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SECONDARY CHARACTERISTIC CLASSES
FOR RIEMANNIAN FOLIATIONS
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Introduction

Riemannian foliations are an interesting special class of smooth foliations
which were introduced by Reinhart in 1956 (cf. [14]), and in recent years it
has been of interest to specialize to Riemannian foliations the results of Bott,
Haefliger, Thurston, et. al, from the rapidly developing theory of smooth foli-
ations. The general theory of foliations and Haefliger structures developed by
Haefliger [4] implies the existence of of a classifying space BRΓq for g-codi-
mensional Riemannian Haefliger structures. A basic problem is to understand
the topology of the classifying spaces and to find invariants which distinguish
between Riemannian foliations which are not equivalent in some appropriate
sense (homotopic, cobordant, etc.). In this paper we develop invariants for
Riemannian foliations with framed normal bundle and as a consequence begin
the study of the algebraic topology of BRΓq, the classifying space for foliations
of this type. The invariants are a specialization of the secondary characteristic
classes of smooth foliations developed by Bott in [2]. Our theory is also a
special case of the theory of characteristic classes for foliated bundles develop-
ed by Kamber and Tondeur [8].

In § 1, an abstract real cochain complex RWq is constructed (analogous to
Wq in [2] and W'q/2 in [10]) having the property that given a manifold admitting
a smooth Riemannian foliation with framed normal bundle then there is a
natural map from H*(RWq) into # * ( M R) the image in H*(M R) is the set
of secondary characteristic classes for the given foliation. A coset foliation of
a compact Lie group yields a Riemannian foliation with framed normal bundle
and, in § 2, examples of such foliations are given which have nonzero second-
ary characteristic classes. Moreover, as in [2], one has a map <5* : H*(RWq) —>
H*(BRΓq R) and the examples given show that $ 8 ), ^ 3 ) , δ(j\ δi10) are nonzero.

The secondary classes depend upon the choice of framing of the normal
bundle and, in § 4, the precise dependence is given by a formula involving
the transgression map τ: H*(BSOq R) -+ H*(SOq R).

In § 5, the behavior of the secondary characteristic classes with repsect to
continuous deformations of Riemannian foliation is considered and, inparticular,
following Heitsch [5] it is shown that the classes which are rigid are generated
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in cohomology dimensions greater than q + 1. It is also shown that the classes
do vary continuously in some examples in dimension q for q odd and q + 1
for q even. As in [2] the examples show that π3(BRΓ2) and πJjBRΪ\) are
uncountable groups. It is also shown in § 5 that in cohomology dimension
greater than q the secondary classes are smooth foliation invariants for Rieman-
nian foliations with framed normal bundle independent of the particular
Riemannian structure.

It is a pleasure to thank Raoul Bott, H. Blaine Lawson, and Herbert
Shulman for helpful and encouraging conversations.

1. The cochain complex RWq

In this section we construct the cochain complex RWq and a natural map
from the cohomology of RWq into the de Rham cohomology of a manifold on
which is defined a smooth Riemannian foliation with trivial bundle.

1.1. Riemannian foliations. We will begin with a brief discussion of
Riemannian foliations (compare [14], [12]). Suppose that SF is a smooth folia-
tion of a manifold M, and g is a Riemannian metric on the normal bundle
v(jF). The pair (JF, g), denoted ^Fg, is a Riemannian foliation if g is preserved
by the natural parallelism of v(jF) along the leaves of ^ (the metric g is called
a "preserved" metric). Let q — codim (J^). If U is an open set in M, and
f:U-^Rqisa submersion whose fibres are the local leaves of J**, then there
is a unique Riemannian metric < , ) on Rq so that f'1« , » = g \ U where one
recalls that ^(TiR*)) = v{^) | U. Furthermore there is a unique metric pre-
serving connection V g on v{SFg) defined by

(LI) Pg\U = fψ<,>),

where F<5> is the unique torsion free connection on the Riemannian manifold

Example 1.1. A basic example of a Riemannian foliation is as follows.
Suppose (M, < , » is a Riemannian manifold and a Lie group acts by iso-
metries with all the orbits of the same dimension. Then M is foliated by these
orbits, and the induced Riemannian metric on the normal vectors to the orbits
yields a Riemannian foliation.

1.2. The differential forms JP(Fg, D<?). For a Lie group G denote by
/*(G) the graded ring of multilinear, symmetric, ad (G)-invariant real valued
functions on the Lie algebra of G. In this paper G will be either GLq or SOq.

Suppose that Dλ and D2 are smooth connections on a ^-dimensional vector
bundle V over M. For each P e I{r)(GLq) we recall, following [2], the defini-
tion of the differential (2r — l)-form ΔP(DU D2) on M. Consider the projection
Π: M x [0,1] —> M and define a connection 2 on Π~\V) by

(1.2) 9 = tD1 + (1 -t)D2 .
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The definition of ΔP(D19 D2) is

(1.3) ΔPφl9 D2) =

where K{0) is the curvature of 29 and Π* is "integration over the fibre" of
Π. The essential property of J P ( D 1 ? D 2 ) is

(1.4) dΔPφl9 D2) = P(K(DJ, , £ ( A ) ) - P ( ϊ ( ΰ λ , KφJ) ,

where again and in the sequel K( ) denotes the curvature of the connection.
Now, let SF g be a smooth Riemannian foliation of codimension q on a mani-

fold M. Suppose that the normal bundle v(^F) is trivial, and $f = {s19 s2, , sq}
is a given framing. Let D<? be the connection on v{^) which is flat with respect
to ^ , that is, D^ = 0 for / = 1, 2, , q. Since K(Dy) = 0 on M, (1.4)
yields

(1.5) dJp(F,, D^) ^

Furthermore since Vg is locally pulled back from Rq,

(1.6) dΔP(Vg9D,) = 0

in case r > [Jg]. Finally, observe that if £f is orthonormal, then the curvature
matrices K{0) and K(F) are skew symmetric with respect to orthonormal fram-
ings, and the above formulas hold for P e I*(SOq).

