijdxtdXj, and gίj = (gij)'1. When u has
the form (1.1), the coefficient cs of k2~seik* in (Δ + k2)u is given by

c 0 = coao = (1 - p(x, dψ))a0 ,

cx =

cs =

dξ
(x, dψ). a A + (Δψ)a0)

dx I

(x,dψ)^
dξ dx

(J^K_ 2 - iΔas_2)) + coas ,

where a_2 = a_λ = aN+1 = aN+2 = 0. To solve c0 = 0 one prescribes ψ and its
normal derivative on a surface S transverse Γ so that c0 = 0 on S. Then one
solves the characteristic equations x = dp/dξ, ξ = —dp/dx with JC(O) 6 S,
ξ(0) = dψ(x(0)). If one prescribes complex values for ψ on S, it is clear that

1 Added in proof. For additional results and references see the author's article, Comm.
Math. Phys. 51 (1976) 219-242.
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the coordinates x must be complex, and the characteristic equations make no
sense, since the metric gίj is not necessarily analytic in x. Hence we will not
attempt to solve c0 = 0, but instead will try to make c0 = 0 to third order
along Γ. To do this we will use an idea which we believe is due to Hormander
(see the remarks following Theorem 3.4.1 of [6]).

If ψ were real and one solved c0 = 0, the submanifold A c T*{M) given by
{(x, dxψ)} would be invariant under the characteristic flow. Moreover, the conic
submanifold C = {(JC, cdxψ): x € Γ,c € R+} would be invariant under the char-
acteristic flow, because Γ is a geodesic. Let σ denote the symplectic 2-form—
in local coordinates

σ = Σ dξi Λ dxt .

We define, for p € γ = {(*, dx\\r): x € Γ},

Jp = {v eTp(T*(M)): σ(v, t) = 0, te TV{C)} ,

Lp = {v e TP(Λ): σ(v, t) = 0, / € TP(C)} ,

and let Φ denote the flow on {TP(T*(M)): p €γ} induced by the characteristic
flow on T*(M). Since Φ preserves σ and leaves {TP(C): p e γ) invariant, Φ
leaves {Jp: p e γ] invariant. Moreover, if A is invariant under the characteristic
flow, then Φ must leave {Lp: p € γ} invariant.

If we introduce coordinates jt0,xx, - ,xn o n Af with jcr = (JC19 , xn)
vanishing on Γ and d/dxt, i = 1, , n, perpendicular to d/dxQ along /\ then

Hence, knowing L p , p € ^, is equivalent to knowing dPx,ty on Γ.
Thus to solve c0 = 0 to third order along Γ we first choose ψ real-valued

on Γ so that c0 = 0 on Γ (there are two possible choices of dψ here — lead-
ing to ψ+ and ψ _). Then we pick a complex n-dimensional isotropic subspace
LPo of the complexification of 7Po, for some p0 e 7*, and consider its orbit under
Φ (from this point on Jp is always complexified). Assuming this orbit is peri-
odic, i.e., there is just one subspace in it sitting over each p € γ, and assuming
the projection of this subspace onto the complexification of TP(M) considered
as a subspace of Jp is always nonsingular, we can determine d2

x,ψ = #Cx0) along
Γ. Then we define ψ = ψ\x>=0 + \x' -B(x^x'. The reason for this roundabout
approach is that if one simply writes down the differential equation B(xQ) must
satisfy in order that c0 = 0 on Γ to third order, one gets a formidable non-
linear ordinary differential equation in matrices. In contrast the flow Φ arises
from a linear ordinary differential equation—the differential equation satisfied
by the Jacobi fields along Γ. Taking the approach of Hormander described
here, one finds it is easy to express B(xQ) in terms of the (complex) Jacobi
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fields.2

The Poincare map is the map of Jp to itself obtained by following to flow Φ
once around Γ. The hypothesis that Γ is stable means that the Poincare map
has distinct eigenvalues λl9λl9 -9λn9λn with | ^ | = 1. As will be shown in
§ 2, this implies that for each of the two choices of dψ on Γ there is a unique
choice of LPo such that the orbit of LPo is periodic and Im B(x0) is positive
definite for x0 ς Γ. Thus we can construct two phase functions ψ+ and ψ_,
with I m | ± = 0 o n Γ and Im ψ ± > 0 off Γ, which are quadratic in xf and
satisfy c0 = 0 to second order. Actually ψ_ = — ψ+ and we only construct
ψ + in § 2.

