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A GENERAL APPROACH TO MORSE THEORY

A. J. TROMBA

The Morse theory of critical points was extended by Palais and Smale [10],
[16] to a certain class of functions on Hubert manifolds. However, there are
many variational problems in a nonlinear setting which for technical reasons
are posed not on Hubert but on Banach manifolds of mappings. For example,
the Plateau problem, the existence of harmonic mappings between finite di-
mensional Riemannian manifolds, and the fixed endpoint solution to the Euler
equations of hydrodynamics to name a few. It would therefore be desirable to
have an infinite dimensional Morse theory which applies to these problems.
The purpose of this paper is to extend Morse theory to manifolds modelled on
Banach spaces and to show how this theory applies to the problem of geodesies
on finite dimensional Riemannian manifolds. Other applications will be given
in future papers.

Such extensions have already been given by Uhlenbeck [22], [23] and we
build upon her work to some extent. Our theory has the advantages (a) that
the definition we give of nondegenerate critical point (§ 2) is intrinsic, that is,
does not depend on the choice of a particular coordinate neighborhood, and
(b) we abandon the condition (C) of Palais and Smale and replace it with a
condition which works in a much more general setting (see the discussion at
the end of § 1 and the beginning of § 3). In addition this new theory fits nicely
with the authors [15], [20] generalization of vector field index theory to the
Banach manifold category. Finally we assume that the mappings / which we
consider are of class C2. This is in the spirit of Smale's approach to Morse
theory [6].

The author wishes to thank Dick Palais for his many helpful suggestions.
For condition (C) to be satisfied Palais needed the manifold of LI maps of

the interval into V. We show that in our theory we are free to choose any
Sobolev manifold of maps functor Lξ, k > 0. Condition (C) is then violated but
not our conditions. The notion of nondegeneracy does not depend on the
model space.

1. Preliminaries and a review of standard theory

Let M be a Ck, k> 1 Banach manifold and let TM denote its tangent bundle
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with π: TM —> M the canonical projection. If TM is given a Finsler structure
(e.g. see [11, p. 118]), M is called a CΛ Finsler manifold. For a Finsler mani-
fold there is a natural metric on the components of M induced by the Finsler
structure on TM namely if p,q <= M and are in the same component we define

( 1 ) p{p,q) = mt\b \\σ'{t)\\σ{t)dt,
J a

where the infinum is taken over all C1 paths joining p and q. In [11] it is
shown that p is a metric for each component of M which induces the given
topology. M is said to be a complete Finsler manifold if the pair (M, p) is a
complete metric space.

Definition. Let M be a C1 Finsler manifold and σ: (α, b) —> M a C1 path
on M. We define the length l(σ) of σ by

= lim Γ
s—a J s

It is possible that l(σ) — oo.
Proposition 1. // M is a Finsler manifold, and σ: (a,b)—>M is a C1

curve of finite length, then the image of a in M is totally bounded in the
Finsler metric for M, and hence if M is complete the image of a has compact
closure in M.

Proof. [11, § 9, Proposition 1 ].
A C r , r > 0, r ζ. Z, vector field X is a Cr section of the tangent bundle

TM. A vector field Z : M - > Γ M o n a C ' manifold M is C 1" if given a co-
ordinate neighborhood Θ, and a chart φ: 6—> E, the principle part Xφ: 0 —•
£ of the vector field X is locally Lipshitz. For p e M a solution curve of Z
with initial condition p is a C1 map σ p : (α, b) —> Λf, (α, £) an open interval
about zero in R with <jp(0 = X(σp(t)) and σp(0) = p. The following results
on solution curves of vector fields are standard [8].

Proposition 2. Let M be a Ck manifold dM = 0 and X: M-+TM a Cr, r
> 1-vector field on M. For each p € M there is a solution curve σp of X with
initial condition p such that every solution curve of X with initial condition p
is a restriction of σp.

The solution curve above is called the maximal solution curve of X. Define
t+.: M —> (0, oo] and t~ : M —> [— oo, 0) by the condition that domain σp =

Proposition 5. Let X be a Cι~ vector field on an open submanifold M* of
a complete C2 Finsler manifold M and let a: (a, b) —>M* be a maximal integral

curve of X. If b < oo and ||AΓ(σ(ί))|| dt < oo, then σ(t) has a limit point in
Jo

M-M*ast-*b. Similarly if a > - oo and f ||AT(*(/))|| dt < oo, then σ(t)
J a

h l i i i i M M*
has a limit point in M — M* as t —> a.
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Proof. [11, §3, Theorem 9].

In order for Palais to do Lusternik-Schnirelman theory on Banach manifolds
he needed the notion of a pseudo-gradient vector field which we present below.

Let M be a Finsler manifold and let /: M —• R be differentiate at p <= M.
Then Y e TPM is called a pseudo gradient vector for / at p if

( 2 ) P

( 3 ) Y(f) = dfp(Y)>\\dfp\\2,

(\\dfp\\ = sup \dfp(v)\, V S T P
\ \W\\<1

If / is differentiate at each point of S c : M, and Y is a Ck pseudo-gradient
field for / on S, then Y(p) is a pseudo-gradient vector for / at each p e S.

The following is the basic result of Palais' on the existence of such vector
fields.

Proposition 6. Let M be a Ck Finsler manifold with dM = 0 and let f: M
—> R be Cι. Let M* denote the open submanifold of M consisting of regular
(i.e., noncriticaϊ) points of f. Then there is a Cι~ pseudo-gradient vector field
Y for f in M*. // M admits Ck partitions of unity, we can choose Y to be Ck.

Before reviewing the basic results of Morse theory on Cfc-Riemannian mani-
folds we recall the now famous sequential version of the condition (C) of
Palais and Smale.

Definition. Let Λί be a C1 Finsler manifold, and f:M—*R a C1 map.
We say that / satisfies condition (C) if given any sequence {sn} in M in which
/ is bounded but on which ||d/|| is not bounded away from zero there is a sub-
sequence {snj} which converges.

This condition (C) is essentially a compactness condition on the function /.
As a general rule in extending finite dimensional results in differential topology
to infinite dimensions we transfer the compactness condition from the space
M to the functions on M. Condition (C) is crucial to the Palais-Smale versions
of Morse theory and to Schwartz's and Palais' version of Lusternik-Schnirelman
theory.

Let M be a Ck, k > 3 complete Riemannian manifold modelled on a
seperable Hubert space H with < , > p : TPM x TPM —> R a complete inner
product on TPM for all p e M (the Riemannian structure). The Riemannian
structure induces a Finsler structure on TM in the standard way: if u 6 TPM,
then ||ϊi||p = V<w7«V Let /: M -> R be a O function. Then dfp: TPM -> R
is a linear functional on TPM. Therefore by the Riesz representation theorem
there exists a unique element Pf(p) € TPM so that dfp(u) = <F/(p), u} for all
u 6 TPM and with ||d/p|| = ||Γ/(p)||. Γf: M -> TM is a C2 vector field on M
called the gradient of / at p and it is also a pseudogradient field for / on M.
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Palais and Smale originally phrased condition (C) in terms of the gradient
of/.

We now proceed to define the notion of nondegenerate critical point. Let E
be a Banach space. A continuous symmetric bilinear form B: E X E —• R is
said to be nondegenerate if the induced map B^\ E —> £ * (E* the dual space
of E) given by B$(u) = B(u, •) is an isomorphism of E with £ * otherwise B
is said to be degenerate. A critical point p of / is said to be nondegenerate if
the Hessian Hp(f): TPM x TPM -> R of / at p defined by Hp(f)(u, v) =
d2fp(u, v) is a nondegenerate bilinear form. Unfortunately this notion of non-
degeneracy requires that E be isomorphic to £ * which rarely occurs in practice.
For example the Sobolev space Lp

k is isomorphic to (L?)* = L\ if and only if
p = q = 2.

By the index of a bilinear form B we mean the dimension of the maximal
subspace on which it is negative definite. Recall that B is negative on a sub-
space Eo if (B(u, u) < 0 for all u e Eo, u Φ 0, and is negative definite if B(u, u)
< —c||w||2, c > 0 some constant. The index of B may be infinite. Also a
maximal subspace on which B is negative may not be unique, but its dimension
is unique.

We may then define the index of a nondegenerate critical point p of / to be
the index of Hp(f), the Hessian of / at p. The following is the basic result of
the Morse theory on Riemannian manifolds as developed by Palais and Smale.

Proposition 7. Let f: M -* R (dM = 0) be Ck+\ k > 0 satisfy condition
(C) and have only nondegenerate critical points.

( i ) For any closed interval [a, b] C R there are only finitely many critical
points of f in f~ι[a,b].

(ii) Suppose /~2(a) and /~](b) contain no critical points. Let pλ, , pn be
the critical points of f in f~ι[a, b] of index kl9 , kn respectively (kt = oo is
possible). Then Mb = {*!/(*) < b] has the homotopy type of Ma with n cells
of dimensions kl9 , kn attached. (Palais actually showed that Mb has the
diffeomorphism type of Ma with n-handles attached.)

(iii) In (ii) // pl9 , p m , m < n are of infinite index, then Mb has the
homotopy type of Ma with n — m handles attached each of dimensions km+l9

• , kn. (The critical points of infinite index are homotopically invisible.)

From (i) and (ii) it is possible to prove a version of the classical Morse in-
equalities (see [9], [10]).

Morse theory on Hubert manifolds has been applied by Palais [10] to give
an intrinsic development of the existence theory of geodesies on finite di-
mensional closed Riemannian manifolds, by Gromoll and Meyer [5], [6] to
the existence of infinitely many distinct periodic geodesies, by Palais [14], [12]
and Smale [14], [16] to a nonlinear generalization of the Dirichlet problem,
and finally by Uhlenbeck [24] and Eliasson [2] to the existence of harmonic
mappings.

Up to the present time the principle stumbling block to the development of
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a Morse theory on Banach manifolds has been a proper definition of non-
degenerate critical point in the Banach space setting. The Hubert space defini-
tion does not work because it implies that the model space E is isomorphic to
its adjoint space £ * . This is one of the factors which led Palais to speculate
that the natural setting for Morse theory was Hubert manifolds.

This prompted Smale in 1968 to conjecture that weak nondegeneracy might
be the answer. By weak nondegeneracy he meant that the Hessian B = HP(J)
induces only an injective map 2?# : £ - » £ * . It is not hard to see that such a
definition of nondegeneracy does not work; in fact, weakly nondegenerate
critical points need not be isolated. For example let M — l2 be a seperable
Hubert space. Each x 6 l2 is an infinite sequence {JCJ with 2 A < °°.

Define /: H -* R by f(x) = — Σ< ( c o s i*d/i* Then / is C2 and 0 e H is a
critical point for /. Moreover H0(f)(u,v) = ΣJ°=i w^J/ 2 and so 0 is weakly
nondegenerate. But it is clear that any neighborhood of 0 has infinitely many
critical points.

