HARMONIC AND RELATIVELY AFFINE MAPPINGS

KENTARO YANO \& SHIGERU ISHIHARA

The theory of harmonic mappings of a Riemannian space into another has been initiated by Eells and Sampson [2] and studied by Chern [1], Goldberg [1], [3], T. Ishihara [3], [5] and others.

In this paper, we study projective and affine mappings of a manifold with symmetric affine connection into another and harmonic and relatively affine mappings of a Riemannian space into another.

1. Differentiable mappings of a manifold with symmetric affine connection into another

Let (M, ∇) be a manifold of dimension n with symmetric affine connection ∇, and $(N, \bar{\nabla})$ a manifold of dimension p with symmetric affine connection $\bar{\nabla}$, where $n, p \geq 2$. Let there be given a differentiable mapping $f: M \rightarrow N$ which we denote sometimes by $f:(M, \bar{\nabla}) \rightarrow(N, \bar{\nabla})$. Manifolds, mappings and geometric objects which we discuss in this paper are assumed to be of differentiability class C^{∞}. Take coordinate neighborhoods $\left\{U ; x^{h}\right\}$ of M and $\left\{\bar{U}, y^{\alpha}\right\}$ of N in such a way that $f(U) \subset \bar{U}$, where $\left(x^{h}\right)=\left(x^{1}, x^{2}, \cdots, x^{n}\right)$ and $\left(y^{\alpha}\right)=\left(y^{\overline{1}}\right.$, $y^{\overline{2}}, \cdots, y^{p}$) are local coordinates of M and N respectively. The indices h, i, j, k, l, m, r, s, t run over the range $\{1,2, \cdots, n\}$, and the indices $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu$ the range $\{\overline{1}, \overline{2}, \cdots, \bar{p}\}$. The summation convention will be used with respect to these two systems of indices. Suppose that $f:(M, \bar{V}) \rightarrow(N, \bar{\nabla})$ is represented by equations

$$
\begin{equation*}
y^{\alpha}=y^{\alpha}\left(x^{1}, x^{2}, \cdots, x^{n}\right) \tag{1.1}
\end{equation*}
$$

with respect to $\left\{U, x^{h}\right\}$ and $\left\{\bar{U}, y^{\alpha}\right\}$. We put

$$
\begin{equation*}
A_{i}{ }^{\alpha}=\partial_{i} y^{\alpha}\left(x^{1}, x^{2}, \cdots, x^{n}\right), \tag{1.2}
\end{equation*}
$$

where $\partial_{i}=\partial / \partial x^{i}$. Then the differential $d f$ of the mapping f is represented by the matrix $\left(A_{i}{ }^{\alpha}\right)$ with respect to the local coordinates (x^{h}) and (y^{α}) of M and N.

When a function ρ, local or global, is given in N, throughout the paper we shall identify ρ with the function $\rho \circ f$ induced in M. We denote by $\Gamma_{j i}^{h}$ the
components of the affine connection ∇ in M, and by $\Gamma_{\gamma \beta}^{\alpha}$ those of the affine connection $\bar{\nabla}$ in N.

In this and the next sections, X, Y and Z denote arbitrary vector fields in M with local expressions $X=X^{h} \partial_{h}, Y=Y^{h} \partial_{h}$ and $Z=Z^{h} \partial_{h}$ respectively. Then $\left(A_{i}{ }^{\alpha} X^{i}\right) \partial_{\alpha}$, where $\partial_{\alpha}=\partial / \partial y^{\alpha}$, is the local expression of the vector field $(d f) X$ defined along $f(M)$. If we put in U

$$
\begin{equation*}
A_{j i}{ }^{\alpha}=\nabla_{j} A_{i}{ }^{\alpha}, \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{j} A_{i}{ }^{\alpha}=\partial_{j} A_{i}{ }^{\alpha}+\Gamma_{\gamma \beta}^{\alpha} A_{j}{ }^{\gamma} A_{i}{ }^{\beta}-\Gamma_{j i}^{h} A_{h}{ }^{\alpha}, \tag{1.4}
\end{equation*}
$$

then $\left(A_{j i}{ }^{\alpha} X^{j} Y^{i}\right) \partial_{\alpha}$ is the local expression of a vector field B defined along $f(M)$, and $A_{j i}{ }^{\alpha}=A_{i j}{ }^{\alpha}$.