Let || || denote the ZΛnorm over a fixed A -independent neighborhood of Γ.
Since we are solving c0 = 0 only to third order on Γ, we will not attempt to
solve (J + k2)u — 0 more accurately than

(1.2) | | (J + *2)«ll = O(\\k2c0aQe-kIm + \\) = O(k'^'^ι-l)) ,

where a0 vanishes to order / on Γ. Noting that multiplying a function of the
form f(x0, jc')e~*la?Ί2 by a linear function in x' essentially multiplies its norm by
/:"*, we see the contributions to (J + k2)u from terms in aQ which vanish to
order / + 1 on Γ will be negligible. Applying this reasoning to al9 , aN one
arrives at the ansatz: as is a homogeneous polynomial in xf of degree / — 2s
with coefficients depending on x09 and aN is degree 0 or 1 in x'. Then, assuming
this ansatz, one solves cs = 0 to order / — 2s + 3 on Γ, s = 1, , N + 1,
which implies (1.2).

We solve the equations ck = 0, k = 1, , N + 1 to the required accuracy
on Γ in § 3. The resulting coefficients a09 , aN must be chosen so that they
are multipled by the same factor e~ίβ, β real, as one goes once around Γ. How-
ever, once a0 has been chosen so that this holds, it will hold for a19 , aN.
Since ψ+ increases by the length L of Γ as one goes once around Γ, the func-
tions

um = eίk^+(a0 + ajk + + aN/kN) ,

where km — (2πm + β)/L, m ζ Z+ will be well-defined near Γ.

2. Construction of the phase function

In this section and the next we will use the following coordinate system
(x0, x

f) near Γ. At a point p0 on Γ choose an orthonormal frame #i(/?0), >
vn(p0) orthogonal to Γ and, using parallel transport along Γ, extend v 19 , vn

to parallel vector fields along Γ. If the length of Γ is L, we assign coordinates

2 N. Grossman has pointed out that the "formidable nonlinear ordinary differential
equation" is a matrix Riccati equation and the process described here is related to the
method used to reduce such equations to linear equations.
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x09 xl9 , xn where 0 < x0 <L to the image of xλvλ{p) + + xnvn(p) under
the exponential map at p where p is the point on Γ at distance x0 from p0.
Hence the orthonormal frames d/dxλ, , d/d;t74 on Γ at * 0 = 0 and x0 = L
are related by the orthogonal holonomy matrix O.

In these coordinates the metric gij satisfies gίj = dtj + OQx'\), gOj = O(\x'\2)
for / Φ 0 and g00 = 1 + 0(|;t ' | 2). Moreover, if we define ψ = Λ:0 on Γ, the
differential equation governing the flow Φ on {Jp: p € f} is given by

(2.1) δjf = 8ξ'9 δξ^-^-^iX

where over a letter denotes differentiation with respect to JC0. To verify (2.1)
we note that in these coordinates Jp is the (complex) span of

3ξi I dξn

Then we consider a one-parameter family of solutions of the characteristic
equations (x(t, h), ξ(t, h)) satisfying

(x(t, 0), f (ί, 0)) = (2ί, 0, . . , 0, 1, 0, . . . , 0) .

Then letting xh(t) = (βx/dh)(t9θ)9 ξh(t) = (9f/3Λ)(ί,O) and differentiating the-
characteristic equations we have

*Λ = ?T (;c(ί'0)' ?(ί'0))f * + i f " (jc(ί'0)' ξ(ί>

ί, 0), f(ί, 0))£Λ - -?W/, 0), f(/,

Using the properties of g ί J given earlier these equations reduce to

Now, changing the curve parameter to x0 and restricting to the (x', $0 compo-
nents, one has (2.1).

The hypothesis that the eigenvalues of the Poincare map lie on the unit circle
and are distinct implies that we can find complex solutions ft = (φu (pt), i =•
1, , n, of (2.1) satisfying

(2.2) (P <(L), φi(L)) = λdOφt(0), OφiQS)) ,

where λ19 ll9 , λn9'λn are the eigenvalues of the Poincare map.
Let L(x0) denote the complex span of f^Xo), , /„(*<,)• L(x0) is periodic in.
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the sense described in § 1. To carry out the construction of a phase function
from L(x0), we need to show L(x0) is isotropic and {φ^Xo), , ψn(*o)} is linear-
ly independent 0 < x0 < L.