Remark 1.7. The forms ΔP(Vg, Dy) are related to the Chern-Simons TP
forms [3] as follows: If E is the principal bundle of v{^g) with connection
Fg, and σ: M —• £ is the global section defined by the framing Sf, then

1.3. The cochain complex RWq. In defining RWq we distinguish the
cases: q even and g odd.

Case 1: # even. It is well known [8] that in this case I*(SOq) is generated
as a ring by homogeneous polynomials cχ,c2,ci, ,cq_2 where degree (cj)
= /, degree (cχ) = \q and

(i) Cj(A, .y,A) = trace (Λ'(A)) ,

( L 8 ) (ii) (

A being a skew symmetric matrix, that is, an element of the Lie algebra
soq, and Λj(A) being the /-th exterior power. Recall that (2π)~iqcχ corresponds
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under the Weil homomorphism to the Euler class.
As in [2] the algebra RWq is defined as a tensor product of a polynomial

algebra with an exterior algebra.
Definition 1.9.

RWq = R[cχ, c2, . , cq_2]/{PI deg P > \q) <g> Λ(hχ, h2, , hq_2) ,

where R[cχ, c2, , cq_2] is the real polynomial algebra, and Λ(hv h2, , hq_2)
is the real exterior algebra on the indicated indeterminants. In grading RWq

we let

( i ) dim(c,) = 2/ for / = 2,4, . . . , q - 2 ,

( i . io) ( i i ) d i m ( c * ) = « '

(iii) dim(A i) = 2 / - l for/ = 2,4, . . , ^ - 2 ,

(iv) dim (hχ) = q — 1 .

The differential d: RWq —• RWq is the anti-derivation of degree 1 satisfying

( i ) dcj = 0 for / = χ, 2, 4, • •, q - 2 ,

(1.11) (ii) d/^ = c,. for / = χ, 2,4, , \q ,

(iii) d/^ = 0 for / > ^ .

Case 2 : # odd. In this case I*(SOq) is generated by homogeneous poly-
nomials c2,c4, ,cβ_χ where c^ satisfies (1.8) (i). Now as in Definition 1.9,
we have

Definition 1.12.

RWq = R[c2, c4, . , cβ_J/{P I deg P > ^ } <g> Λ(/ι2, A4, , V i )

The grading here on RWq is as in (1.10), and the differential is as in (1.11).
Suppose that 3Fg is a smooth Riemannian foliation on a manifold M, and

Sf is an orthonormal framing of v{JFg). Let Λl*(M) be the de Rham complex
of smooth differential forms on M. Comparing (1.5) with (1.11) (ii) and (1.6)
with (1.11) (iii) we can define, as in [3] and [10], a map of differential com-
plexes δ,y. RWq -* A*(M) by

Definition 1.13.
(i) δ^cj) = Cj(K(Fg), , K{Vg)) for / = 2,4, . . , q - 2 or χ for

q even,

(ii) δjrg,Ahj) = JCj(Fg9 D?) fof / = 2,4, , (? — 2, or χ in case <y s

even, and for / = 2,4, , q — 1 in case q is odd.

This map passes to a map in cohomology

(1.14) 3*,.,: #*(/?Wβ) -» i ϊ £ R h a m(M) .
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We will call elements of the image of δ% ^ secondary characteristic classes of
the foliation ( J ^ , S?) and refer to H*(RWq) as the algebra of universal sec-
ondary characteristic classes.

Remark 1.15. If £f is not orthonormal, then δ?^ can be defined exactly
as in Definition 1.13 for those elements of RWq not involving cχ or hχ.

In § 2 we will give examples of Riemannian foliations for which the map
δ%gty is nontrivial. In § 4 we discuss the dependence of δ%^ on the framing Sf9

and in § 5 we discuss the dependence of δ% ? on the metric g and the behavior
of δ% ^ with respect to continuous deformations.

Remark 1.16. Continuing Remark 1.7 it should be observed:
(i) For / > \q, Tcj(F) defines a de Rham cohomology class, and

δ%g,Λ{hj}) = σ*{Tcj(F)} ,

where here and in the sequel {•} denotes cohomology class.
(ii) If γ e H*(RWq) is represented by a monomial containing only a single

hj, specifically

r = {cixci% . . ciphj}

where per force dim (cixci% cίp)) + dim (c3) > q, then

δ%gAr) = σ*{TctιciΛ cipCj(F)} .

(See [3] where Proposition 3.7 states that P(K(F)) A TQ(F) = TPQ(F) +
exact.)

2. Examples

In this section examples of Riemannian foliations are given for which certain
secondary characteristic classes are not zero.