Consider a curve $\gamma: I \rightarrow M$ in M, I being an interval, and denote by $\bar{\gamma}=$ $f \circ \gamma: I \rightarrow N$ the image of γ by f. When γ is locally represented by $x^{h}=x^{h}(t)$, t being a parameter belonging to $I, \bar{\gamma}$ is so by $y^{\alpha}=y^{\alpha}\left(x^{h}(t)\right)$. If γ satisfies

$$
\frac{d^{2} x^{h}}{d t^{2}}+\Gamma_{j i}^{h} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=\alpha(t) \frac{d x^{h}}{d t}
$$

with a certain function $\alpha(t)$ of t, then γ is called a path of (M, ∇). It is easily seen that the above equations can be reduced to

$$
\frac{d^{2} x^{h}}{d t^{2}}+\Gamma_{j i}^{h} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=0
$$

by a suitable change of the parameter t. In this case γ is called a path with affine parameter t. A path in N and the affine parameter on this path will be similarly defined.

Now, using $y^{\alpha}=y^{\alpha}\left(x^{h}(t)\right)$, (1.3) and (1.4), we find

$$
\begin{equation*}
\frac{d^{2} y^{\alpha}}{d t^{2}}+\Gamma_{r \beta}^{\alpha} \frac{d y^{\tau}}{d t} \frac{d y^{\beta}}{d t}=A_{h^{\alpha}}{ }^{\alpha}\left(\frac{d^{2} x^{h}}{d t^{2}}+\Gamma_{j i}^{h} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}\right)+A_{j i} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t} \tag{1.5}
\end{equation*}
$$

We assume that an arbitrary path in (M, ∇) is mapped by f into a path in $(N, \bar{\nabla})$. Such a mapping f is said to be projective. Under this assumption, we have from (1.5)

$$
\beta(t) \frac{d y^{\alpha}}{d t}=A_{j i} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}
$$

for any path $\gamma: x^{h}=x^{h}(t)$ in $(M, \nabla), \beta(t)$ being a certain function of t. Thus, γ being arbitrary, we find $\beta A_{h}{ }^{\alpha} \xi^{h}=A_{j i}{ }^{\alpha} \xi^{j} \xi^{i}$ for any direction $\xi=\xi^{h} \partial_{h}$ at any point of M, from which we conclude that

$$
\begin{equation*}
A_{j i}{ }^{\alpha}=p_{j} A_{i}{ }^{\alpha}+p_{i} A_{j}{ }^{\alpha} \tag{1.6}
\end{equation*}
$$

for some local functions p_{i} ii: U, which are the components of a 1-form in M. The converse being evident, u e have

Proposition 1.1. In order for a mapping $f:(M, \nabla) \rightarrow(N, \overline{\bar{V}})$ to be projective, it is necessary and sufficient that $A_{j i}{ }^{\alpha}$ has the form (1.6).

We next assume that an arbitrary path in (M, ∇) is mapped by f into a path in (N, \bar{V}) with the affine parameter preserved. Such a mapping f is said to be affine. Under this assumption, we have from (1.5)

$$
\begin{equation*}
A_{j i}{ }^{a} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=0 \tag{1.5}
\end{equation*}
$$

for any path $\gamma: x^{h}=x^{h}(t)$ in (M, ∇). Thus, γ being arbitrary, we have $A_{j i}{ }^{\alpha} \xi^{j} \xi^{i}$ $=0$ for any direction $\xi=\xi^{h} \partial_{h}$ at any point of M, from which we conclude that $A_{j i}{ }^{\alpha}=0$. The converse being evident, we have

Proposition 1.2. In order for a mapping $f:(M, \nabla) \rightarrow(N, \bar{\nabla})$ to be affine, it is necessary and sufficient that $A_{j i}{ }^{\alpha}=0$.