Also crucial to the Palais version of the Morse theory was the Palais-Morse
lemma (see [10], [13]) which says that if /: 0 -> R is C\ Θ C H open, p € 0
a nondegenerate critical point, then there is a change of variables φ: °ll —• Θ,
<% a neighborhood of p, so that

that is, / could be "linearized" in a neighborhood of its nondegenerate critical
point.

In particular the Morse lemma explicitly shows that nondegenerate critical
points must be isolated. When the author first considered the problem of gen-
eralizing the Morse theory to Banach manifolds he attempted to find a defini-
tion of nondegeneracy in Banach spaces which would give a Morse lemma.
He succeeded in doing this (e.g., see [17], [18]). Unfortunately his definition
of nondegeneracy was not intrinsic, and to make matters worse a Morse lemma
in the Banach space category is incompatible with condition (C) in the case
that E is not isomorphic to £ * , and E reflexive. Recently the author found a
nondegeneracy condition which was intrinsic and implied a Morse lemma [21].

To see that condition (C) is incompatible with the Morse lemma in the case
E £ E*, with E reflexive suppose f:E->Ris already in linearized form f(x)
= \B(x, x) where B: E X E —• R is continuous bilinear and symmetric and
J5#: E -* E* is injective. Then dfx(h) = B(x, h), the range of B^ is dense in
E*9 and \\dfx\\ = ||Z?#(jt)||. Since B% is not invertible there exists a sequence xn

e E9 \\xn\\ = 1 with ||2? t(*n)|| —> 0. Since B is continuous, {f(xn)} is a bounded
sequence and moreover | |d/ x J | —> 0. But 0 is the only critical point of /, and
therefore there cannot be a critical point in S, S = Unxn, which contradicts
condition (C).

Now in our quest for a Banach manifold Morse theory we find ourselves at



52 A. J. TROMBA

a fork in the road. It seems that we can either find an alternate version of con-
cition (C) and an alternate intrinsic notion of nondegeneracy which gives us a
Morse lemma or clutch onto condition (C) and find a nondegeneracy condition
which is strong enough for a Morse theory yet to weak to imply a Morse
lemma. We shall do neither.

We shall change our point of view somewhat and develop a theory which
we believe is general enough to include these two directions. That is to say we
shall in § 6 give examples where one of the above approaches will work and
the other will not; yet our theory will work in both cases (e.g., see the con-
cluding remarks of this paper).

Our point of view will be to consider real valued maps / : M -+R, M a
complete Finsler manifold, along with an associated "globally defined" vector
field X on M satisfying certain compatibility conditions with /. As a special
case we will obtain a Morse theory for maps / satisfying condition (C) and
having nondegenerate critical points in a new sense.

In § 6 we study some examples to see how the theory applies to variational
problems. Other applications will be published in separate papers. This paper
was partly motivated by the author's work on the index theory of vector fields
on Banach manifolds [20].

2. Nondegenerate critical points

In the remainder of the paper we shall assume that M is at least a C2 para-
compact Banach manifold without boundary modelled on a real Banach space
E with an equivalent C1 norm and hence M admits C1 partitions of unity.

By a C1 norm || ||, we mean that || ||: E — {0} -> R is C1 {C1 away from 0}.
We shall assume that the Frechet derivative || | |#: {E — {0}} -> £e(E, JR),
where 3?(E, R) are the continuous linear maps from E to R, is bounded in a
neighborhood of 0. That is there are a neighborhood W of 0 and a constant
N so that ||(||<?II*) || < N for all q e W - {0}.

This certainly holds for the Sobolev spaces Z4m, m > 1.
Definition. Let / : M —> R be C2. A critical point p € M is said to be B-

nondegenerate if there exist a neighborhood 0 of p and a C1 vector field V: 0 —>
TMI φ with

( i ) Vq(f) = dfq(V(q)) >0toτqtΘ,qφp,

(ϋ) V(p) = 0 and QVP: TPM -> TPM, the Frechet derivative of V at p,
is symmetric with respect to the Hessian Hp(f), i.e.,

Hp(f){9Vp{u), v) = Hp(f)(u, 9Vp(v))

for all M, v € TPM,
(iii) @Vp: TPM —> TPM is an isomorphism with spectrum off the imaginary

axis,
(iv) Hp(f)(9Vp(u), u) > 0 if u ψ 0.
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Remark 1. Since V.M-+ TM, @VP: TPM -> Tv{p)(TM). However in the
case where p is a zero for V we can interpret ^ F p as a linear map of TPM
into itself.

Remark 2. For the purpose of Morse theory it may be possible that con-
dition (ii) can be weakened.

The following two results are immediate consequences of the above defini-
tion.

Theorem 1. B-nondegenerate critical points are isolated.
Theorem 2. B-nondegeneracy is intrinsic.
Theorem 3. Suppose f:M-*RisC2 with a M Riemannian Hubert mani-

fold. If p ζ M is a nondegenerate critical point, then p is B-nondegenerate.
Proof. Let V(q). = Ff(q). Then

dfq(Ff(q)) = || Ff{q) \fq = <TKq), Vf(q)\.

Consequently (i) is satisfied and Ff(p) = 0. For notational convenience let us
denote the Frechet derivative of Ff at p by Ff^(p): TPM -> TPM. From the
definition of the gradient it follows that for w, v e TPM

Hp(f)(u, v) = d2fp(u, v) = <yU{p)u, v>p .

The symmetry of the Hessian guarantees the symmetry of Ff*(p) as an
operator on TPM. Therefore from standard Hubert space theory we can con-
clude that Ff*(p) has only real spectrum. The nondegeneracy condition implies
that Ff^ip) is an isomorphism. Thus 0 is not in the spectrum, and the spectrum
is disjoint from the imaginary axis.

In addition

Hp(fWf*(p)u, v) = <Γ/#(p)iι, Ff*(p)v>p ,

whence Hp(f)(Ff*(p)u9 u) = \\Ff*(p)u% > 0 if u Φ 0. Thus nondegenerate
points are 5-nondegenerate.

To see that B-nondegenerate points are not in general nondegenerate in the
sense that the Hessian induces an isomorphism between TpM and Γ p M*, con-
sider the following example:

Let M = L4[0, 1] = JE, / : Λf -> Λ given by J(g) = j Γ |g|4 + j f \g\2. One
Jo Jo

easily checks that / satisfies condition (C). The only critical point for / is g =

0, and

H0(J)(μ, v) = P uv = B,(u)(v) ,
Jo

B%:E-+E*. Now £ * = T0M* ^ L4/3[O, 1] where ^ denotes isometric iso-
morphism. Making the identification of is* with L4/3[O, 1] we see that B^u) =
w or B# is the natural inclusion of L4 into L4/3. This clearly cannot be an iso-
morphism and so 0 is not nondegenerate. On the other hand define the vector
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field V(g) = g. It is immediate that V satisfies conditions (i)-(iv). Consequent-
ly 2?-nondegeneracy is weaker than nondegeneracy.

In § 5 we shall study how such vector fields arise in variational problems.
The reason we required Pf*(p): TPM —•> TPM to have spectrum disjoint from

the imaginary axis was so we could apply the following fundamental fact.
Lemma 1. Let A: E —> E be a linear endomorphism of a Banach space E

with spectrum disjoint from the imaginary axis. Then the space E is the direct
sum of two subspaces E_ 0 E+ both invariant under A and with the property
that A_ = A I E_ has spectrum to the left of the imaginary axis and A = A\E+

has spectrum to the right of the imaginary axis. E+ and E_ are called the
positive and negative invariant subspaces of A.

In addition there exist projection operators P+: E —• E+, P_: E —> E_ with
P\ = p+9 PI = p_, P_P+ = P+P_ = 0, P+ + P_ = I, and moreover P+ and
P_ are expressible as a limit of power series in A.

Proof. The proof is essentially contained in [15, p. 421-423] after one
passes to the complexification of E, E (g) C, and the complexification of A.

Using Lemma 1 it is now easy to give a characterization of the index of a
Z?-nondegenerate critical point. Recall that in the last section we defined the
index of a nondegenerate critial point to be the dimension of the maximal sub-
space in which the Hessian is negative definite.

Theorem 4. Let f:M—>R with p € M a B-nondegenerate critical point of
f. Let V denote the associated local vector field and set A — <3V'p. Then
A : TpM —> TPM, and the index of f at p is the dimension of the space TPM_.
Therefore p is of finite index if and only if dim TPM_ < oo.

Proof. Straightforward.

3. The general setting for Morse theory on Banach manifolds

In our approach to abstract variational calculus we switch emphasis away
from the real valued map f:M—*R (for which we are trying to describe the
relation between the critical points and the geometry of certain level sets) to
an associated vector field X. In the case where M is a Riemannian manifold,
such a "nice" associated vector field X will exist (by nice we mean that its
zeros will be precisely the critical points of /, and dfip)(X(p)) > 0), namely
the gradient of /. In the case where M is a Banach manifold, there is no
Riemannian structure and hence apparently no "natural" way to produce such
an associated vector field. In [21] the author introduced the notion of "almost-
Riemannian" structure on a Banach manifold. Such structures generally exist
on Sobolev manifolds of mappings. For such manifolds there is a nice "gradi-
ent" defined. It is the authors' belief that in most variational problems which
arise in practice there is a natural globally defined nice vector field associated
to the variational mapping oίf:M-+R. We shall not attempt to justify this
statement here nor attempt even to give a full justification in this paper. Ex-
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amples are given in § 6 and [20].
We shall start by giving a definition paralleling condition (C) for smooth

vector fields X: M —> TM. As in the rest of this paper M is a complete C2

paracompact Finsler manifold without boundary modelled on a real Banach
space E with an equivalent C1 norm.

Definition. A set S C M is bounded if sup p(p,q) <oo where p is the
P,q<ZS

distance function induced by the Finsler on M (see § 1).
Definition. A C1 vector field X.M-+TM satisfies condition (CV) if

whenever {p^ is a bounded sequence in M and 11^(^)11 —> 0 then there is a
subsequence {ptj} which converges.

We have an immediate consequence of this definition, namely,
Proposition 1. Let X be a vector field on M satisfying condition (CV), and

S C M any bounded set. Then, if zer (X) denotes the zeros of X, we have
that zer (X) Π S is a compact set. Hence, if the zeros of X in any closed set
C are isolated, then C contains at most finitely many of these zeros.

We wish now to define what it means for a vector field to behave like a
gradient with respect to some scalar function. Let t —•> σp(t) denote the trajec-
tory of X with initial condition p. Further let /: M —> R be a C2 function.

Definition. We say that a C1 vector field X is gradient like for / if
(GO) X satisfies (CV),

(Gl) Xp(f) = dfp(Xp) > 0 and equals zero only if p is simultaneously a
critical point of / and a zero of X.

This condition implies that / increases along the trajectories of X.
(G2) Let p € M. The trajectory σp of X through p has a maximal domain

(a, β) C R. Then as t -> β either

( i ) f(σv(t)) -> + oo or
(ii) || AΓ(<xp(O) II •-* 0 and σp[0, β) is bounded.