Most of the examples in this paper are of the type described in Example 1.1.
We now give a useful explicit formula for the unique Riemannian connection
Fg on v(άFg) for a Riemannian foliation generated by an isometric Lie group
action on a Riemannian manifold (Λί, < , » as in Example 1.1. Let T be the
tangent bundle of M, and E the subbundle of tangents to the orbits, EL the
orthogonal complement of E, and let Π1: T —> E and Π2: T —> EL be the or-
thogonal projections. Let D<?> be the unique torsion free Riemannian connec-
tion on (M, < , » . Identify EL with v{^g) then for a vector field Y, a cross
section of EL viewed as a cross section of v(^g), and an arbitrary vector field
X we have [10],

(2.1) (Fg)xY = Π.dΠ.X, Y] + (D< ) >)/ 7 2 XΓ) .

Moreover, here and in the sequel we have the following fairly standard point
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of view towards connection forms. In general, if D is a connection on a vector
bundle V, and S? = {sί9s29 -,sq} is a (local) framing for F, then the con-
nection matrix | |0^ || of D with respect to SP is given by

(2.2) Z ^ = Σ 0 u ® ^ .
.7 = 1

Finally, we recall [7] that if <(, )> is a bi-invariant metrix on a Lie group G,
then for left invariant vector fields X9 Y the unique Riemannian connection
D<?> satisfies

(2.3) (P<t>)zY = #X,Y] .

Example 2.1. Let M = S3 viewed as the Lie group 517(2) of special unitary
2 χ 2 matrices, and let Z, Y19 Y2 be the left invariant vector fields on 517(2)
represented by the Lie algebra elements

(i 0\ (0 i\ (0 - 1 \

respectively. Let <, > be the unique bi-invariant metric on SU(2) for which
{Z, Y19 Y2} is an orthonormal framing. Consider the free isometric action of
S1 on (SU(2), <, » given by

(2.4) a -> σ\e%t ° ) for σ e 517(2) , 0 < t < 2π .
\ 0 ~ u/

Compare with Example 1.1, and let &'g be the induced Riemannian foliation
of 5ί7(2). The leaves of &g are the integral curves of X, and let Sf = {y19 y2}
be the framing of v{2?g) induced by the framing [Y19 Y2} of the bundle of nor-
mal vectors to the leaves. It is clear that £f is an orthonormal framing.

Proposition 2.1. For the element {χhx} e H\RW2)

0 .

In fact, if {a, β19 β2} are the dual left invariant 1-forms to {X, Y19 Y2} then

Proof. By (2.1), , (2.3) the connection matrix of Vg with respect to Sf
is

and the matrix of '2 as in (1.2) is
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(2.6) ( ° 2 t a ) .
\ - 2 t a 0 /

Using the formula for the curvature K: K — άΘ — Θ A Θ, we have

(2.8) K(β) = ( ° (Atβ2βl + 2dta)\
yi^tβφ, + 2dta) 0 /

Finally, the polynomial cx e I*(SO(2)) is given by

Comparing (2.7), , (2.9) with Definition 1.13 yields

The next example is due to Chern-Simons [3].
Example 2.2 Let (S3, <(, )) be a Riemannian manifold as in Example

1.1, and J^ the 3-codimensional foliation of S3 by points. Clearly !F^ y is a
Riemannian foliation, v{^) = T(53), and F<5 > = D^ > where D<5 > is given by
(2.3). Let Sf = {Z, Y1? Y2} be an orthonormal framing of »(&<, >).

Proposition 2.2, [3]. For the element {h2} e H\RW3)

In fact

In comparing the above with [3], note that δ^^(h2) is a Chern-Simons TP
form as described in Remark 1.18 (i).

Example 2.3. Let M = 5(9(5). For 1 < / < i < 5, let Ytj be the left in-
variant vector field on 5(9(5) represented in the Lie algebra by the skew-sym-
metric matrix with + 1 in the z-th row and -th column, — 1 in the /-th row
and z-th column, and 0 elsewhere. Let <, ) be the bi-invariant metric on 5(9(5)
for which {Yi3) is an orthonormal framing. Consider the isometric action of
5(9(4) on 50(5) given by

(2.10) *->* Γ4-γ
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for A e SO(4).
As in Examples 1.1 and 2.1, let SP'g be the induced Riemannian foliation

of SO(5), and let S? = \y19 y2, y3, y4} be the orthonormal framing of v{2Pg) in-
duced by the framing {Y51, Y52, Γ53, Y54} of the bundle of normal vectors to the
orbits.

Proposition 2.3. Consider the element {χhχh2}) e H10(RW4). For the above
foliation

}) Φ 0

In fact, if {atj | 1 < / < / < 5} is the dual basis to {Ytj | 1 < / < i < 5}, then

The proof of the proposition is by a direct computation similar to (though
more complicated than) the proof of Proposition 2.1. In doing the computa-
tion one finds that δ^g^(h2) is closed, and thus δ%g^({χhχ}) Φ 0.

Remark 2.4. Examples 2.1,2.2,2.3 are of the following type: Suppose
(2V, <5 >) is a Riemannian manifold, and /: M —• N is a submersion. Then the
fibres of / foliate M and /-1(<(, » is a preserved metric on the normal bundle.
The reader should compare Corollary 3.3 in the next section.

Remark 2.5. The computations in Example 2.1,2.2, 2.3 are entirely Lie
algebra computations, and in fact using (2.3) it is clear that given a Lie sub-
algebra φ of a compact Lie algebra © one has a map from H*(RWq) into the
Lie algebra cohomology of © where q = dim © — dim h.