2. Differentiable mapping of a Riemannian space into another

Let (M, g) and (N, \bar{g}) be Riemannian spaces of dimensions n and p respectively. Let there be given a mapping $f: M \rightarrow N$ denoted sometimes by $f:(M, g)$ $\rightarrow(N, g)$. We denote by $g_{j i}$ the components of the Riemannian metric g in M, and by $g_{\gamma \beta}$ those of the Riemannian metric \bar{g} in N. The Christoffel symbols formed with $g_{j i}$ and $g_{\gamma \beta}$ are denoted by $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ and $\left\{\begin{array}{c}\alpha \\ \gamma \beta\end{array}\right\}$ respectively. Thus, denoting by $\bar{\nabla}$ the affine connection determined by $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ and by $\bar{\nabla}$ that determined by $\left\{\begin{array}{l}\alpha \\ \gamma \beta\end{array}\right\}$, we can regard f as $f:(M, \nabla) \rightarrow(N, \bar{\nabla})$.

If we put

$$
\begin{equation*}
g_{j i}^{*}=g_{\gamma \beta} A_{j}{ }^{r} A_{i}{ }^{\beta}, \tag{2.1}
\end{equation*}
$$

then $g_{j i}^{*}$ are the components of the tensor $g^{*}=f^{*} \bar{g}$ induced in M from \bar{g} by f. For $g^{*}=\rho g, f:(M, g) \rightarrow(N, \bar{g})$ is said to be conformal, homothetic or isometric according as the function ρ is positive, constant or equal to 1 .

Differentiating (2.1) covariantly, we find

$$
\begin{equation*}
\nabla_{k} g_{j i}^{*}=D_{k j i}+D_{k i j} \tag{2.2}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
D_{k j i}=A_{k j}{ }^{\gamma} A_{i}{ }^{\beta} g_{r \beta} . \tag{2.3}
\end{equation*}
$$

Changing indices in (2.2), we obtain

$$
\begin{align*}
\nabla_{j} g_{k i}^{*} & =D_{j k i}+D_{j i k} \tag{2.4}\\
\nabla_{i} g_{k j}^{*} & =D_{i k j}+D_{i j k} \tag{2.5}
\end{align*}
$$

Forming $(2.2)+(2.4)-(2.5)$, we find

$$
\begin{equation*}
D_{k j i}=\frac{1}{2}\left(\nabla_{k} g_{j i}^{*}+\nabla_{j} g_{k i}^{*}-\nabla_{i} g_{k j}^{*}\right), \tag{2.6}
\end{equation*}
$$

where we have used $D_{k j i}=D_{j k i}$ which is a direct consequence of $A_{k j}{ }^{\alpha}=A_{j k}{ }^{\alpha}$. When $\nabla g^{*}=0$, that is, when $\nabla_{k} g_{j i}^{*}=0$ is satisfied, $f:(M, g) \rightarrow(N, \bar{g})$ is said to be relatively affine (see [4]). Since we can see from (2.2) and (2.6) that $\nabla_{k} g_{j i}^{*}=0$ and $D_{k j i}=0$ are equivalent, we now have

Proposition 2.1. A mapping $f:(M, g) \rightarrow(N, \bar{g})$ is relatively affine if and only if $D_{k j i}=0$, i.e., if and only if $A_{k j}{ }^{\gamma} A_{i}{ }^{\beta} g_{\gamma \beta}=0$.