We have

(2.3) ψi ψj — <Pi-<Pj = Cij > ψrψj — Φrψj = dυ

where " " denotes the vector dot product, " — " over a letter denotes conjuga-
tion, and Cij and dtj are constants. (2.3) is just the statement that Φ is a real
symplectic map, but one can verify it directly using (2.1). Now (2.2) implies cid

= λiλjCij and dij = λiλjdtj, and we conclude cis = 0, vι, / and dtJ = 0,iφ j . If
du = 0 for any ι, we have (^, ^ ) = 0, a contradiction. Thus normalizing ψi

and interchanging ί< and λt where necessary we can achieve du = —2V—1.
Note that now L(#o) is uniquely determined.

That Cij = 0 is simply the statement that L(xQ), 0 < xQ < L, is isotropic.
Suppose Σ?=i aiψiM = ° Then by (2.3)

(Σ

0 = Σ
j

and we have a5 = 0, / = 1, , «, and {ψiix^}7}^ is linearly independent.
The results of the preceding paragraph show that the equations

define a symmetric n χ « matrix function. The argument of § 1 shows the phase
function

ψ = xo + ±x' B(xo)x'

satisfies the eichonal equation c0 = 0 to third order on Γ. This can also be
checked by direct computation.

For our construction it is also necessary that Im B be positive definite. How-
ever, we have, writing B = C + iA,

($rBψi -

(2.4)

3. Amplitudes and the eigenvalue condition

Following the ansatz that as is a homogeneous polynomial in x' of degree
/ — 2s, and ignoring terms vanishing on Γ to order / + 1, the equation cλ — 0
becomes
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(3.1) 0 = 2 ^ + 2Bx' ^ + (trace B)aQ .
dx0 dxr

In ordinary geometrical optics the equation cλ = 0 (given cQ = 0) means that
α0, considered as a ^-density, is invariant under the flow defined by

(3.2) x = ξ?-(x, dψ) .
oξ

If we continue the approach taken in § 1, we should interpret this invariance
infinitesimally along Γ to solve (3.1). To do this, we note that the φu / = 1,
• , n, are the xf components of derivatives of the flow defined by (3.2) in
directions normal to Γ and the derivative of the flow with respect to xQ is just
(1,0, , 0) on Γ. Hence, if we define Z to be the n x n matrix with columns
^ , , ^ o n f , det Z is a constant multiple of the Jacobian of the flow defined
by (3.2).

To check this argument one notes that B = (dZ/dx^Z-1 and uses the identity

(3.3) trace --Z1 = A log det Z .
dx0 dx0

Defining e0 = (det Z)*Λ0, it then follows that

(3.4) 0 = 2^> + IBx
dx0 dx'

as is implied by the invariance of α0, considered as a ^-density, under a flow
whose Jacobian is a constant multiple of det Z.

(3.4) means that the function e0 is invariant under the flow defined by (3.2),
modulo terms vanishing to order / + l o n Γ . Since eQ is a homogeneous poly-
nomial in x' and invariance under a flow is preserved under sums and pro-
ducts, it will suffice to solve (3.3) in the case where e0 is homogeneous linear
function of x' (with coefficients depending on JC0).

Let At denote the flow defined by (3.2). The differential version of eQ o Λt —
eQ is

(3.5) ΛΠdeo) = deo.

We will only use (3.5) on Γ. Since de0 on Γ annihilates vectors tangent to Γγ

(3.5) simply means

- A . ^ r z c * on Γ , i = l, •• ,n",
dx'

where ct is a constant. Hence referring to (2.4) one sees deo/dx' is in the span

of {Aψl9 ,Aφn}
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Turning now to the case where e0 is homogeneous of degree /, the preced-
ing paragraph implies that eQ has the form (in multi-index notation)

eQ = Σ aa{x'Άφύax - (xfΆφn)
a* .

Each "monomial" eQa = (x' ΆφJ011 (x'-Aφn)
an in this sum satisfies

eQa(L, Ox') = xf1 %*e0ta(0, x') = <r *'έ?0β(0, *') with real i8, and we will see
each eOa leads to a distinct approximate solution to (J + £2)w = 0. Thus, with-
out loss of generality, we assume eQ is one of these monomials. Therefore we
have

a0 = (detZyKx' Aψ^ . . (x'Ά<pn)*» , \a\ = / .

One may also check directly that that a0 satisfies (3.1).
In solving c8 = 0 on Γ to order / — 2s + 3 for s — 2, , N + 1 we will

abandon the geometrical approach used to solve c0 = 0 and cx — 0. This will
be done primarily because we do not know how to solve them geometrically,
but also because, given our solutions to c0 = 0 and ci = 0, the rest of the
equations are easy to solve.