3.1. Basic properties of the secondary characteristic classes

In order to state the naturality property of the secondary characteristic
classes for Riemannian foliations with trivial normal bundle, we first observe
that these secondary classes are in fact defined more generally for smooth
Riemannian Haefliger structures with trivial normal bundle. A Riemannian
Haefliger structure is called an .R/^-structure, and it is called an RΓq-stmc-
ture if the normal bundle is trivial.

For a precise definition of .R/Vstructures see [4] or [13]. Suffice it to recall
that if Jf is an i^Q-structure on a manifold M, then associated to the normal
bundle v(Jf) are a unique Riemannian metric g and a unique Riemannian
connection F. Each point m e M is contained in an open set U for which there
are

(i) a smooth map f:U-+RQ,

(ii) a Riemannian metric <(, )> on Rq

so that



SECONDARY CHARACTERISTIC CLASSES 373

(i) f-\T(R«)) = v(^)\Uandf-\C )> = g9

(3.2) (ii) ί~ιΦ(, >) = VI U where D< } > is the unique Riemannian connection

on(Λ«,<, > ) .

Note that a Riemannian foliation defines an RΓq-structure, and we will hence-
forth use synonomously the expression J^Γ^-foliation and Riemannian folia-
tion.

With the above understood, if 2/F is an ^Γ^-structure on M, and Sf is a
trivialization of v(Jίf), then as in Definition 1.13 we can define a map of graded
differential complexes

(3.3) δ,

Furthermore, if 2tf associated to the Λ/^-foliation 8Fg then δ*^ = δ^ y.
Finally recall that .RΓ'^-structures pull back with respect to smooth maps,

[4]. If ^f is a smooth .R/^-structure on M, and φ: N -+ M is a smooth map
of manifold, then φ~\3f) denotes the pull back of M to N.

Theorem 3.1 (Nαturαlίty). Let 3P be an RΓ^-structure on M, and S? an
orthonormal trivialization of v{^). If φ:N-*M is a smooth map of manifolds,
then

Proof. The normal bundle v(φ~\^)) = ψ~ι(v{^)) and the unique
Riemannian connection on v{φ'\^f)) is φ~\V) where V is the unique
Riemannian connection on v(jf?). With respect to the framings £f and φ~~ι(
we have

(3.4) K{φ~\V) = φ*(K(P)) .

Furthermore, for P e I*(SOq)

(3.5) Mφ'Ψ), *VW = φ*Vp(F, D,)) .

Comparing (3.4), (3.5) with Definition 1.13 completes the proof. q.e.d.

Suppose ( j f 0, ^ 0 ) and ( ^ 1 ? 9>d are smooth ^Γq-structures on M with ί/>

i

a framing of K ^ ) for / = 0,1. These two /^-structures are said to be
smoothly homotopic if there exist a smooth (̂ f, y ) o n M χ [0,1] which satis-
fies

(3.6) ΐ*(jf, ST) = (Jtrt9 S?t) for * = 0,1 ,

where it: M —> M X [0,1] is given by it(m) = (m, ί).

Corollary 3.2 (Homotopy invariance). If (Jfo,<¥Ό) a n d (Jfu&Ί) are
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smoothly homotopic RΓ ^-structures on M, then

Proof. Letting tf be as in (3.6). Then by Theorem 3.1

δίt,,t = ifoδ^ for/= 0,1 .

In cohomology if = if.
Corollary 3.3. Suppose (B, <, )) is a q-dimensional parallelizible

Riemannian manifold with 5f a framing for the tangent bundle of B. Let 8F^ >
be the RΓq-foliation of B by points. If φ.M-^B is a smooth map, then
*,-!(*<, » , r w : H(r)(RWq) -> Wr)(M) is the zero map for r > q.

Remark 3.4. Examples 2.1 and 2.3 show that if B is not parallelizible,
then δψ-HSF< ^ - l ^ ) may be nonzero for a framing of v(φ~\3F^ >)).

If φ is a submersion Corollary 3.3 is a special case of the following theorem
which gives an idea of what is being measured by the secondary characteristic
classes.

Theorem 3.5. Suppose 2F g is an RΓq-foliation, and Sf — {sλ, , sq} is
an orthonormal framing of v{&g). If for every X tangent to the leaves of

Vxst = 0 for i = 1, .-,q ,

then

8Q, = 0 forr> q .

Proof. We will show that if a e RWq and dim (a) > q, then d,g^{ct) = 0
on M. If U is an open subset of M and f:U—>Rqisa. submersion whose fibres
are the local leaves of J^, then the hypothesis implies that there exists a fram-
ing S of Rq so that f~\S) = £f \ U and it follows that the flat connection D as
in § 1.2 satisfies Dy\ U = f~\Ds) where Ds is the flat connection on Rq as-
sociated to S. From § 1.1 the unique Riemannian connection Fg is, over U,
pulled back from Rq, and thus 3f of (1.2), defining AP(Fg,D), is, over U X
[0,1], pulled back from Rq. In purticular, K(0) \ U X [0,1] and K(Fg) \ ϋ are
pulled back from Rq, and it follows from Definition 1.13 that δ,g^{a) \ U = 0.
Since M is covered by open sets U of the above type, the theorem is proved.

3.2. The classifying space BRΓq

There exist a classifying space BRΓq for iΐ/^-structures and a map

vq: BRΓq —> BOq classifying the normal bundle of the universal .RΓ'^-structure

(see [4], [12]). Let BRΓq be the homotopy theoretic fibre of the map vq. The

space BRΓq classifies .RΓ'g-structure with a framing of the normal bundle. As
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in [2] we can use the naturality given by Theorem 3.1 to define a canonical
homomorphism

δ* : H*(RWq) -> H*(BRΓq R) .