Thus any affine mapping is relatively affine.
The conditions $\nabla g^{*}=0$ and $g^{*}=\rho^{2} g$ imply $\rho^{2}=$ const. Thus we have
Proposition 2.2. If a mapping $f:(M, g) \rightarrow(N, \bar{g})$ is relatively affine and at the same time conformal, then it is homothetic.

It is easily seen that the rank of the mapping $f:(M, g) \rightarrow(N, \bar{g})$, i.e., the rank of $\left(A_{i}{ }^{\alpha}\right)$ is equal to the rank of $\left(g_{j i}^{*}\right)$ at each point of M. If the mapping f is relatively affine, then $\nabla g^{*}=0$ which implies that g^{*} is of constant rank m. Therefore, if f is relatively affine, then f is of constant rank m. Assume that f is relatively affine and of constant rank $m<n$, and for any point p of M put $D_{p}=\left\{X \in T_{p}(M) \mid(d f)_{p} X=0\right\}$, which is a subspace of dimension $n-m$ in the tangent space $T_{p}(M)$ of M at p. Therefore the correspondence $D: p \rightarrow D_{p}$ defines an $(n-m)$-dimensional distribution D in M, which is called the vertical distribution. It is easily verified that a vector field X belongs to the vertical distribution D if and only if $A_{i}{ }^{\alpha} X^{i}=0$, or equivalently, if and only if $g_{j i}^{*} X^{i}=$ 0 . By considering such a vector field X and differentiating $A_{i}{ }^{\alpha} X^{i}=0$ covariantly, we then obtain $A_{j i}{ }^{\alpha} X^{i}+A_{i}{ }^{\alpha} \nabla_{j} X^{i}=0$. Thus transvecting $A_{k}{ }^{\beta} g_{\beta \alpha}$ to this equation and using $D_{k j i}=0$, we have $g_{k i}^{*} \nabla_{j} X^{i}=0$, i.e., $(d f)\left(\nabla_{Y} X\right)=0$. Consequently, we arrive at

Proposition 2.3. Let a mapping $f:(M, g) \rightarrow(N, \bar{g})$ be relatively affine. If M is connected, then f is of constant rank m. When $0<m<\operatorname{dim} M=n$, the vertical distribution D is of dimension $n-m$ and parallel.

As a corollary to Proposition 2.3, we have
Proposition 2.4. Let $f:(M, g) \rightarrow(N, \bar{g})$ be relatively affine. If (M, g) is a connected and irreducible Riemannian space, then f is either of rank $n(=\operatorname{dim} M)$ or a constant mapping.

We now put

$$
\begin{equation*}
A^{\alpha}=g^{j i} A_{j i}{ }^{\alpha} \tag{2.7}
\end{equation*}
$$

where $\left(g^{j i}\right)=\left(g_{j i}\right)^{-1}$. Then the vector field T with components A^{α} defined along $f(M)$ is called the tension field of the mapping $f:(M, g) \rightarrow(N, \bar{g})$. It is well known that $f:(M, g) \rightarrow(N, \bar{g})$ is harmonic if and only if $T=0$, i.e., if and only if $A^{\alpha}=0$ (see [2]).

Consider the divergence of the vector field with local expression $\left(g^{h i} \boldsymbol{A}_{i}{ }^{\gamma} \boldsymbol{A}^{\beta} g_{r \beta}\right) \partial_{h}$ in M. We then obtain

$$
\nabla_{l}\left(g^{l i} A_{i}{ }^{r} A^{\beta} g_{r \beta}\right)=A^{r} A^{\beta} g_{r \beta}+A_{i}{ }^{r}\left(\nabla_{l} A^{\beta}\right) g^{l i} g_{r \beta}
$$

where we have put

$$
\nabla_{i} A^{\alpha}=\partial_{i} A^{\alpha}+\left\{\begin{array}{c}
\alpha \tag{2.8}\\
\gamma \beta
\end{array}\right\} A_{i}{ }^{\tau} A^{\beta}
$$

Thus we have
Proposition 2.5. A mapping $f:(M, g) \rightarrow(N, \bar{g})$ is harmonic if M is compact and $\nabla T=0$ which means $\nabla_{i} A^{\alpha}=0$.