Similarly as t —• a either
(iii) f(σp(t)) -> - oo or
(iv) \\X(σp(t))|| -> 0 and σp(a, 0] is bounded.

(G3) (Regularity condition). Let K(a, b) denote the zeros of X in f~ι[a, b]9

— oo < a <b < oo. Then K(a, b) is bounded. From condition (GO) and
Proposition 1 it follows that K(a, b) is also compact.

The following proposition is crucial to the development of Morse theory.

Proposition 2. In axiom (G2) //, as t -> β, \\X(σp(t))\\ -* 0 and σp[0, β) is
bounded, then β = + oo and σp(t) has a critical point as a limit point as
t - > o o .

Similarly if, as t -+ a, \\X(σp(t))\\ - » 0 and σp(a, 0] is bounded, then a —
— oo and σp(t) has a critical point as a limit point as t —• — oo.

Proof. Condition (GO) implies that if, as t -> β, \\X(σp(t))\\ -> 0 with
ffp[0, β) bounded, then σp(t) has a limit point in M as t —> β. By Proposition
5 of § 1 this is impossible unless β = oo. Since \\X(σp(t)\\ —• 0 as t -> β, this
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limit point must be a zero of X and hence a critical point of /.
The proof for t —> a is exactly the same.
Remark. Of course not every real valued smooth map has a gradient like

vector field (e.g., set / = constant). In § 5 we shall state formally that if /
satisfies condition (C), is bounded below, bounded on bounded sets, and has
J5-nondegenerate critical points in the sense of § 2, then there exists a gradient
like vector field for /.

Proposition 3. Let f:M-+R, and X be gradient like for f. Let b = /(/?),
and σ: (a, β) —» M be a maximal integral curve of X with initial condition p.
Suppose lim f(σp(t)) = a > — oo. By the last proposition a = — oo. Then as

t -> — oo, σp(t) converges to K(a, b). Similarly if lim f(σp(t)) = c < oo, then

β = oo, and as t —> oo, σp(t) converges to K(c, b).

Proof (by contradiction). Suppose that σp(t) ηΛ K(a, b) as t —» — oo. Then
there are a neighborhood °lί of K(a, b) and a sequence of tn —• — oo with
σp(tn)i<%. Since \\X{σp(tn))\\ -> 0 and σp(oo,0] is bounded, condition (CV)
implies that there is a subsequence σp(tn) which converges to a point in K(a, b),
a contradiction. The case for t —• β follows exactly as above.

Corollary 1. Let /, X, p, a, b, c be as above. If a > — oo and K(a, b) are
isolated points {and hence finite many), σp(t) converges to a critical point q e
K(a, b) as t —> —oo. Similarly if c < oo, σp(t) converges to a critical point
qeK(c,b).

Proof. Obvious.

Corollary 2. Suppose q € f~ι(a, b) is the only critical point of f in f~ι[a, b].
Let p € f~ι[a, b] be arbitrary. If σp: (a, β) —> M is the maximal integral curve
of X with initial condition p, then either σp{t) converges to q as t —> a or σp(t)
drops below the level f~\ά) i.e., there exists a to> a so that for all t < t0,
f(σp(t)) < a.

Proof. By Proposition 3 either lim f(σp(t)) = — oo or else a = — oo and

σp(t) has a critical point as a limit point as t —> oo. If the former we are clearly
done. If the latter then a = — oo and either q is a limit point of σp(t) as t —•
— oo or it is not. If not then, since q is the only critical point of / in f~λ[a, b],
σp(t) must drop below the level surface f~ι(a) after time t0 and hence for all
time / < t0. If q is a limit point of σp(t), then f(q) =' aι = lim f(σp(t)). Ap-

t-* - o o

plying Corollary 1 finishes the proof.

Corollary 3. Suppose K(a, b) = 0. Again let p e f~ι[a, b] be arbitrary. If
op: (a, β) —> M is the maximal integral curve of X through p, then after some
finite time σp(t) drops below the level f~ι(a).

The following theorem permits us to deform a manifold M along a gradient
like vector field X. It is one of the two basic results used in the handle body
decomposition theorem in the next section.

Theorem 1. Let Mb = {x <= M\f(x) < b) with Ma defined analogously. If



A GENERAL APPROACH TO MORSE THEORY 57

K(a, b) = 0, then Ma is homotopically equivalent to Mb.

Proof. Condition (G.1) and the assumptions of the theorem guarantee that
df(p)(X(p)) > 0 for all p.e f~ι[a, b]. Thus the vector field X is transverse to
the level surfaces f~\c), c € [a, b]. From Corollary 3 it follows that for each
p <zMb there is a first time f(p) so that σp(γ(p)) € Ma. The transversality of X
to the level surfaces of / insures that p .—> γ{p) is continuous (in fact smooth if
/ and X are smooth).

Define H: I X Mb -> Mδ, / the unit interval by H(t, p) = op{tγ(p)). H is
the desired homotopy equivalence.

In the next section we shall again study a pair (/, X) where f:M-+R is a
C2 real valued map, M a C2 paracompact Banach manifold without boundary,
and X a gradient like vector field. It is for these pairs that we shall complete
the development of the Morse theory of critical points.

Before we conclude this section we shall give the definition of nondegenerate
critical point for the pair (/, X).

Definition. Let /: M -» R be C2 with Z a C 1 gradient like vector field for
/. A critical point p of / is U-nondegenerate with respect to X if

(a) DX(p): TPM —• TPM9 the Frechet derivative of X at p is symmetric
with respect to the Hessian Hp(f),

(b) DX(p) is an isomorphism with spectrum of the imaginary axis,
(c) Hp(f)(DX(p)u, u)>θiίuφθ.

Compare these with (i)-(iv) of the first part of § 2.

4. The handle-body theorem

The major part of Morse theory is the analysis of the behavior of the traj-
ectories of a vector field in the neighborhood of a critical point. In order to
study this we shall need a sequence of results the first of which is due to Karen
Uhlenbeck [22].

Proposition 1. Let Λ\ E —> E be α linear isomorphism with real spectrum
and with E+ and E_ the positive and negative invariant sub spaces of E. Then
there exist a norm | \ for E and a p > 0 such that for v = v+ + v_

( i )
(ϋ)
(ϋi)

\v+

\etΛ

\etA

+

v_
>

\>

=
(i -

(1-

V

+-
+ Hpt)
pt)

•\V-\,

v+\for
v_ | for

all
all

t

t
>
<

0,
0.

Moreover the norm \ \ has the same differentiability properties as the given
norm for E.

Proof. Since E = E+ Θ E_ once we have defined | | on E+ and E_, we
can define \v+ + v_\ = |i;+ | + \v_\. We define | | only on E+. eA is expand-
ing on E+ so for any norm || || on E+ there exist an ε > 0 and a k > 1 so
that \\eNΛv+1| > εkN \\v+\\ for all v+ 6 E+ and all integers N. Choose N large
enough so that εkN > 1 and then define
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\v+\= F\\e"v+\\dλ.
Jo

This is a norm on E+ with the same smoothness properties as || || on E+.

Now

\etΛv+\ = Γ \\e«+t)Λv+ \dλ .
Jo

Making a change of variables we find this is equal to

rλ' +1
\\eiΛv+\\dλ

it

= Γ | |e"«+ j| dλ + Γ+ > | | e ^ + || dλ - Γ | |e"v+ || dλ
JO J Λ' Jo

( 4 ) = | i7+ | + Γ \\e«+-v>Av, || dλ - Γ | | ^ v + || dλ
Jo Jo

> \v+\ + (εk» - 1) f l l ^ X H ^ .
Jo

A g a i n s i n c e eA i s e x p a n d i n g o n E+, in f | | ^ ί J ^ + | | > ε ' U v + H f o r a l l v± €E+.
t>0

ΛV

But |v+1 = ί |^t? + || is an equivalent norm for E+, and so
Jo

'-XH > ef'\v+\ = ε" Γ H^vJIdί .
Jo

Γ ^λAv+ i

Jo

inf II

Consider the functions

Jo

Both take the value 0 at 0. Moreover

g\t) < g'(f) — \\etAv ||

which implies that g^ί) < g2(t) for all t, or

e"/Γ \\e*Av+\\dλ < ΐwe^v+Wdλ.
Jo Jo

Putting this into (4) we find that

\etΛv+\ > \v+\ + (ekN - \)e!'t Γ \\eλAv,\\dλ = \v,\ + pt\v+\ ,
Jo

where p = (ekγ — l)ε". A similar argument works for (iii). We shall call the
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norm | | the norm induced by A.
Continuing we have
Proposition 2. Let f: M —> R be C2 with p € Λί a B-nondegenerate critical

point. Let V be the associated local vector field about p and let A = DVP: TPM
—> TPM. For ease of exposition identify E with TPM. Let E — E+ © E_ be the
decomposition of E induced by A with projections P+ and P_ onto E+ and E_
respectively {see Lemma 1, § 2) and Hp(f): E x E —• R the Hessian of f at p.
Then Hp(j) is positive on E+ and negative on E_ that is, Hp(f)(u, ύ) > 0 if
u € E+, u Φ 0, and Hp(f)(u, ύ) < 0 if u e E_, u Φ 0. Moreover, if dim E_
< oo, then Hp{f) is negative definite on E_ which means that there is a positive
constant v > 0 with Hp(f)(u, u) < —v \\u\\2 for all u e E_.

Proof. Since the spectrums of — A_ and A+ are both entirely to the right
of the imaginary axis we can, using the functional calculus (e.g., see [15]) de-
fine square roots S_ and S+ to —A_ and A+ which are expressable in power
series in A _ and A +. Since A + and A _ are symmetric with respect to HJj)
so will 5_ and S+. Consequently 52_ = —A_, S\ — A+ and S_ and S+ are
isomorphisms of E_ to E_ and E+ to E+. If u β £_, then for some v

Hp(f)(u, u) = Hp(f)(S_v, S_v) = Hp(f){S*-V9 v)

= Hp(f)(-A_v,v) = -Hp(f)(A_v,v) < 0 .

Similarly we get that HJj) is positive on E+. If dimE_ < oo, any negative
form on a E_ will be negative definite.

Proposition 3. Suppose pzM is a critical point of finite index, and B-
nondegenerate. Let E± be the Hp(j) orthogonal complement of E_. So E± =
{v I Hp(f)(u, v) = 0 for all ueE_}. Then E+ = Eh.