Examples 2.1, 2.2, 2.3 show that δ* is not zero on certain elements of H*(RWq).
Conjecture, δ* is an injection for all q.

4. Dependence on the trivialization of the normal bundle

In order to describe the dependence of the map δ%^ on the framing Sf we
need to recall the transgression map τ,

(4.1) τ: Hr(BSOq A) - HT'\SOq A)

where r > 1, and A will be a coefficient ring which for our purpose will be
either the integers or the reals. The map τ is a homomorphism of the additive
structure but not a ring homomorphism τ maps primitive elements to primi-
tive elements and maps products to zero. For a definition and basic properties
of τ see [6] or [1].

A polynomial P e lr(SOq) can be viewed by the Weil homomorphism ([9]
or [2]) as an element of H2r(BSOq R). From [6] we have an explicit formula
for a differential form on SOq, denote τP, which represents τP in the de Rham
cohomology:

(4.2) τP = (~

where w is the Maurer-Cartan form on SOq.
Before giving the main theorem of this section we state without proof a

proposition which follows from the work of J. Vey (cf. [6]).
Proposition 4.1. The cohomology algebra H*(RWq) is generated by the

set of elements γ of one of the following forms:
(i) γ = {hj}, where j is even, and \q < / < q.
(ii) γ = {ctι ciphh hh) where

(a) the Vs are either even integers < \q or possibly χ in case q is even
and I = dim (c t l cίp) < q,

(b) the j's are distinct even integers < \q or possibly χ in case q is
even,

(c) letting jQ = min {dim (hjk) \ I = 1, ,/} ,/ + 2/0 > q.

(If I>q, then γ is prima facie zero / + 2jo>q is the cocycle condition.)

Theorem 4.2. Let ^ be an RΓq-structure on a manifold M, and let Sf —
{Si, 9Sq} and Sf' = {s[, , s'q} be coherently oriented orthonormal triviali-
zations of V(JP). Define φ: M -> SOq by
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s'i = Σ ψijSj for i = 1, .- ,q .

Then

(4 3) ( i ) δ*^hj}) " δ*A%}) = ψ*(?cj) for j even and
(ii) for γ of form 2 in Proposition 4.1

= Σ (-
l

(4.4)

(In case q = 2 (mod 4) replace τcχ by — τcχ in the above.)
Note. In understanding (4.4) it is important to note that δ^k^{hjk) is not

in general closed (/V < J<?). However δ^^f{ciχ cip) multiplied by any num-
ber of terms δjf^{hjk) is in general closed and the right hand side of (4.4)
can be expanded and shown to depend only on the map 3%^ and φ*.

Corollary 4 3. // γ of the above forms contains only a single h3 (/ < %q),
then δ^^(γ) is independent of the framing ¥'.

Proof. Apply (4.4) and observe that δ^^ic^ cip) is zero in coho-
mology.

Remark. In case γ contains two h/s, then formula (4.4) becomes

δi,Λr) - δ*,Ar) = φ^τcώδZ.Ateu cίphh})

- φ^τCjJδ^AK ciphh}) .

One can easily check that Corollary 4.3 is consistent with reversing the roles
of Sf and &" above since φ is then replaced by φ~ι and (φ'1)* = — 9*.

Corollary 4.4. If q = 2, then 8%^ is independent of the choice of framing
ST.

Proof. Observe that RW2 contains only hx and apply Corollary 4.3.
Corollary 4.5. (2π)~jδ%yy(hj) is a well defined R/Z class independent of the

framing S? for j > \q.
Proof. From [8] the polynomial {2π)~jcj represents a class in H2j(BSOq Z)

and, from [1], τ ((2π)-jCj) is in H2j~\SOq Z). The corollary then follow di-
rectly from (4.3).

We begin the proof of Theorem 4.2 with a lemma which is due to H. Blaine
Lawson and James Heitsch. We are happy to thank H. Blaine Lawson for
communicating the essential ideas to us.
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Observe that δ^^ihj) — δ^,^{h3) is a closed form.

Lemma 4.6. {δ*,^(hj) — δ*^,(h3)} — (— l)jφ*(τc3) for j even, j < q, or
possibly j = χ in case q is even where (— I)-* = (— l) i < z in case j = χ.

Proof of Lemma 4.6. Let V be the unique Riemannian connection on
v(^f) and let D and Df be the flat connections on v(J>f) associated to the
trivializations S? and £fr respectively.

For any polynomial P € I*(SO(q)) we have [5] (a consequence of Theorem
1, p. 382) that modulo exact forms

(4.6) JP(Γ, D) + JP(D, DO + ΔFφ\ V) = 0 .

It follows directly from the definition that

(4.7) MD',F) = - J P ( F , L > 0 ,

and thus comparing (1.13) with (4.6) we have modulo exact forms

(4.8) δ^Λhj) - δ^Ahj) = ΔCjφ
f, D) .

To compute Δcβ>\ D) consider M x [0,1] as in (1.2) and let Of be the con-
nection on π~\v{^)) given by

(4.9) 3 = tΌf + (1 - t)D .