3. Laplacian of $\|d f\|^{2}$

We shall compute Laplacian of $\|d f\|^{2}$ for later use. We now put in U

$$
\nabla_{k} A_{j i}{ }^{\alpha}=\partial_{k} A_{j i}{ }^{\alpha}+\left\{\begin{array}{c}
\alpha \tag{3.1}\\
\gamma \beta
\end{array}\right\} A_{k}{ }^{\gamma} A_{j i}{ }^{\beta}-\left\{\begin{array}{l}
m \\
k j
\end{array}\right\} A_{m i}{ }^{\alpha}-\left\{\begin{array}{c}
m \\
k i
\end{array}\right\} A_{j m}{ }^{\alpha} .
$$

Then $\left(\nabla_{k} A_{j i}{ }^{\alpha} X^{k} Y^{j} Z^{i}\right) \partial_{\alpha}$ is the local expression of a vector field defined along $f(M)$. Taking account of (1.3), (1.4) and (3.1), we obtain the following formula of Ricci-type :

$$
\begin{equation*}
\nabla_{k} \nabla_{j} A_{i}{ }^{\alpha}-\nabla_{j} \nabla_{k} A_{i}{ }^{\alpha}=R_{\partial r \gamma}{ }^{\alpha} A_{k}{ }^{\delta} A_{j}{ }^{r} A_{i}{ }^{\beta}-R_{k j i}{ }^{h} A_{h}{ }^{\alpha}, \tag{3.2}
\end{equation*}
$$

where $R_{\dot{\partial \gamma} \beta}{ }^{\alpha}$ and $R_{k j i}{ }^{h}$ are the components of the curvature tensors of \bar{g} and g respectively. We are now going to compute Laplacian of $\|d f\|^{2}$. We then have

$$
\begin{align*}
\frac{1}{2} \Delta\|d f\|^{2} & =\frac{1}{2} g^{l k} \nabla_{l} \nabla_{k}\left(A_{j}{ }^{\beta} A_{i}{ }^{\alpha} g^{j i} g_{\beta_{\alpha}}\right) \tag{3.3}\\
& =g^{l k}\left(\nabla_{l} \nabla_{k} A_{j}{ }^{\beta}\right) A_{i}{ }^{\alpha} g^{j i} g_{\beta \alpha}+\|B\|^{2},
\end{align*}
$$

where

$$
\begin{equation*}
\|B\|^{2}=A_{l k}{ }^{\beta} A_{j i}{ }^{\alpha} g^{l j} g^{k i} g_{\beta \alpha} \tag{3.4}
\end{equation*}
$$

Thus using (3.2) and putting $R_{\partial \gamma \beta \alpha}=R_{\partial \gamma \beta}{ }^{\lambda} g_{\lambda \alpha}$, from (3.3) we obtain

$$
\begin{align*}
\frac{1}{2} \Delta\|d f\|^{2}= & \left(\nabla_{j} A^{\beta}\right) A_{i}{ }^{\alpha} g^{j i} g_{\beta \alpha}+\|B\|^{2} \tag{3.5}\\
& +R_{\partial \overline{\partial \gamma \beta \alpha}} A_{l}{ }^{\delta} A_{i}{ }^{\gamma} A_{k}{ }^{\beta} A_{j}{ }^{\alpha} g^{l k} g^{j i}+R_{i}{ }^{h} g_{n j}^{*} g^{i j},
\end{align*}
$$

where $R_{j}{ }^{h}=R_{j k} g^{h k}$ are the mixed components of the Ricci tensor of (M, g) and $\nabla_{j} A^{\alpha}$ are defined by (2.8). Thus taking account of (3.5) we have