Proof. First let us show that E = E_® Eh. On E_ define the bilinear
form Q(u,v) — —HJf)(u,v). Since dim£_ < oo, by the last theorem there
is a v > 0 with Q(u, ύ) > v \\u\\2 for all u 6 E_. Consequently Q gives a Rie-
mannian structure to E_. Let w € E be arbitrary. Then w induces a linear
functional on E_ by the rule w#(w) = —HJf)(u, w). The Riesz representation
theorem says that there must be a unique u0 € £_ with w^(u) = β(w, M0). There-
fore

Q{u, iι0) = -HJf)(u, uQ) = -HJj)(w, u)

for all u € E_, or HJf)(w — wo> w) = 0 for all u € E_. Thus w — uoe Eh, u0

€ E_, and w = (w — M0) + «0 which shows that £ = £_ 0 £ i . We also know
that £ = £_ Θ E+ so that to show that E+ = Eh it suffices to show that E+

C Eh9 and then the finite dimensionality of E_ will imply the result.
By Lemma 1 of § 2 the projection operator P_: E —• E_ associated to A_

is the limit of a sequence of power series in A and therefore symmetric with
respect to HJj). Let v eE+ and ueE_. Then
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HpQ){u, v) = Hp(f)(P-U, v) = Hp(f)(u, P_v) = 0 ,

since P_v = P.P+v = 0. Thus E+ C £ i and Proposition 3 is established.
Now back to a local result. Let U be a coordinate neighborhood of the B-

nondegenerate critical point p. Identify this again with an open neighborhood
of 0 in E. Give E the C1 norm | | of Proposition 1 of § 4. Let | v|# € JS?(E, # )
denote the Frechet derivative of | | at v. So for hεE, \v\*(h) e R.

Proposition 4. There is a p > 0 so that:
( i ) // v_ zE_, then

or A is negative definite on E_,
(ii) // v+ € E+, then

+) > p\v+\ ,

or A is positive definite on E+9

(iii) 1*1* (Av) = |v+U Wι;+) + |tf,
Proo/. We shall prove only (ii) and (iii). Recall from Proposition 1 that

there is a p > 0 with |^Mv+1 > (1 + pi) \v+ \ for all / > 0. Thus

j{\etΛv+\-\v+\)>p\v+\.

Since | | is C1, the limit on the left exists as t —> 0 and equals |v+1^ (/1^+) by
the chain rule. This shows (i). To demonstrate (iii) assume we have (i) and
(ii). Then

]v| = | t ; + | + | t ; . | , \etAv\ = \etΛv+\ + \etΛv_\ ,

so

—QetAv\ - \v\) = — (\etAv+\ - \ v + \ ) + — (\etAv.\ - \ v _ \ ) .

Taking the limit as t —> 0 yields (iii). We are now ready to prove the major
step in the handle-body decomposition theorem.

Theorem 1. Let f:M^>RbeC2ona complete C2 Finsler manifold M
with X a gradient like vector field for f. Let p € f~ι{a, b), f(p) — λ be the only
critical point of f in M\ = f~ι[a, b] with p B-nondegenerate with respect to X
and of finite index. Then there exists a diβerentiable embedding ψ: Dη X Dξ

of radius η and ξ onto a neighborhood of p such that
( i ) ψ(0, 0) = p, dim Dη = index of f at p,
(ii) X is transverse to Dη x dDξ {we write X rh Dv X dDξ),
(iii) there is some ε > 0 with f(dDv x Dξ) < λ — ε, f~\λ..— ε) transverse

to Dη x {0} and also transverse to X.
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Proof. Let U be a neighborhood of p identified as usual via a coordinate
mapping φ: U -> E (φ(p) = 0) with an open subset U of E. Let SB, SR/2 be
the balls of radius R and R/2 about 0 in E, where E is again assumed to have
the norm | | of Proposition 1. Then E = E+® E_.

Let Dη be the disc of radius η on E_ with center 0, and let Dξ be the disc
of radius ξ in E+ with center 0. We shall eventually pick ξ and η small enough
so that Dη X Dξ C S%n. Set ξ = μη where μ is also to be picked to guarantee
(ii) and (iii). Once we have picked the appropriate η and £, (i) will be auto-
matically satisfied since we just take the embedding ψ to be φ~ι restricted to
Dη X Dξ.

The proof involves keeping track of lots of constants. Let us start listing
them. Since | |* : U -> &(E9R) is locally bounded about 0 e £ , it follows
that if m is small enough, then there is a constant N with

\\\q\*\\<N for a l l * € Sm - {0} ,

Sm the ball of radius m about 0.
From Proposition 2 there is a 1 > v > 0 with Hp(f)(u, u) < —v\uf for all

u € E_. Since / / / / ) : E x E —> R is continuous, there is a constant ^ > 1
with |Jϊp(/)(iι, v)\ < Kγ \u\ \v\ for all u, v € E.

Since X is C\ we can write

X(q) = A(q) + R(q) 9

where |#(tf)| < w(q) \q\ with w((7) —> 0 as <7 -^ 0. Also <? -> d^ is C1 so local-
ly around p (p = 0) we have

dfq = <Pfp(q, •) + R^q) ,

where I^O?)! < w^ρ) |β|, ^ ( 4 ) -* 0 as ρ -» 0.
In addition since / is C2 we have from Taylors' formula

f(q) = #,(/)(*, ^) + Λ«to) + λ ,

where ^ = f(p) and |Λ2(ςr)| < w2((?) \q\2 with >v2(^) -• 0 as \q\ -> 0.
Finally from Proposition 4 there is a p > 0 so that \v_\# (Λv_) < — ρ\v_\

and Iv+I^ (^4t;+) > ρ\v+\. Choose Sm c 5 Λ / 2 to be a ball about p with 0 < m
< J small enough to insure that for q <= Sm

( 5 ) w2(q) < Jv ,

( 6 ) w^q) < \v ,

( 7 ) w(q) < m i n (—? -&L
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where P+ : E —» E+ is the projection into E+ of Lemma 1, § 2.
Pick ξ and η to be fixed numbers less than \m and with ξ = μη where μ is

some number

μ < VΐvTK^ < Λ/ΪI/< 1/VΊΓ.

Then Z)c. x D. C S°/2.
Let us begin now by considering (ii), and show X is transverse to Dη x 3D..

Let (q_,q+)eDη x dD.. The tangent space to Dη X 3Dξ at (q+,qj is
(Kernel |g+1*) x £_. Writing X in terms of components we have X(q) — X(^)+

+ X(q)-> To show that X fo Dv x 3D, it therefore suffices to show that
\q+\*X(q)+>0.But

\q+\*X(q)+ = \q+\*(Aq+) + \q+\*[P+(R(q))] .

The first term on the left is >p\q+\ = pξ and second is <^
= w(q)N\\P+\\{\q_\ + \q+\} < w(q)N\\P+\\{ξ/μ + ξ} and from choice (7) of
w(q) this is bounded by \pξ.

Consequently

if (^_, q+) £ Dη X dDζ. This shows (ii).
(iii) has to be done in three parts.

Part 1. There is some positive ε > 0 with j(dD~ X Dξ) < λ — ε. From
Taylors's theorem we have for q close to /?

= Hp(f)(q, Φ + RM + λ

= Hp(f)(q_9q_) + Hp(f)(q+,q+) + R2(q) + λ

< -v\q.\2 + K,\q+\2 + w2{q){\q_\ + \q+\)2 + λ

W2(q){η2 + 2ξη + ξ2} + λ

+ W2(q){l + 2μ + μ2}η2 + λ

From the choice of μ it follows that this is bounded by

< -vη2 + \uη2 + W2(q){l + \v V

and since w2{q) < \v and v < 1 we have this

< -vη2 + \vrj2 + \vη2 + λ < -\vη2 + λ .

Setting ε = \vrf finishes part 1 of Case (iii).

Part 2. We must show that / " ^ — ε) is transverse to Dη x {0}. Let q <z
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Dη x {0}. Then q_ is in the tangent space to Dη x {0} at q. If we can show
that dfq(q_) φ 0, then, since the codimension of the tangent space to f~\λ — ε)
at q is one, we will have shown that f~\λ — ε) is transverse to Dη x {0}.
Again since / is C2,

dfq(q_) =

This concludes part 2.
Part 3 of (iii) is trivial. The fact that f~\λ — ε) is transverse to X follows

immediately from the fact that for q e Mb

a9 q Φ p, dfq(X(q)) > 0. This con-
cludes the proof of Theorem 1.

We are now prepared to prove the main theorem of this paper and the
principle result of the Morse theory on Banach manifolds.

Theorem 2 (Morse handle-decomposition theorem). Let f:M—*R be a
C2 function with X a gradient like vector field for f where M is a complete
Finsler manifold modelled on a Banach space E with an equivalent C1 norm
with locally bounded differential about 0. Suppose that f has a single B-non-
degenerate critical point p e f~ι[a, b] = Mb

a of finite index k with a < f(p) <
b. Then Mb = f~λ(— oo,b] has the homotopy type of Ma with a cell of di-
mension k attached.

Proof. Let Dη x Dξ be the embedded disc product given by Theorem 1.
First from Theorem 1 of § 3 it follows that if f(p) = λ then for all ε > 0 suf-
ficiently small M*-' has the homotopy type of Ma. We shall show that for the
ε > 0 given by Theorem 1, Mλ'e U (Dη x D$) has the homotopy type of Mb.

Let σq: (a, β) —> M be a maximal integral curve for the vector field X with
initial condition q € M\_t. By Corollary 2 of Proposition 3 of § 3 as /—•<*, σq(t)
either converges to the critical point q or drops below the level f-\λ — ε)
after some finite time. Thus after some finite time σq(t) must enter Mλ~e U
(Dη x Dξ). Define the map Ht\Mb -> Mb by Ht(q) = σq(tγ(q)) where γ(q) is
the first time that σq(t) e Mλ"ε U (Dη x Dξ). The transversality conditions (ii)
and (iii) of Theorem 1 guarantee that γ and hence H are continuous. Thus
Mb has the homotopy type of Ma with a handle Dη X Dξ attached. But the
fact that f~\λ — ε) is transverse to Dη x {0} coupled with the fact that dim Dv

= k < oo implies that we can actually force Mλ~* U Dη x {0} to be a defor-
mation retract of Mx~* U (D\ X Dξ) (of course this might involve choosing a
somewhat smaller ξ and rj than in Theorem 1). So composing all deformations
we get that Ma has the homotropy type of Mb with a cell Dη of dimension k
attached.

Remark 1. An easy modification of Theorem 2 shows that if there are n
β-nondegenerate critical points {pj, 1 < i < n, each of index kt in t\a, b),
then Mb has the homotopy type of Ma with n-cells {e^, 1 < i < n, dim et =
ku attached.
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Remark 2. If /: M —» R has a gradient like vector field X and has only
£-nondegenerate critical points, then there only a finite number of critical
points in Mb

a. This follows immediately from Proposition 1 and axioms (GO)
and (G3) of § 3, since B-nondegenerate critical points are isolated (cf. Theo-
rem 1, §2).

Theorem 2 also implies that we have the Morse inequalities for C2 functions
/ having gradient like vector fields and Z?-nondegenerate critical points. The
proof of the Morse inequalities in this context is exactly the same as in [10]
however for completeness we shall state them without proof.