We note first that (2.4) implies (d/dxo)(Aφj) + BAψj = 0. Then we have

(3.6) (φrAφj) = Bψi'Aψj —
UXQ

Let C denote the differential operator

Cu = d-(A
dxf \ dx'

Ignoring terms vanishing on Γ to order / — 2s + 3 the equation cs = 0 be-
comes

(3.7) 2^=1 + IBx'.^-l + (traceB)as x = S=ϊ(?*=* + + ^ M
dxQ dx' \ dx\ dx2

n

Then using (3.6) and the definition of C one sees (3.7) will be satisfied if
as — —\Cas_λls, s = 1, . ., N.

To sum up we have shown that if

u =

where α0 = ( d e t Z ) - * ^ - ^ ) " 1 - ' - . ( J C 7 . ^ ) ^ , then ||(J + A2)w|| =
However, u is not well-defined in a neighborhood of Γ unless u(0, x')
u(L, Ox'). As noted in § 1, this leads to the eigenvalue condition on k.
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To determine the relation between w(0, x') and w(L, Ox') we note that (see
3.3)

— ( A r g det Z) = trace A ,
dxQ

and (2.4) implies trace A > 0. Hence we may choose p e Z, p > 0 and 0O,
0 < 0O < 2ττ, so that

f d(Arg det Z) = 2πp + θ0 .
Jo

Let λt = έ/-"1'', 0 < 0i < 2ττ. We have

Z(L) = OZ(0)

\0 λj

and hence det Z(L) = λ1 λn det Z(0) det O. Let ( - ί)v = det O, p = 0 or
1. v = 0 if a neighborhood of Γ is orientable, v = 1 if it is not. We then have

ΘQ = (θ1 + - - + θn + πv) , mod 2τr ,

and

Thus, setting ΘQ~ θx -\- + θn + πv + 2πp\ we see w is a well-defined
smooth function near Γ provided

* = kr,a = γ(2πr + ("I

(3.8)

Pθ + ^

Finally, using the change of variables (yQ, y') = (JC0, kϊx') one checks easily that
||wr,α|| > cαλ~t ι" i n for r > 0. If we cut u smoothly off to zero outside a fc-inde-
pendent neighborhood of Γ, the construction is complete.

The integer p0 in the statement of Theorem I is simply p + p', mod 2. In
the case when n•= 1 and p = 0, p0 = [|//], mod 2 where μ is the Morse index
of Γ considered as a geodesic arc with fixed end points (0,0) and (L, 0). For
more information about the role of Morse indices in this sort of problem the
reader should see [3].

4. Reflected waves

In this section we assume Γ is a closed ray path which is reflected off dM
at a finite number of points. More precisely, Γ = U * = i Λ where F* is the
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geodesic arc which is the projection of the curve (**(/),£*(/)), t € [tuti+1] in
the characteristic flow with p(xι(t), ξKt)) = 1. We assume

( i ) x\t) ε M, for / e (ti9 ti+1), xKh) and x%ti+1) are on 3*f, and x\u) =
Λ * - 1 ^ ) , Ϊ = 2, . - . , m ,

(ii) * m (/ m + 1 ) = jc'tfi).-
In view of (i) and (ii) we set **(*<) = **, £*(*<) = f ιl, ξι(tί+ι) = ft and adopt
the convention that indices are reduced mod m where necessary. We assume
further

(iii) £1 — fV"1 is normal to dM at x\ i.e., it annihilates Tχt(M),
(iv) £L - fV1 =£ 0.

(iii) is the reflection condition, and (iv) implies Γ never touches Γ tangentially.
Assuming a stability condition analogous to that used previously, we will

sketch the construction of a sequence of approximate eigenfunctions concen-
trated near Γ, satisfying

!|(J + kl)um\\ = O(Λ*-*») , | |iιm | | > c*;»'4 ,

and um = 0 on 9M. This sequence will correspond to the "fundamental" se-
quence in the previous construction, i.e., the sequence with a = 0. For sim-
plicity we assume M is orientable.

To construct an analogue of the Poincare map for Γ we choose functions pt

defined near xι such that
(i) pi = 0 ondM,
(ii) p(x,dpi) = 1.