Lemma 3.1. For a harmonic mapping $f:(M, g) \rightarrow(N, \bar{g})$, we have

$$
\begin{equation*}
\frac{1}{2} \Delta\|d f\|^{2}=\|B\|^{2}+R_{\partial \gamma \gamma \beta a} A_{l}{ }^{\delta} A_{i}{ }^{\gamma} A_{k}{ }^{\beta} A_{j}{ }^{\alpha} g^{l k} g^{j i}+R_{j}{ }^{h} g_{n i}^{*} g^{j i} . \tag{3.6}
\end{equation*}
$$

Let $e_{(1)}, \cdots, e_{(n)}$ be n orthonormal vectors at each point of (M, g) such that

$$
\begin{gather*}
g_{j i}=e_{(1) j} e_{(1) i}+\cdots+e_{(n) j} e_{(n) i}, \tag{3.7}\\
g_{j i}^{*}=\lambda_{1} e_{(1) j} e_{(1) i}+\cdots+\lambda_{n} e_{(n) j} e_{(n) i} \tag{3.8}
\end{gather*}
$$

where $e_{(s)}{ }^{h}$ are the components of $e_{(r)}$, and $e_{(r) i}=e_{(r)}{ }^{h} g_{h i}$. Then we find

$$
\begin{equation*}
\lambda_{1}, \cdots, \lambda_{n} \geq 0 \tag{3.9}
\end{equation*}
$$

If we now put $\bar{e}_{(s)}=(d f) e_{(s)}$, then $\bar{e}_{(s)}$ has components of the form $e_{(s)}{ }^{\alpha}=A_{i}{ }^{\alpha} e_{(s)}{ }^{i}$. Therefore we get

$$
R_{\partial r \gamma \beta \alpha} A_{l}^{\delta} A_{i}^{\gamma} A_{k}^{\beta} A_{j}^{\alpha} g^{l k} g^{j i}=\sum_{r \neq s} R_{\delta r \beta \alpha} e_{(r)^{\delta}} e_{(s)}{ }^{\gamma} e_{(r)^{\beta}}{ }^{\beta} e_{(s)}{ }^{\alpha}
$$

and hence

$$
\begin{equation*}
\boldsymbol{R}_{\delta r \beta \alpha} A_{l}{ }^{j} A_{i}{ }^{r} A_{k}{ }^{\beta} A_{j}{ }^{\alpha} g^{l k} g^{j i}=-\sum_{r \neq s} \bar{\sigma}\left(\bar{e}_{(r)}, \bar{e}_{(s)}\right) \lambda_{r} \lambda_{s}, \tag{3.10}
\end{equation*}
$$

where $\bar{\sigma}(\bar{X}, \bar{Y})$ denotes the sectional curvature of $(N, \bar{g}), \bar{X}$ and \bar{Y} being any two linear independent vectors at any point of (N, \bar{g}).

On the other hand, we can easily find

$$
\begin{equation*}
\sum_{r \neq s} \lambda_{r} \lambda_{s}=-\sum_{s}\left(\lambda_{s}-\tilde{\lambda}\right)^{2}+n(n-1) \tilde{\lambda}^{2}, \tag{3.11}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\tilde{\lambda}=\frac{1}{n}\left(\lambda_{1}+\cdots+\lambda_{n}\right) \geq 0 . \tag{3.12}
\end{equation*}
$$

$n \tilde{\lambda}$ is sometimes denoted by

$$
\begin{equation*}
\text { Trace } g^{*}=n \tilde{\lambda}=g_{j i}^{*} b^{j i} \geq 0 \tag{3.13}
\end{equation*}
$$