First we give a few definitions. Let Q denote the rational field, and H* the
singular homology functor. A pair of spaces X and Y is called admissable if
H*(X, Y) is of finite type, that is to say that dim Hk(X, Y) < oo for all A: and
Hk(X, Y) = 0 if k is sufficiently large. If (X, Y) is admissable, the Euler
characteristic χ(X, Y) of the pair (X, Y) is defined by

χ(X, IT) = Σ ( - D* dim Ht(X, Y) + Σ ( - D'** >
ΐ=0 ΐ=0

where Rt = dim Ht(X, Y) is the j'th Betti number. Then we have the follow-
ing.

Theorem 11 {Morse inequalities). Let M be a complete C2 Finsler manifold
modelled on a space E as above, f:M-+R a C2 function having a gradient
like vector field and all of whose critical points are B-nondegenerate. Let a
and b be noncritical values of f (f~ι(a) U f~\b) contains no critical points).
Then the pair (Mb

9M
a) is admissable. If Cm denotes the number of critical

points of index m in Mb

a (by Remark 2 above there are only finitely many),
then

m = 0 m = 0

χ{M\ M") = Σ ( - VιRι = Σ (~ D'Q ,
i=0 i=0

and Rt < Ct for all ί.
We conclude this section with the following important result.
Theorem 12. Let f be a C2 function on M which has a gradient like vector

field X. Then f always assumes its infinum on any component of M, on which
the infinum is greater than — oo.

Proof. Let Mo be some component of M with B = inf /. For every positive
x€M0

ε > 0 we can find a y e MQ with B < f(y) < B + ε. By following the trajec-
tory of the gradient like vector field X through y for negative time we can find
a critical point x with B < f(x) < B + ε. Thus for every positive integer n
we can find a critical point xn with B < f(xn) < B + 1/n. Consequently,
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X(xn) = 0 and f(xn) converges to B. By (G3), {xn} has a subsequence con-
verging to z € Mo. Clearly f(z) = B and the theorem is proved.

A central question about our theory is whether it applies to a large category
of examples. Certainly it applies to complete Hubert manifolds since the
Riemannian metric provides us with a suitable vector field in the neighbor-
hood of a zero, and nondegenerate implies 2?-nondegenerate. It is our con-
tention that in most of the geometric variational problems one encounters
such vector fields always exist, and moreover that they arise naturally from the
variational problems themselves.

It is this fact that motivates the study of Fredholm vector fields on Banach
manifolds in [20]. In the next section we give simple examples in the spirit of
Palais' papers on Lusternick-Schnirelman theory and Morse theory showing
how the theory applies.

5. The theory of Palais and Smale and condition (C)

Again M is a C2 complete Finsler manifold, dM = 0, which is modelled on
a space E which has a C1 norm.

In this section we state several theorems and propositions, but in the interest
of brevity we shall omit the proofs of the theorems since the proof of Theorem
1 is especially long and technical.

Theorem 1. Let f: M —» R be a O map satisfying condition (C), which is
bounded below and bounded on bounded sets and has only B-nondegenerate
critical points. Then there exists a gradient like vector field X for f.

The following is quite easy to prove.
Theorem 2. Let f: M —> R be a C2 map, satisfying condition (C) with M

a sufficiently smooth Riemannian (Hilbert) manifold. Then Vf.M-+ TM, the
gradient of f with respect to the given Riemannian structure on TM, is gradient
like for f.

The next result will be useful in § 6.
Proposition 1. Let f:M-^R be bounded below (above) and satisfy

(sequential) condition (C). Then the inverse image of bounded sets is bounded.
Proof. Let a < inf f(x) and b > inf j(x) be arbitrary. It suffices to show

xζM xζM

that f~ι[a, b] is bounded. Let K(a, b) be the critical points of / in f~ι[a, b]. It
follows from condition (C) that K(a, b) is compact. Consequently there is a
neighborhood N of K(a, b) with diameter smaller than some R > 0. Let Y
be a pseudo-gradient vector field for / inM* = M — (crit set/). For p e f~ι[a, b]
Π M* let σp: (a, β) —> M denote the maximal integral curve of Y. Palais shows
(Theorem 5.4 [12]) that as / —• <* either σp(t) drops below the level f~ι(a) or
else a — — oo, and σp(t) has a critical point as a limit point as t —• a. Since
f~λ(a) = 0, σp(t) must have a critical point as a limit point as t —> a — —oo.
Therefore for all p e f~ι[a> b] Π M* there exists a greatest t(p) > — oo with
the property that σp(t(p)) € N. One can show, using condition (C), that
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inf t(p) > — oo but this will not be necessary in the proof of this prop-
3><=/-i[α,δ]

osition. Note that on f~[a, b] — N there exists a d > 0 with | |y(p) | | > d for
all p g f~ι[a, 6] — Λf. If this were not the case, we could find a sequence pn

€ f~ι[a, 6] - N with || Y(pn)\\ -> 0 and so | ]d/J | -> 0. By condition (C), {pn}
would have a convergent subsequence {pnj} converging to some q β N which
is a contradiction.

We shall show that the distance of any point p e f~ι[a, b] — N to N is bound-
ed by 4(6 - a)/d.

b-a> f(σp(t)) - f(p) = P d/.^ί^ωWϊ
J 0

> \\\dfap(s)\fds>]- ΐ \\Y(σp{s))f ds .
Jo 4 Jo

For all t with ^ ( 0 e /""'[a, b] — N we have that this integral

> 4 Γ II » » ί l ώ = 4 Γ K Wilrfί ^ 4 ^ ' ffίW) •
4 Jo 4 Jo 4

Therefore

jP<β, σp{t(p))) <b -a ,

which implies that the distance of any which point p z f~ι[cι, b] — N to N is
bounded by 4(6 — a)/d. Since the diameter of N is bounded by R, we can
conclude that the diameter of f~ι[a, b] is at most 8(6 — a)/d + R and so
f~ι[a, 6] is bounded.

The case for / bounded above follows immediately by setting g = — / and
applying what we have already proved to g.

Remark. Proposition 1 is not true without the assumption that / is either
bounded below or above. To see this let M = R2 and f(x, y) = x2 — y2. Then
/ satisfies condition (C) but f~\0) is clearly not bounded.

In the Palais-Smale theory no assumption is made about the function /: M
—> R being bounded on bounded sets. Although this occurs in all examples,
we know of, we have no example at hand where condition (C) is satisfied for
a function /, and / is not bounded on bounded sets.

In the last proposition of this section we give a condition on the differential
of / which guarantees that / is in fact bounded on bounded sets.

Proposition 2. Let j : M —> R be a smooth (C1) function where M is a C1

connected Finsler manifold. Suppose \\dfp\\ is bounded on bounded sets of M.
Then f is bounded on bounded sets.

Proof. Let S be a bounded subset of M. Let p0 e 5. Then every point p € 5
can be joined by a path σ: / —> M to p0 of length less than or equal to some
constant K. Thus
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tip) - f(Po) = /(<KD) - /(σ(0))

= Γ 4-KσWdt = Γ dUitJo at Jo

and so

\f(p) - KPO)\ <.

<RΪl\\σ'(ί)\\dt<RK,
Jo

where R is the bound on the norm of the differential df. Therefore / is bound-
ed on 5.

6. A return to the geodesic problem

In this section we show how on a Hubert manifold of maps one can pose
an important variational problem for which condition (C) is violated yet the
theory presented in the last sections applies. We begin by reviewing the geo-
desic problem as studied by Palais in [10] and shall follow, in part, the
notation of his § 13, and the reader is referred to that paper.

Let / denote the unit interval, and Rn Euclidian rc-space. By HQ(I, Rn) we
mean the Hubert space of square integrable maps from / to Rn. HX{1, Rn) is
the Hubert space of absolutely continuous maps σ: I —• Rn such that the de-
rivative & of σ belongs to H0(I, Rn). The inner product on # r (/ , Rn) is given
by

Let V C Rn be a closed Ck+\ k > 1, Riemannian submanifold of Rn,
where we assume that the Riemannian structure on V comes from Rn. Then
the set of maps σ e H^I, Rn) with σ{l) C V is a closed Cfc submanifold on the
Hubert space H^I, Rn). If P, Q € V, then the space of σ e HX{I, Rn) with σ(I)
C V and σ(0) = P is also a Ck Hubert manifold of H^I, Rn) which we denote
by Ω(P). Similarly the space of a e Ω(P) with σ(l) = Q is again a Hubert
submanifold of Ω(P) and consequently of Hγ{l, Rn) which we denote by β(P, Q).
In fact it can be shown (see [4]) that Ω{P) is diffeomorphic to a Hubert space
and Ω(P, Q) C Ω(P) is a finite codimensional submanifold.

The tangent space Ω(P)σ to Ω(P) at σ can be identified with the space of
maps h 6 Hx(l, Rn) with h(0) — 0 and'A(') 6 T.ωV. Similarly the tangent space
Ω{P, Q)a to Ω(P, Ω) at a can be identified with the space of maps h € Ω(P)σ

with h{\) = 0.

The Riemannian structure on Rn (and hence on V) naturally induces a
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Riemannian (and hence Finsler) structure on Ω(P) and Ω{P, Q) as follows.
If h, k e Ω(P),, define

< M > . = Γ
Jo

dt / Rn

where Dh/dt, Dk/dt are the covariant (covariant with respect to the unique
symmetric affine connection induced by the Riemannian structure on V) de-
rivatives of h and k along σ.

Since V C Rn, there exists a smooth map &\ V —• J*?(l?n), the linear maps
from i?n to itself, defined by ^ ( c) is the orthogonal projection of Rn onto TXV.
One can show that the covariant derivative of a vector field h along a is given
by the formula

Ph- = &{σ(t))h\ί) .
dt

In [10] Palais used a different Riemannian structure on Ω(P, Q), namely he
defined an "extrinsic" inner product <( , >̂e on TΩ by

<A, *>.,.= Γ<A',*%.A.
JO

The next proposition, which shall be useful to us later on, shows that in
one important sense there is little or no difference between these structures.
Let us denote the first Riemannian structure by <( , >^ and the two norms in-
duced by these structures by || ||, and || | |y. In § 1 we saw how these norms
induced metrics, say p, and p, on Ω(P, Q).

Proposition 1. The extrinsic and intrinsic Riemannian structures above are
equivalent on bounded sets; i.e., if S is either a p, or pt bounded set, then
there exists a constant C {dependent only on the diameter of S) so that

for all σeS and v € Ω(P, Q)σ.
Proof. We shall show only that if S is a pe bounded set, then the two

Riemannian structures are equivalent when restricted to S. Let σ € S, and let V
be a vector field along σ which vanishes at t = 0 and t = 1. Then

D V

dt

from which it follows that pointwise
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DV
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dt Rn
< II V{t) I I , , , .

or that || V H, < || V ||.. On the other hand

V\t) =

Consequently

dt

where
f fl

\\σ'\\Li = {J o

1/22

> W\\co = sup ||F(0|Un,

and C2 is a constant, which depends only on the Co norm of a and hence only
on the diameter of S. Since S is ^ bounded, there is a constant C2 with ||<^||La

< C2 for all σ β 5. But

This implies that

DV
0.11 dt

\\\V(s)\\ds,

or

f£!ί D P
Co i!