We now find the connection matrix of Df with respect to the framing if:

(4.10) 0 = 2 {dΨίj ® sj + ψijD'sj) ,

Thus the connection matrix of Df with respect to SP is —φ~ιdφ, the connec-
tion matrix of 3d with respect to π'1^) is

(4.11) -tψ-'dφ ,

and the curvature of Of is

(4.12) K{0) = -dtφ-ιdφ + (t - t2)ψ-ιdψψ-ιdφ .

By (1.3) and the symmetry and linearity properties of c3



378 CONNOR LAZAROV & JOEL PASTERNACK

J
Cj
(D\ D) = π*(Cj(K(9), • • , Kiβ)))

= jπ^Cji-dtφ-'dφ, (t - f)φ-
ι
dφφ'

ι
dφ

9
 • • •))

(4.13) /ri
 2

 ._
χ
 \

VJo /
 J
 '

 1
—i—-

= - ( f 2 ' 0 ^C^dψ^dφφ-'dφ, •••) .

If w is the Maurer-Cartan form on SOq, then

(4.14) φ*(w) = ψ-ιdφ .

Since [φ*(w), φ*(w)] = 2φ-ιdψφ-ιdφ it follows that

(4.15) Δ
Cj
{D',D) = - ( ^

Comparing (4.2) completes the proof of the lemma.

Proof of Theorem 4.2. Part (i) of the theorem follows directly from Lem-
ma 4.3. We prove part (ii). By the lemma,

(4.16) δ^(hj) = δ^Ahj) + φ^cj) + dξj ,

where ξj e A2j~2(M), and, in case q = 2 (mod 4) and / = χ, replace τcχ by

- r c z .

Since d*^ and 8*^, are homomorphisms of RWq into A*(M) and δ^^c^ =

δχ>,<?'(ci)> it follows that

cίp)

The proof of (4.4) is completed by passing to cohomology and partially ex-
panding the product.

5. Continuous deformations

In this section the behavior of the secondary characteristic classes on a dif-
ferentiable family of jR/^-structures is discussed. It is shown that a nonzero
variation in these classes can occur for those classes which lie in cohomology
dimension q or q + 1, and that analogous to [5], rigid classes are generated in
dimension greater than q + 1. Furthermore, it is proved that for a fixed RΓq-
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foliation the classes in cohomology dimension greater than q are foliation-
invariants independent of the choice of preserved Riemannian metric on the
normal bundle.

We begin with three examples.
Example 5.1. In this example we will have a fixed foliation J^, and for

each real value u, u > 0, we have a "preserved" metric gu on v{^). The
manifold is SU(2), and 2F is the foliation of Example 2.1 defined by the right
action of Sι given by (2.4). Let V, W19 W2 be the right invariant vector fields

on SU(2) represented in the Lie algebra by ί^ __•)>(• n)> a n ( * (i ~Ω /

respectively. For u > 0, let <, }u be the unique right invariant metric on
SU(2) for which {uV, W19 W2) is an orthonormal framing. For each u > 0,
<(, yu induces, as in Example 2.1, a preserved metric gu on v{ϊF). From
Proposition 2.1 and Theorem 5.6 below we will see that

(5.1) δ*Jχhχ} = Sβ2βia ,

where we have suppressed the framing of V(JF'gu) since by Corollary 4.4 in
codimension 2, the secondary classes are independent of framing.

Example 5.2. This example was suggested to us by Raoul Bott. We are
happy to thank him for his interest and help. As is Example 5.1, this is a dif-
ferentiable variation of Example 2.1. Let <, )> be as in Example 2.1 and for
each real u define an isometric action of R on (SU(2), <, » by the formula

ίut 0 \ feu 0

for t € R and a € SU(2). The actions are isometric since <, )> is bi-invariant.
For each u the orbits of the associated action are the integral curves of X + uV
where V is as in Example 5.1, and these orbits give a foliation of SU(2) for
u Φ ± 1 . For each u, — 1 < u < 1, let ^ u be the induced Riemannian folia-
tion of SU(2).

Proposition 5.1. The function δ%u({χhχ}) is a nonconstant function of u.
For a proof of this proposition see Appendix I.
Example 5.3. This example is due to Chern-Simons [3], and is a continu-

ation of Example 2.2. For u > 0, let <, \ be the left invariant metric on
SU(2) for which yu = {uX, Y19 Y2} is an orthonormal basis. Let ^<t >u be a
3-codimensional 7^Γ3-foliation of SU(2) as in Example 2.2. A direct computa-
tion yields a formula for δ%^ >tt,̂ tt({Λ2} and

Proposition 5.2. The function δ%^ >,̂ u({/ι2}) is a nonconstant function of u.

Remark 5.4. As in [2] Propositions 5.1 and 5.2 yield the following

(i) π2(BRΓ2) is uncountable,

(ii) π3(BRΓz) is uncountable.
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In Examples 5.2 and 5.3 above we have seen that nonzero variation of the
secondary class can occur in the codim and codim plus one. In contract, fol-
lowing Heitsch [5] we have

Theorem 5.5. // O f ω, SfJ for u e [0,1] is a diβerentiable family of RΓq-
structures on a manifold M, then

for u e [0, 1] on classes generated in cohomology dimension greater than q + 1.
Proof. Let Vu be the unique Riemannian connection on v(Jfu), and let θu

be the matrix of Vu with respect to Sfu. By [5, p. 382] modulo exact forms

(5.3) !•«*.,*.(*,) = JCj(fθU9 K(FU),
du \au *

By an argument which uses the fact that K(FU) is locally pulled back from Rq

and is entirely similar to [5, p. 384] we conclude that for γ as in Proposition
4.1 and of dim > q + 1 and with one h