Then in ordinary geometrical optics a ray hitting dM near x1 with data (x, £+)
will be reflected to a ray with date (JC, £_), where x e dM and

Hence, considering the induced map on the tangent space to T*(M), we define
"reflection" maps

Rt: A\ = {(δx, δξ) €Γ(,«ieiΓi)(Γ*(Λf)): dpvδx = 0}

-> At = {(δx, δξ) 6 Tlχitξί)(T*(M)): ^ to = 0} ,

: (δx, δξ) -> (3Λ, (5?) - (o, (if -g-U, d ^ ) ^ |̂ _ J )

- (θ, rfif*."1 |f-(J
\ \ 3£

In defining Rt we have made use of the natural identification of A\ and At.
A short computation shows Rt is a real symplectic map of Λ*. to ΛL.

Along each arc (jc*(ί), £'(/))> ί e f̂ > ^ί+J, we can introduce the flow Φ^ and
define Pt to be the real symplectic map of
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Jl = {v e T^^T^M)): σ(v, t) = 0,yt e Γ ^ ^ C , ) }

to

J*+ = {vz Γ(,ι+x,e«+,(Γ*(Af)): σ(v, t) = 0, yί 6 Γ(a;ί+1,φ(C)}

obtained from Φέ as in § 1. Here Q = {(**(*), cf*(O): c <= i?+, * <= [/<, f<+1]}.
To construct a Poincare map we must redefine Rx so that it maps P'1 onto

/ I . To do this we identify v <= 7V"1 and v''e A\ if v — vr e Γ^^-i^Ci-i),
and identify H> € /L and w' <= At if w - >v' <= T^^iC^. Since #* maps
T&^-hίPi-i) ^ ^+ o n t o ^(χ*,ίi)(Ct) Π yli, with the preceding identifications
Rt becomes a well-defined real symplectic map of J^1 onto / i . Hence we can
finally define the Poincare map P: J\ —> ϊt by

P is a real symplectic map. If P has distinct eigenvalues λί9 λl9 , λn9 λn, we
can carry out the construction of §§ 1 and 2, getting phase functions ψ€, i" =
1, , m, where Im ψt > 0 off Γt and ψ^ satisfies the eichonal equation c0 = 0
to second order on Γt. Adding constants to the ψi9 one can arrange ψiix*) =
Ψί-iU*), i = 2, , m. Then ^.^(JC1) = Ψ^Λ:1) .+' L, where L is the length of Γ.

The reflections Rt were defined so that dψt = dψi.i — (d-ψ^. r - — (JC, dp
\ dξdξ

on 3M to second order at x\ Since dpi vanishes on the tangent space to dM,
it follows that ψt — ψt-i restricted to dM vanishes to third order at xι for
i — 2, , m, and ψm — ψi — L restricted to BM vanishes to third order at
x\

On each curve Γt the construction of ψ t also yields a matrix Zt analogous
to Z in § 3, and we build u as

u =
(4 1)

The Zi satisfy detZ^ = dόtZt^ at Λ:% i = 2, , m. The eigenvalue condition
is imposed by requiring wCx1) = 0. This leads to k = kr exactly as in (3.8)
with a = 0 except that v is defined by v = 0 if m is even, and v = 2 if m is
odd.

Since W(JC*) = 0 and-ψf — ψi.x vanishes on 9M to third order at x\ we can
modify u near ** so that u = 0 on dM and still maintain | |(J + k\)u\\ =
O(fc$."n+2)/4). As in § 3, cutting w off to zerooutside a ^-independent neighbor-
hood of Γ completes the construction.

In the case of "bouncing ball" waves, i.e., when Γ consists of two copies
of the same geodesic arc traced in opposite directions, there is an interesting
simplification in (4.1). In this case the spaces /t_x and Jϊ may be identified and
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we call the resulting space Ju i — 1,2. The reflection map Rt becomes a map
of Ji onto /*. We introduce coordinates (JC0, *') near Γ like those used in § 2
with xι ~ (0, 0) and x2 ~ ( |L, 0), and let (<pi(x0), <pt(x0)), i = 1, , n, be the
solution of (2.1) with data at x0 = 0 equal to an eigenvector of P. As in § 2
this eigenvector is chosen so that ψrψi — φi-ψi— — 2V— 1. Let O?iCxo)>γi( *o))>
i = 1, . ., w, be the solution of (2.1) such that /^((^(O), - ^ ( 0 ) ) ) = ((^(0),
# 0 ) ) .