J o t 5 ί

which by the Schwartz inequality implies that

or

Putting things together we have that

II*ΊU < I|F||. < ||F|U + 2CAIIΠ, = (l + 2CA) \\v\l.

Setting C = 1 + 2 C Ά gives the desired result.
Proposition 2. Define a real valued function (the energy function) J: Ω(P,
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2 Jo

J is clearly also defined on Ω(P).
In [10, § 14] it is proven that / is a Ck map satisfying condition (C). More-

over the critical points of / are the geodesies parameterized proportionally to
arc length joining P and Q. These critical points are of the same differenti-
ability class as V.

Let us study for a moment what the gradient of / looks like with respect to
the Riemannian structure on Ω(P, Q) introduced above.

Let Ω°σ denote the Hubert space of maps h e H0(I, Rn) with h(t) <= Tσ(t)V for
almost all t. If A is a vector field "along σ", then the map h —> Dh/dt (co-
variant derivative of h along σ) establishes an isomorphism between Ω{P)a and4

Now lets compute the derivative of the energy functional. Let h e Ω{P)σ.
Then

dJXh) = P <σ'(t),h'(t))Rndt = P (</(/), D h ) dt .
Jo Jo \ dt i Rn

Define v(σ) e Ω(P)σ to be the unique vector field along a which solves the
equation Dv(σ)/dt = σ'. Then

This implies that the gradient of the map J on Ω(P) is the vector field σ—+v(σ).
Therefore the only critical points of / on Ω(P) are the zeros of V but v(σ)
= 0 if and only if σ is the constant map σ(t) = P for all t.

We now turn our attention to the space Ω(P, Q). If h € Ω(P, β ) , then h —•
D/dt

Dh/dt defines a map from Ω(P, Q)a > Ω°σ. The image Fσ of Ω(P, Q)σ under
the map D/dt is a closed finite codimensional subspace of Ω°a (in fact dim
Ω(P)JΩ(P, Q)σ = dim V). Let πa: Ω°a -> F^ be the HQ orthogonal projection
of Ω°σ onto the orthogonal complement of Fσ in Ω°σ (this is a different πσ than
used in [10, § 14]). Consider again / : Ω(P, Q) -> R. Then for ή e Ω(P, Q)σ

dJM - f (-^K Dh)dt = ί1 ( ^ ,
J o \ dt dt / Jo\ dt dt dt

since P (n.W°L, D-h\dt = 0. But ^ ^ 1 - «.***>- 6 Fσ and thus there

is a smooth vector field Λ(σ) along σ, >ί(σ € _Q(P, Q)a with

Z)t;((y)
— πn—_dt dt dt
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Therefore dJ.Qi) =• Γ / D λ ^ , ̂ -\dt which implies that FJ(σ) = λ(σ) and
Jo \ dt dt I

dt
dt .

The vector field a —> λ(σ) is Ck~1 and transverse to /, and its zeros are pre-
cisely the critical points of /.

Before moving on to another example we would like to give an alternate
interpretation of λ(σ) which is illuminating and very important in constructing
other global vector fields transverse to a given functional. Suppose that a and
λ(σ) were sufficiently smooth. Then we could integrate the following expres-
sions for dJσ:

dJσ{h) = Γ <•(*), A'(ί»A , dJM = f ( Z ) ^ ) - , -^
Jo Jo \ dt dt

by parts to get that for all h € β(P, Q)σ

or^ h ) d t [ Ί K h \ , or .
dt / Ίo\ dt2 / dt2 dt

Thus formally (in this case can be made precise with the selection of right
spaces e.g., Dσ'/dt 6 Ll^I, Rn)) we should think of the gradient λ(σ) as the
solution to a second order linear elliptic differential equation. The important
thing is that the equation is linear, so we can (given the boundary conditions
λ(σ)(0) — 0, λ(σ){\) = 0) uniquely solve this particular equation to give us the
gradient.

Remark* It is shown in [10, § 13, Theorem 4] that the function

t-+πσ(Dv/d)t(σ)

is absolutely continuous (our πσDv/dt is Palais's Pah(β)) and therefore has a
derivative almost everywhere which is in V(I, Rn). We have from above that

Dλ Dv Dv , ,

dt dt dt

withD2λ/dt2 = Dσ'/dt. Therefore (D/dt)(πσDv/dt) = 0 and πσDv/dt is a parallel

vector field along σ.

We would now like to duplicate the entire exposition above in a slightly

different setting.

Let L\{1, Rn) = H2(I, Rn) c Htf, Rn) be the Hubert space of maps σ: / ->

Rn with σ eHx and such that &: I —> Rn is absolutely continuous with a" e

H0(I,Rn).
The inner product on H2(I, Rn) is given by
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<«(/), V(φR«dt + f <u'(t), V'(t)}Rndt
Jo

P <«"(*), V"(ί)>Λ»Λ .
Jo

If we define H2(I,Rn)° = {w € H2(I,R
n)\u(0) = w(l) = 0}, H2(I,R

n)° is a
closed subspace of #2(y> Z?n) which admits an alternate equivalent inner pro-
duct given by

<κ, v> = fl <n'(0, !>'(*)>* + P <κ"(0, v"
Jo Jo

Again let V c i?n be a closed C f e+4, A: > 1, Riemannian submanifold of Rn

where the Riemannian structure on V is induced by that of Rn. The set of
maps σ.e H2(I,Rn) with σ(I) C F, σ(0) = P e V is a closed Cfc Hubert sub-
manifold of the Hubert space H2(I, Rn) which we denote by Λ{P). A(P, Q) is
definted similarly. Λ(P)σ, the tangent space to Λ(P) at σ, is {h e H2(I, Rn)\h(t)
€ Tσit)V,h(0) = 0} and Λ(P, Q). = {Λ e Λ(P)σ\h(l) = 0}. Again the dimen-

sion of the quotient space dim Λ(P)JΛ(P, Q)σ = dim F . Let yl̂  denote those
u € #!(/ , i?n) with u(t) e TβωV, and let h € Λ(P)σ. Then h -> DΛ/a/ defines an
isomorphism between Λ(P)σ and /l1^

The manifolds Λ(P) and yl(P, Q) have natural intrinsic Riemannian (and
hence Finsler) structures, given by

J β \ dt . dt /*-. J β \ 9ί 3/ /

for h,k<zΛ(P), or A(P,Q)a. These Hubert manifolds also admit extrinsic
Riemannian structures given by

= ί1 <A', A ' )* + ί1

Jo Jo

As before (cf. Prop. 1) we have
Proposition 3. The intrinsic and extrinsic Riemannian structures on Λ(P)

and Λ(P, Q) are equivalent on bounded sets.
When we refer to the Riemannian manifold Λ(P, Q) we shall always mean

A(P9 Q) with its intrinsic Riemannian structure.
Define the energy functional J: A(P, Q) —> R by

The fact that the inclusion i: Λ(P9 Q) -+ Ω(P, Q) is C°° implies that ί = Joi
is a Ck smooth function. The critical points of ί are again geodesies joining P
and Q parameterized proportionally to arc length.
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The functional / : Λ(P, Q) —» R does not satisfy condition (C). This follows
directly from Proposition 1 of § 5, for if / satisfied condition (C) then the in-
verse image of bounded sets would be bounded. This would imply that every
subset S C Λ(P, Q) which is bounded in β(P, Q) is also bounded in Λ(P, Q)
which is clearly impossible. Although the following argument is not a complete
proof it gives another indication of why / cannot satisfy condition (C).

We have already defined the linear space H2(I, Rn)°. Let Htf, Rn)° = {u <=
Hι(I,Rn)\u(0) = «(1) = 0}, and let / : fl^/, Jfn) -> Λ' be given by J(σ) =

= — [l \\σ'(t)\\2

Rndt, and let / = J\H2(I, Rn)°. Now / satisfies condition (C) but
2 Jo

ί cannot. To see this note that

dJσ(h)= [\σ',h'}dt ,
Jo

which implies that | |d/,| | < \\σ'\\L2. But on fljC/, Λn)°, <j->.||</||La is a norm
equivalent to the Hλ norm. Consequently if / satisfied condition (C), then
whenever σn —* 0 in /?15 <7n would have a convergent subsequence which con-
verged to 0 in # 2 . This implies that the inclusion /: H2(I, Rn)° -> Hλ(I, Rn)°
has closed range and since the range is dense it must be an isomorphism.
This is clearly absurd. Therefore / : H2(I, Rn)° —> R does not satisfy condition
(C). Using the Morse lemma as proved in [21] and the ideas just presented
one can give another proof that / : Λ(P, Q)—*R does not satisfy condition (C).

However our immediate goal in this section is to produce a vector field λ
which is gradient like for J: Λ(P, Q) —• R. In fact no matter which Sobolev
space Hk,k> 1, one chooses the energy functional restricted to Hk will always
have a gradient like vector field. In fact the energy functional restricted to the
Banach manifold path space ΛLζ(P, Q) of L\ maps σ, 1 < p < oo, k > 2, of
the unit interval into V with σ(0) = P, <τ(l) = Q admits a gradient like vector
field which for almost all P, Q would have nondegenerate zeros. In order to
do Morse theory, the choice of space does not matter. But our purpose here
is to give a simple exposition of our ideas and not to prove the most general
theorem, and so we shall restrict our attention to H2 maps.

Recall that Λ(P, Q) C β(P, Q). Let σ e Λ(P, 0 , and let λ(σ) be the vector
field over σ with (Dλ/dt)(σ) = σ' — πσDv/dt — a' — πaa

f obtained earlier where
(D/dt)(πσ(/) = 0, and λ e H^I, Rn)°. We claim that if a e H2(I, Rn), then in fact
λ 6 H2(I, Rn)°. This depends on the following lemmas.

Lemma 1. Let σ e Λ(P, Q) with μ e Hγ{l, Rn) a parallel vector field along
σφμldt = 0). Then μ € H2(I, Rn) with

( 8 ) ||μ'fHl < const (|| σ' \fHl + ||a' |fc0 + |ja' |R,β || a' | | ^ ) ||μ\\l0 ,

| |Co denotes the supremum norm, and the constant depends only on

the Co norm of σ.
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Proof. Dμ/dt = 0>(σ(i))μ'(t) = 0, where 9: V -> if(i?n) was the orthogonal
projection map introduced earlier. Since 0>(σ(t))μ(t) — μ(t), we have that

JΪJL = ̂ (o - d^^jte/ωi^o - o,

or

( 9 ) μ'(/) = d&σω[σ'(t)]μ(t) .