(5.4) hκuM = o ,
du

modulo exact forms, q.e.d.
Theorem 5.5 can be strengthened for variations of the type given by Ex-

ample 5.1.
Theorem 5.6. Suppose that IF is a fixed q-codimensional foliation of a

manifold M, and gu, M € [0,1], is a diβerentiable family of preserved
Riemannian metric on vi^). Let Sfu be a diβerentiable family of gu-ortho-
normal framings on v(!F). Then for u e [0, 1] and lasses generated in dim-
ension greater than q

g

Corollary 5.7. The secondary characteristic classes of an RΓ\-foliation 2F\
are independent of the preserved metric g on v(έFg). That is, if g0 and gλ are
both preserved metrices on v{^), and y o and Sfx are homotopic orthonormal
trivialίzations of v{^g) and v(^gl) respectively, then for cohomology dimen-
sion r > q

Proof of Corollary 5.7. Let gu = ug0 + (1 — ύ)gx for u e [0, 1]. Observe
that this gives a diίferentiable family of preserved metrices on v{^). Since ^ 0

is homotopic to SfΊ, we can find a continuous family 5fu, u e [0, 1], of triviali-
zations of v(^) with So = S?o, S1 = £fx and by Gram-Schmidt a continuous
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family Sfu where for each u e [0,1], Sfu is g%-orthonormal. Now apply Theo-
rem 5.6 to the family ( ^ , S?u).

Proof of Theorem 5.6. First observe that comparing with Theorem 5.5 for
q odd, there is nothing to prove since q + 1 is even and H*(RWq) is zero in
even dimensions.

For q even, we consider two cases q > 2 and q = 2. For g even and greater
than 2, observe that if γ <= Hq+1(RWq), then p does not involve cχ or hχ. For
such f by Remark 1.15, δ, ^(γ) can be defined with Sf not necessarily g-
orthonormal and it is straightforward to show that Theorem 4.2 carries over
with τ replaced by the transgression τ\ H*(BGLq) —> H*(GLq).

For γ e Hq+1(RWq), q > 2, it follows that

(5.5) δ%g^{γ) = ngu,rSr),

since the change of coordinates map φu between <9*0 and £fu is homotopically
trivial. Furthermore, if γ <-. Hq+1(RWq) is of type (i) or (ii) in Proposition 4.1,
then γ contains only a single hjy and combining Remark 1.15 with (5.5) yields

(5.6) δ*t%tS,Jr) = {Ap(Fu,D,J},

where Fu is the unique Riemannian connection on v(^g), and P is a poly-
normal of degree \q + 1, P e I*(GLq).

In case q = 2, then {χhχ} is a basis for /?3CRW2), and it is not difficult to
check (compare [3]) that

(5.7) ^ ( { χ / ι J ) - { J C 2 ( Γ , , D , ) } ,

where c2 is the determinant polynomial. (In comparing with [3] note that c2 =
χ\ and thus Tc2(F) = χ(K(F)) A Tχ(F) + exact.) Since c2 6 I*(GL2), we may
compute ^ (̂{χ/zχ}) with respect to a framing which is not necessarily g-
orthonormal, and (5.6) holds for γ{χhχ}.

We will need the following lemma.
Lemma 5.8. Suppose U is an open subset of M, and f: U —> Rq is a sub-

mersion with fibres the local leaves of 2F. Then for any polynomial P € I*(GLq),

—(AJFu,DyQ)\U is a section of f-(Λ*(T*(Rq)), that is, a linear combination
du

of differential forms pulled back from Rq.
Proof of Lemma 5.8. Let θu be the connection matrix of Fu with respect

to <̂ o> and let ψu = — θu. Suppose P is homogeneous of degree r. By [5]
du

^-FP(FU,DJ = rP(ψu,K(Fu),
du * .
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Recall that we have metrics <(, yu on Rq, and Vu\ U is pulled back from
the unique Riemannian connection on (Rq, <, > J . It is standard (cf. [12])
that with respect to any framing of v{^) \ U the entries of K(FU) \ U are linear
combinations of differential forms pulled back from Rq. The proof will be
completed by showing that ψu\ U is similarly pulled back from Rq.

Observe that ψw, like K(FJ, is a tensorial object even though θu is not
tensorial. Specifically, suppose &" = {s[, , s'q} is a framing for v{&) \ U, θ'u

is the connection matrix of Vu with respect to Sf\ ψu — ~&u, and λ: U
du

GLq satisfies s't = 2 « β l ^ ^ . Then

(5.8) ψtt = r 1 o ψ ς o i .

Let 5 be a fixed framing for Γ ^ 9 ) , and let <¥" = /"K S). Then the connec-
tion matrix ^ is pulled back from Rq, and therefore ψ'u from Λ9. By (5.8),
ψu is a linear combination of differential forms pulled back from Rq. q.e.d.

Comparing Lemma 5.8 with (5.6) yields

since for each open set U as in the lemma

^Δp{Vu,Dy) = 0 onC/
du

by a dimensionality argument, and M is covered by such open sets. Hence the
proof of Theorem 5.6 is complete.