Let Γ be the map (δx, δξ) -> (&t, —δξ). The maps 77^, / = 1,2, are invo-
lutions. By the definition of P

and, since TR2 is an involution and \λt\ = 1,

Imitating the procedure in § 2,

yv^ - ψί'Vj = etj , φrήj - ^ - ^ = / o .

As before eiΊ and ftj are constants, and since R2 is a real symplectic map,
etJ = λiλjβij and / o = λtλjfij. Hence ^^ = 0 for / ^ / and fu = 0. Since we
also have (see § 2)

Pi * ^ — ψi'ψj = 0 , i Φ j ,

Pi & — Pi ψj Ξ 0 ,

and {(φu <pi)}^=ι U {^i, φϊ}?=i forms a basis for C 2 n , it follows

for constants ĉ  determined by ^>£(0) = ^^(0). The matrix B derived from the
ηt is defined by Bηt = —fa.

Continuing with the construction of the approximate eigenfunctions as in § 2,
we eventually get

u =

However, the observations of the preceding paragraph imply ψ2 = —ψ19 and
for suitable β e R, eiβ det Z 2 = β"^ det Zx. Thus replacing M by e'*iβu and
modifying Z x appropriately we have

(4.2) w = w — w ,

where w = e^^ίdetZi)"*. This is consistent with the form of u in the case
n — 1 which was found in [10].
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The chief implication of (4.2) is that the argument that will be used in § 5
to show there are two eigenvalues of Δ in an interval about — £*,« of radius
#(&*,«) fails for bouncing ball waves.

5. Implications

For the domain of Δ we take the subspace of Q ( M U 3M) consisting of
functions vanishing on 3M. With this domain Δ is symmetric, densely defined
and nonpositive. Thus, by Friedrichs' theorem, (cf. [7, pp. 325-326]), it has
a nonpositive self-adjoint extension ΔM. The norm of (ΔM — λl)'1 equals the
distance from λ to the spectrum of ΔM (cf. [7, p. 272]).

If M U dM is compact, then ΔM is the graph closure of Δ and has pure point
spectrum. Since the urta constructed in §§ 3 and 4 satisfy

11 (Δ + kljurj\ =

it follows the distance from k\,a to an eigenvalue of ΔM is
In the case where Γ is a closed geodesic, as in §§ 1-3, we claim that there

are at least two eigenvalues of ΔM, counted by multiplicity, whose distance to
k\,a is (?(&}/«). To see this consider

(w r α ,w r α ) = ί u\adx . = i d * ' Γ e«fcr,α*o(e-*2*r,αrow2 a)dχ, .
J iϋf J Jθ

Integration by parts once in x0 shows (uTta, wr>α) = O ^ * 7 2 " 1 " 1 " 1 ) . Thus we have

(J

Now an elementary argument, which we leave to the reader, gives the desired
result.

Suppose ΔM has only two eigenvalues in an interval about —k2

rya of length
dr, where lim,...^ (k\ί*a)/dr = 0. Let Pr denote the orthogonal projection on the
subspace spanned by ur>a, and let Pr denote the spectral projection for ΔM on
the interval [—dr — k\ya, —k\,a + dr]. Then one can show l i m ^ \\Pr — Pr\\
= 0.

However, Arnold has given an example where none of the wr,α's are close
to true eigenfunctions (see [1]). We offer the following argument that, in a
practical sense, it is impossible to distinguish the u r,α 's from true eigenfunctions
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when r is sufficiently large. For functions u(x, t) on M x R we introduce the

energy

where dω is the volume form on M. Then, if u is a solution to d2u/dt2 — Jw

= 0, £(«) is independent of t.

Let u(x, t) be the solution to the mixed problem: d2u/dt2 — Δu = 0, w(>, 0)

= Ί*r,β{*), (du/dt)(x, 0) = ίkrtaurta(x) and w(*, 0 = 0 on 3Af. A simple estimate

from DuhameΓs formula (cf. [7, pp. 486-487]) shows E(u(x,t) - eikr>aturj

= θ(*-(»/2+ι«ι-i) |/ |) . One checks easily E(u(x, t)) = E(u(x, 0)) > cak;£/2+^-Z).

Hence, given T and e, there is an r0 such that for r > r0, the standing wave

v(x, t) = cr^
ίA:r'αίwr>α(jc) differs from a true solution to d2u/dt2 — Δu = 0 by

ε in energy norm for \t\ < Γ. The constant cr is chosen so that E(v(x, 0))

= 1. Note that this argument applies equally well when M U dM is not com-

pact.
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