But the right hand side of (9) is clearly in H^I, Rn). Therefore μ € H2. From
(9) it also follows that

(10) WSL* <KW\\

where K depends only on the Co norm of σ. But

4o as

Since Dμ/dt = 0, the integral term vanishes and we have that \\μ(t) ||2 = \\μ(0) ||2,

| |^ | |C β = | |^(0)| | and so | |//| |L l < K | |α / |U1 IIM°)!l Differentiating (9) again we
get

d&.{0[σ"(t)]μ(t)

Thus term by term

+ c2||σ//|li,ili"il2co +

which applying inequality (10) gives inequality (8).
Lemma 2. // a € Λ(P, Q), then the function t —• πσDv/dt is in Hλ and thus

by lemma 1 is in fact in H2.
Proof. In [10, § 14, Theorem 4] Palais showed that (d/dt)(πσDv/dt) =

d^σit)W(t)Mσ) where h(σ) e L2(/, Jf»), ||Λ(α)IU, < IkΊU, and &\ V -> jίf(Λ»)
as before. It follows immediately from this formula that the derivatives of
πσDv/dt is in L2 or that t —> πσDv/dt <= Hx.

Our candidate for a gradient like vector field for / i s , of course, λ. Specifi-

cally we have

Lemma 3. If σ e A(P, Q) the vector field λ(σ) over σ defined by Dλjdt
= σ' — πaσ' is in H2(I, Rn)°. Moreover σ -» λ(σ) is a Ck~ι vector field on the
H2 Hubert manifold Λ(P, Q).

Proof. Since / -* πσDv/dt is in H2 and Dλ/dt = a' - πσDv/dt (or D2λ]df
= Dσ'ldt) it follows that Dλ/dt e Hx or that λ 6 H2. But λ e Htf, Rn)° and so
λ € H2(I, R

n)°. Now σ -> Dσ'/dt is a Cfc map of Λ(P, Q) to L2(/, Rn). Fix σ,
then D2λ/dt2 = Lσλ, where Lσ is a linear isomorphism from the H\ vector fields
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over a to the HQ or L2 vector fields over σ. The map a —> Lσ is C*"1 (cf. [10,
Theorem 7.513]) and therefore σ -^ L Ήσ'/dt = Λ(σ) is C*"1.

Remark. The fact that λ eH2(I, Rn)° if a e Λ(P, Q) also follows directly
from the theory of elliptic differential equations since we can solve uniquely
the equation

D2λ Όβ'

dt2 dt
with^(O) = λ(l) = 0 and Dσ'

dt
L2 =» jl € H2(I,

Theorem 1. The Ck ι vector field λ: A —» TΛ satisfies condition (CV) and
hence axiom (GO).

Proof. (Dλ/dt)(σ) - σ' = -π.Dv/dt.
Suppose λ(σn) -+ 0 in the Riemannian structure on TΛ (i.e., (Dλ/dt)(σn) and
D2λ(σn)/dt2 tend to 0 in L2(/, Rn)) where (7n is a bounded sequence in Λ(P, Q)
and hence norm bounded in H2(I, Rn), say by a constant 7?0. ^ n = (Dλ/dt)(σn)
— a'n— —πσnDvn/dt (Dvn/dt = σ'n) is an Hγ parallel vector field over σn.

From Lemma 2 it follows that πσnDvn/dt € H2(I, Rn). Now

" dt *, = J . Dvn
π°n dt

Ί
o dt

The first term on the right is <
Jo

Recall (from Lemma 2) that

_d^ί Dv

dt

dt since πσn is an orthogonal projection.

so

dt ί < Chn\\co\\h(σn)

for
is

Since σ'n is bounded in H2, there is some constant Rλ with ||σ^||C() <
all n. Therefore \\μn\\2

Hl < const (/?J +'J?J/?J)'or /in is bounded in H1#

then also bounded in Co and so there is an R2 with \\μn \\Co < R2.
Applying Lemma 1 to the μn it follows that this sequence is bounded in

H2(I,Rn). We are assuming that λ(σn) —> 0 with respect to the Riemannian
structure of Λ(P, Q). But on bounded sets (see § 3) this implies that λ(σn) -> 0
in H2(I, Rn). Putting everything together we see that (Dλ/dt)(σn) — o'n — μn is a
bounded sequence in H2 and therefore (since the inclusion of H2 into Hλ is
compact) has a convergent and hence Cauchy subsequence μnj in Hx. But
Dλ(σn)/dt —• 0 in H19 and so σ^ is Cauchy in Hλ. Thus σny is Cauchy in H2

and therefore converges to some σ0 e H2(I, Rn). Since Λ(P, Q) C H2(I, Rn) is
closed, σ0 € ^I(P, Q). This verifies condition (CV) for λ.
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We now proceed with the completion of the proof that the vector field λ is
gradient like for the energy functional / : Λ(P, Q) —• R.

Proposition 4. λ satisfies axiom (Gl).
Proof.

d!M=[\<S,-ψ-)dt=-\\™λy
Jo \ dt / Jo \ dt /

dt2
f

o\ dt dt
and equals zero if and only if λ = 0 or if and only if Dσ''/dt = 0 and a is a
geodesic parameterized by arc length. Thus the zeros of λ are precisely the
critical point of ί.

Proposition 5. λ satisfies (G2).
Proof. Since Dλ/dt = σ' — πσσ', it follows easily that \\λ\\H2 is bounded on

bounded sets. Let a e Λ(P, Q) with φσ the trajectory of λ with maximal domain
(a, β) C R. We consider only the behavior of the trajectory φXt) as t -+ a.
The situation for t —• β is analogous and we shall omit this case.

Since / is bounded below J(φXs)) y> — oo as s —• a. Consequently we must
show that H^ί^Cy))!! —• 0 as s —> a and that φXa, 0] is bounded. Let J(φX0))
= 3{q) = b. Our first goal is to show

(11) a = - o o .

Then we shall prove

(12) ||Λ(^*Cs))||—•. 0 as s —> — oo ,

and φX— oo, 0] is bounded which will conclude the proof of axiom (G2).

Lemma 1. J(σ) - J(φXs)) = Γ \\Dλ(φ(s))/dt\\2

L2 ds. Consequently if φ(s) is

defined for all negative time we have that (since J > 0)

D χ(φ(s))\ΐ ds <
dt

jor s < 0. From this we can further concluded that there is a sequence st

- oo with \\Dλ(ip(sΛ)ldt\\Ta -> 0.

Proof. Hσ) - Hψ(s)) = £ ~Hψ(s))ds

ίΓ

J
ds
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Dλ
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dt

Lemma 2 Suppose a > — oo. Then

ds .

r. ot
ds<

Proof. Apply the Schwartz inequality to the integral in Lemma 1.
Lemma 3 a = — oo.
Proof. By Lemma 2

lds = Γ 11
at

Therefore ί -—-φ(s)\\ ds < oo which implies that the Hλ length of φσ(a,0]
J a dS \\Hi

is finite and thus converges to some point in Ω(P, Q) in the Hx topology. By
Proposition 5 of § 1 (recall λ is C1 on Ω(P, Q)) this is impossible. Thus a =
— oo .

We now proceed to (12).
Lemma 4. For each fixed s

Ot

Proof. Let v denote an Hx vector field (over an Hι path σ) which vanishes
at 0. Then

and applying the Schwartz inequality we have

Dv

~ ίi dt

Therefore H ^ < \\Dv/dt\\L2\\v\\Co, and dividing by \\v\\Co gives the result of
the lemma for v = λ over the path <p(s).

Lemma 5. // φ(s) is defined for all negative time, then || (D/dtλ)(φ(s)) \\Lt-+

0 as s —> — oo. By Lemma A we can also conclude that ||>Kp($))||<7o -+0 as s-
—> — oo .

Proof. We present here only a sketch of the proof of this lemma since all
of the details are essentially in [10] and [12]. Since the functional / : Ω(P, Q)
—> R satisfies condition (C) (this is proven in [10, § 14] and in fact our proof
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that λ on Λ(P, Q) satisfies condition (CV) can be modified to give a proof of
this fact) it follows from Lemma 1 immediately preceding, and condition (C)
for J that we can find a sequence st —> — oo with \\(Dλ/dt)(φ(Si))\\L2 —> 0 with
ψ(st) converging to K(a, b) where the convergence is in the Hι topology on

Condition (C) for / (condition (CV) for λ) further implies that K(a, b) is
compact in Ω(P, Q) ((CV) implies K(a, b) is compact in Λ(P, Q)). Now Theo-
rem 5.5 in [12] can be modified to show that in fact φ(s) converges in the Hι

topology to K(a, b) as s —> — oo. Since λ vanishes on K(a, b) and is continuous
in the Hι topology, we can conclude that \\Dλ(φ(s))/dt\\Ll —• 0.

Lemma 6. Let ψ be a nonnegative Cι function on an interval (s1? s2), — oo
< sλ < s2 < oo, satisfying

ψω + rω > dί- > ψω - rω,
ds

where γ is positive and bounded. Then \]r is bounded on (sγ, s2). If s = — oo,
and γ(s) —> 0 as s -^ — oo, then ψ^) ~^> 0 as s -+ — oo .

Proof. Set ξ — sup | ^ ) | , so that

Consider the functions g, g: (sl9 s2) —> .R given by

- ξ} , g(s) = e-'{ψ(s) + ξ} ,

e-°{A±A > 0 ,

0 .

ds

dl = -e-{ψ(s) + ξ} + e-'l*f
ds I ds

Therefore g is increasing on (X, s2), and g is positive and decreasing. Conse-
quently if s0 e (sl9 s2), then g(s) < g(s0) for all s, s2 < s < s09 and g(s) < g(s0)
for all s, s0 < s < s2. Using this latter inequality we set

(13) \ψ(s) + ξ\<esg(s0) , s>s0 .

The function 5 —• g(5 ) decreases with decreasing time, and it may be negative
at some point, but if it is negative at some value s = s#, then it remains nega-
tive for all s < s*. This implies that if ψfa*) < f > t h e n ° < Ψ( s) < f for a 1 1

^ < s* Thus we can conclude that on (sl9 s0] either

(14)
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or g is positive and decreasing with decreasing s, and so

(15) \Ψ(s) - ξ\ < esg(s0) .

Putting inequalities (13), (14) and (15) together we see that ψ is bounded on
the finite interval (s19s2). Suppose now that γ(s) - > 0 as ί-> - o o . Let ε > 0
be arbitrary. Pick sQ < 0 small enough so that

s u p \γ(s)\ = ξ < ^ ε .
s€(-~,so + l]

Let s2 — s0 + 1. Applying inequalities (7) and (8) we see that for s < s0

either

(16) 0<ψ(s)<iε,

or

(17) 0<ψ(s) < %ε + es-s°\ψ(so)-ξ\ .

Pick r0 < s0 so that es~So \^(s0) — ξ\ < %ε if s < r0. Then for all s < r0, 0 <
ψ(s) < ε which shows that ψ(s) —> 0 as s —» — oo and the proof of the lemma
is completed.