Appendix

Here we present a proof of Example 5.2 in a computational manner.
To do this computation we view S3 as the set of quaternions q = q0 + qj

+ #2/ + Qik of unit length. The foliation ϊFu is generated by the vector field
Y = L*(ι) + uR*{f). Then Yq = !,*(/ + u Ad {q-ι)i)q. We let X19 X2, Z 3 be
the left invariant vector fields L^(ι), L*(j), L*(k) respectively. Let x19 x29 x3 be
the dual basis of left invariant forms. Ad (q~ι)ί = anXι + a12X2 + auXz where

«n = <& + <l\ — <& — Ql Λ12 = 2(^i^2 - 4o43)> «is = 2((?ô 2 + <M3) For later
purposes we will need the following dota.

XMi) = 0 , X2(an) = - 2 Λ 1 S , Z3(«ii) - 2a12 ,

ZxίflJ - 2aιz , Z 2fe 2) = 0 , X3(a12) = -2an ,

* i ( β i s ) = - 2 Λ 1 2 , Z 2(fl 1 3) = 2f l n , Z 3(fl 1 3) = 0 ,

dau = ~2anx2 + 2a12x3 ,
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da12 = 2anxι - 2anx3 ,

dan = ~2al2xx + 2anx2 .

Recall that <, > is the bi-invariant metric on S3, and we construct a global
orthonormal framing of the orthogonal complement to J ^ , namely,

3, x3) - < ^ i | ^ - <z3, z2y)~h.

Then s = {Z2,Z3} is an orthonormal framing of J ^ . Let V be the unique
Riemannian torsion-free connection on this normal bundle, and D the con-
nection which is globally flat relative to s. Then Vs = sθ where

-θ 0

and a simple computation shows that δ^u({χhx}) = {θdθ}.
Now to show that the cohomology class of d^ ({χhx}) varies continuously

with u, we will expand everything in powers of u and drop all terms involving
powers of u greater than u2. Thus

Y = (1 + uan)Xλ + a12uX2 + aιzuX% ,

Z 2 = (ana12u
2 - auu)Xι + (ί - \a\2u

2)X2 - u2auauX3 ,

Zz = (anauu
2 - a^X, + (1 - \a\zu

2)X2 .

Now write θ = θ{X^xλ + θ(X2)x2 + θ(X3)x3, and so

2<z1 ?z3> - \zz<x^
i{2<[Z1 ?Z2],Z3> +

-θ(x2) = <FX2z2,zzy <
+ 1{2<[Z2,Z2],Z3>

+ 1{2<[Z3?Z2],Z3>

Here π is the projection on the orthogonal complement, and we have used

(2.1) and the standard formula for the torsion-free Riemannian connection in

terms of brackets, inner products and derivations. We have also used the fact

that X19 X2, Z 3 are Killing vector fields. Then
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[Z2,Z3] = (9a2

nu
2 - 5u2 - 4anu + 2)XX + (-4ana12u

2 + 2auύ)X2

+ (—6ana13u
2 + 2a13ύ)X3 ,

Zt(X19Zsy = -Z s<JC 1,Z a> = (4a2

n - 2)u2 - 2auu ,

Z2<X2, Z3> = 0 , Z3<X2, Z2> = 2ana12u
2 ,

Z2<X3,Z3> = -Z 3 <X 3 ,Z 2 > - -2ana13u
2 ,

<[X,,Z2],Z3> = -4ana12u
2 + 2a12u ,

<[Z 3,Z 2],Z 3> = -2ana13u
2 + 2al3u .

Thus

πXx = (a

2

12 + a\z)u2Xx + (ana12u
2 - auu)X2 + (ana13u

2 - auu)X3 ,

πX2 = (anaί2u
2 — anύ)Xι + (1 — a\2u

2)X2 — aί2a13u
2X3 ,

πX% = (ana13u
2 - a13u)Xι - al2aί3u

2X2 + (1 - a\3u
2)X3 ,

and therefore

<[Z2, Z J , πZx> = 0 , <[Z2, Z 3], πX2y = 2anauu
2 , <[Z2, Z 3], τrZ3> = 0

Hence

d =~2 + 2anu - (2al - a\2 - ?>a\z)u2 ,

Θ(X2) = 6fluflf12M
2 — 2 α 1 2 w ,

= 4ana13u
2 - 2al3u ,

so that 0 = ^(ZO^! + ^(Z 2)^ 2 + θ(Xz)xz.
Let us write θ = —2xλ + uωx + w2ω2 where

ωx = 2aιιxι — 2aux2 — 2aux3 ,

ω2 = (—2a?! + «2

12 + 3 ^ ) ^ + 6anal2x2 + 4ana13x3 .

Then

θdθ = — δjCxJC^ + u(4x2x3ω1 — 2 ^ ^ ! )

Now it is easily seen that the coefficient of u integrates to zero over S3. Let
C = — 2xxdω2 + 4x2x3ω3 + <θidω19 which is the coefficient of w2. Since
— 2xxdω2 = 4x2x3ω2 + dγ for some γ, we have

C = 8x2Λ:3ω2 + ωxd<ύχ + dγ ,
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(ύιdωι = — 8 ( 2 ^ + l)x1x2x3 ,

8x2x3ω2 = 8( — 2αfx + a\2

Thus C = 8(-5a2

n + 2a\^xγx2xz + dγ,

Since xγx2xz = 2π2 and a\xxγx2xz = fl?2*Λ*3 = ^3*1*2*3 = — π\
J -S3 J -S» J -S3 J 53 3

C = — 16π2. Finally, up to the second order
JS9

Hence this class varies continuously with u.
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