Lemma 7. For all s < 0 the L4 norm of (dφ/dt)(s), the derivative of a
trajectory φ(s) of λ, is bounded by a constant which depends only on the value
of the energy J(φ(O)) at the initial point φ(0) of the trajectory φ(s).

Γ1 d 4 d 4

Proof. Let h(s) = -φ(s) dt — φ(s) . Differentiating and
Jo dt Rn dt u

using the definition of trajectory we get

(18) ^ = 4
d
^ 4 fV^)), 4(ί)ds Jo \ dt dt /«»•.; dt

Recall from the remark on p. 71 that for all a

(19) —λ(σ) = af - πσσ
f = σ' -

dt

where (see [10, Theorem 4, § 13]) ί —> l(σ)(f) is absolutely continuous with a
derivative in L\I,Rn). What is more important is that the V norm of
(d/dt)l(σ) is bounded by a constant which depends (continuously) on the value
of J(σ). This implies that l(σ) is in fact continuous with supremum norm
bounded by a constant which depends only on J(σ). Applying (19) to (18) we
obtain

(20) ^ L = 4 | Ί A-ψ{s)4 dt + 4 fY
ώ Jol dt R« Jo\
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But for each fixed s, || %»(?)) ||<70 < γo(s) where γo(s) is a constant depending
(continuously) on the value J(φ(s)). Since J(φ(s)) decreases as s decreases,
Hψ(s)) < Hφ(0)) for all s < 0 which implies that \\Kφ(s))\\Co < γ, γ a positive
constant, the magnitude of which depends only on the value J(φ(0)). Applying
the Schwartz inequality to equality (20) we find that for all s < 0

(21) 4h(s) - 4 ^4
as

Set ψ(s) = h(s)ι/\ Then (21) yields

Applying Lemma 6 to ψ we see that ψ and hence h is bounded on (— oo, 0].
ι: n2) I12 r1 'ϋ Γ)2 ί'2

Lemma 8. Leί/(j) = i - ^ f (p(j)) | = ^

Then 2/Cs) + rW^/W > (d/ds)f(s) > 2f(s) - γ(sWf(s) where γ is a bounded
nonnegative function. If f(s) is defined for all s < 0, then γ(s) —> 0 as s —• — 00.

Proof. JLf(S) = ̂ \Ί^-(φ(s)),^(φ(s))) dt
ds ds Jo \ dt2 dt2 /Rn

d C1 / D d , Λ D d , Λ ,#

ds Jo\dt dt dt dt /R*

~ Γ / D D d (\ D d , A A.
= 2\ {— - —9(5), — - — Γ φ(s)) dt ,

J o \ 55 dt dt dt dt /R*

and using some differential geometry (e.g., see Milnor [9, p. 43]) we get this
equal to

dt /R*Jo\dt dt dt

+ 2 Γ. («(!*»• Ϊ
where R is the Riemann curvator tensor. Continuing we get this equal to

2 + 2 ί1 (^(4-^ ( 5 ) ' ^?<j)))-^ω» ^
\ L2 Jo \ \ dt J dt dt2

dt2

(recall that J ^ W )

Let w, v, >v be vector fields along a path σ. Then
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where the constant C depends only on the supremum norm of a. Using this
and the Schwartz inequality we get that

D2λ
dt2

> 2

ί V> A- 2C

D2λ ( , xx

dt2
- 2 C )) He. 11

I
\u

D2λ

*
<•*»

\\L2

Setting r(j) = C | | % ( J ) ) | | C . - | | W/*)?>(*) ||i4, and noting that (i) for all s < 0,
|| (d/dt)φ(s) \\2

Li is bounded by a constant which depends only on J(φ(O)) (Lemma
7), (ii) λ(φ(s)) is bounded in Hx norm since λ is /^ bounded on H1 bounded
sets and J'^O, HφΦ))) is bounded in the Hί topology on Λ(P, Q), {for all s < 0,
φ(s)εJ-K0,Hφ(0)))}, (πi) II%W)IU < 2 ||(W/a0(^))IU2 (Lemma 4), we
can conclude that γ is bounded.

Applying Lemma 5 we see that if <p(s) is defined for all s < 0 then γ(s) —> 0
as s —• — oo. This completes Lemma 8.

Lemma 9. Let φ:(a,β) be a maximal trajectory for λ. Then s —•

3^(^) )IU, w bounded for s € (α, 0]. //«= - oo, Mm
> 0 as s —> — oo.
Proof. By Lemma 8, f(s) = ||(D2/aί2)^W)l|i2 satisfies

Letting i|r(,s)2 = /(.s) this inequality becomes

γ(s) >
ds

- γ(s)

Note that f{s) (and hence ψ(s)) is either strictly positive or constantly zero.
This follows from the local existence and uniqueness theorem for flows of
vector fields. Since ||(D2^/a/2)(^(5))||Z(2 = 0 implies that λ(φ(s)) = 0 and if
λ(φ(s)) = 0 for any s it equals zero for all s.

Applying Lemma 6 to ψ(j) finishes the proof of this lemma.
Lemma 10. Let φ: (a, 0] -> Λ(P, Q) be as above. Then s -> || λ(φ(s)) \\Ht is

bounded and if a = — oo, || λ(φ(s)) \\Hi —• 0 as s —> — oo. In addition φ(a, 0] is
bounded in the H2 metric on Λ(P, Q).

Proof. By Lemma 9, s -> || (D2λ/dt2)(φ(s)) ||L2 is bounded, and if a > - oo,
it tends to zero as s —• — oo. From Lemma 5 we know that \\(Dλ/dt)(φ(s))\\L2

—>0 as 5—>—oo. Thus \\λ(φ(s))\H2 —» 0 as s—•—oo. In either case
||(D2^/3/2)(^(5))|U2 = UD/dt)(d/dt)φ(s)\\L2 is bounded. \\(d/dί)φ(s)\^ = Ap(j))
is bounded by /(^(0)). But 9(5) € A(P, Q) whence the boundedness of the first
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two derivatives of φ(s) in L2 implies that <p(s) is bounded in H2(I, Rn) and
so <p(a, 0] is bounded in A(P, Q). This concludes Lemma 10 and also the proof
of Proposition 5.

Let us push onto
Proposition 6. λ satisfies axiom (G3).
Proof. Let σ be a critical point of / (and therefore a zero of λ) in J~ι(a, b).

It follows it a straightforward way as in Palais [10] that σ is in fact C°°, but
we must show that the set of all such σ in J~\a, b) is bounded in Λ(P, Q).

If σ is critical, Dσ'jdt = 0. Thus

Df = 0>(σ(t))a»(t) = 0 .
dt

Since

4 σ\t) = d-
dt dt

- 0>{σ(t)W%t) + d0>aω(σ'(t))' σ\t) ,

we have

(18) σ"{t) = d&σ,t){σ\t)).σ'{t) .

This implies that

(19) lk" ί ! c 0 <Cί |</ | fc 0 ,

where the constant C depends only on the Co (supremum) norm of σ. Differ-
entiating (18) again we get that

+ dPa{t){σ"(t)) - σ\t) + dPa,t)(σ'(t)) σ»(f)

which yields

Using (19) we see that

(20) • ll/'Ίlco^^KIIco*

where the constant K depends only on the Co norm of σ. But Dσ'/dt = 0 im-
plies that || σ'{t) \\ is constant in t ((d/dt) \\σ\i) ||2 = 2(Dσ'/dt, a'} = 0).

Therefore ||<7'(0|| = c some constant, and \\σ'\\Li = \\σ'\\Co, whence from (19)
we get IKHco < C | | ^ | ϋ 2 and from (20) we get | | σ " Ί k < K 11*%. This im-
plies that the H3 norm of a satisfies
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(21) IMG* < const {||P|| + ||σ'|U2 + Ik'IIL + \\σ'\\U ,

where | |P| | is the norm of P <= V C Rn. Thus

||σ||i, < const {||P|| + VT + b + b>'2} .

But the inclusion of H3 into H2 is compact. Thus (21) shows that K(a, b) is
bounded in Λ(P, Q) with the bound depending on b and is also compact. This
establishes (G3), and concludes the proof that λ is gradient like, which we state
formally as

Theorem 2. The vector field λ on Λ(P, Q) defined by the differential equa-
tion D2λ/dt2 = Dσ'/dt is gradient like for the function J.

Thus we have a full Morse theory for the geodesic problem on H2 if we can
show that there exists nondegenerate critical points in our sense for almost all

P,Q.
Theorem 3. A critical point for ί is B-nondegenerate if and only if it is a

nondegenerate critical point for J. Therefore by classical theorem of Marston
Morse, 3 has nondegenerate critical points for almost all P, Q.

Proof. This follow from the fact that if σ is critical we have the commuta-
tive diagram

where λ*(σ) denotes the Frechet derivative of the vector field λ at σ, on both
the tangent spaces β(P, Q)σ and Λ(P, Q)a of Ω(P, Q) and Λ(P9 Q) at σ. It is
shown in [20] and [6] that λ*(σ) is of the form identity plus completely con-
tinuous. Consequently by the Fredholm alternative theorem and the fact that
Λ(P, Q)a is dense Ω{P, Q) we see that the top arrow is an isomorphism if and
only if the bottom arrow is. Therefore it follows that σ is nondegenerate for
/ : Ω(P, Q) -> R if and only if it is B-nondegenerate for ί: Λ(P, Q) -> R (see
the definition of 5-nondegeneracy at the end of § 3).

Remark. Let us repeat that we could have done the complete Morse theory
for the energy functional

where σ belongs to any Banach manifold path space Λv

k(P, Q) of the L\ maps
σ of the unit interval into V with <;(0) = P, σ(l) = Q with k>2, l < p < o o .
For almost all P, Q the associated gradient like vector field will have 2?-non-
degenerate zeros.
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Our purpose in this section was to again emphasize our point of view that
it is not the space which is important for Morse theory that the functional
under consideration need not determine the space one must use. We intend to
make this point clearer in future papers.

In an addendum to this paper (which will remain unpublished) the author
shows that the functional

E:Λ1(P,Q)->R

defined on the Sobolev space of L\ maps of / into V taking 0 to P and 1 to Q
given by

4

is smooth, satisfies condition (C) and has a gradient like vector field. What is
more surprising is that the critical points of E are also the geodesies joining P
and Q parameterized by arc length, and for almost all P, Q the critical points
of E will be 5-nondegenerate. Hence our Morse theory applies to E. Finally
by remarks in § 1 we know that a Morse lemma does not hold about the
critical points of E.

Therefore the Morse lemma is not necessary for Morse theory. On the other
hand, / : Λ(P, Q) —> R considered earlier also had geodesies as critical points
for almost all P, Q the critical points of / are B-nondegenerate and a Morse
lemma holds about these critical points (e.g., see [21]). However, condition
(C) does not hold for E. Thus condition (C) is also not essential for Morse
theory.
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