We here consider the following condition :
(C) There is a constant c such that $c \geq \bar{\sigma}(\bar{X}, \bar{Y})$ for any two linearly independent vectors \bar{X} and \bar{Y} at any point of (N, \bar{g}).
Then using (3.10) and (3.11) we obtain

$$
\begin{equation*}
R_{\delta r \not \beta \alpha} A_{l}^{\delta} A_{i}^{\gamma} A_{k}^{\beta} A_{j}^{\alpha} g^{l k} g^{j i} \geq c \sum_{s}\left(\lambda_{s}-\tilde{\lambda}\right)^{2}-n(n-1) c \tilde{\lambda}^{2} \tag{3.14}
\end{equation*}
$$

when condition (C) is satisfied.
Next, using (3.7) and (3.8), we have

$$
\begin{equation*}
R_{j}{ }^{h} g_{n i}^{*} g^{j i}=\lambda_{1}\left(R_{j i} e_{(1)}{ }^{j} \boldsymbol{e}_{(1)}{ }^{i}\right)+\cdots+\lambda_{n}\left(R_{j i} \boldsymbol{e}_{(n)}{ }^{j} \boldsymbol{e}_{(n)}{ }^{i}\right), \tag{3.15}
\end{equation*}
$$

where $R_{j i}=R_{j}{ }^{h} g_{h i}$ are the components of the Ricci tensor of (M, g). Assume M to be compact and put

$$
\begin{equation*}
\frac{r}{n}=\min R_{j i} A^{j} A^{i} \tag{3.16}
\end{equation*}
$$

where $A=A^{h} \partial_{h}$ runs over the unit sphere bundle over (M, g). Then by (3.15) and (3.16) we find

$$
\begin{equation*}
R_{j}{ }^{h} g_{n i}^{*} g^{j i} \geq r \tilde{\lambda} \tag{3.17}
\end{equation*}
$$

and use of (3.14), (3.17) and Lemma 3.1 thus gives
Lemma 3.2. For a harmonic mapping $f:(M, g) \rightarrow(N, \bar{g})$ we have

$$
\begin{equation*}
\frac{1}{2} \Delta\|d f\|^{2} \geq\|B\|^{2}+c \sum_{s}\left(\lambda_{s}-\tilde{\lambda}\right)^{2}+n(n-1) c \tilde{\lambda}^{2}+r \tilde{\lambda} \tag{3.18}
\end{equation*}
$$

when M is compact and condition (C) is satisfied.

4. Theorems

First we shall give some remarks. If $\|B\|^{2}=0$, then we have $B=0$ which means that $f:(M, g) \rightarrow(N, \bar{g})$ is affine. If $\lambda_{1}=\cdots=\lambda_{n}=\tilde{\lambda}$, then $g^{*}=\tilde{\lambda} g$, which means that $f:(M, g) \rightarrow(N, \bar{g})$ is conformal when $\tilde{\lambda} \neq 0$ everywhere and that f is a constant mapping when $\tilde{\lambda}=0$ everywhere and M is connected. Thus, if $\|\boldsymbol{B}\|^{2}=0$ and $\lambda_{1}=\cdots=\lambda_{n}$, and M is connected, then f is a homothetic or constant mapping, because of Proposition 2.2. Consequently from Lemma 3.2 we have

Theorem 4.1. Let $f:(M, g) \rightarrow(N, \bar{g})$ be a harmonic mapping of a Riemannian space (M, g) of dimension n into another Riemannian space (N, \bar{g}), and assume M to be compact and connected. Then
(i) $f:(M, g) \rightarrow(N, \bar{g})$ is a constant or homothetic mapping of rank n everywhere, if (M, g) has positive definite Ricci tensor and there is a constant $c>0$ such that $c \geq \bar{\sigma}, \bar{\sigma}$ being the sectional curvature of (N, \bar{g}), and the following condition is satified:

$$
\text { Trace } g^{*} \leq \frac{r}{(n-1) c}
$$

where r is defined by (3.16);
(ii) $f:(M, g) \rightarrow(N, \bar{g})$ is a constant mapping, if the following condition is satisfied:
$\bar{\sigma} \leq 0$ and (M, g) has positive definite Ricci tensor.
In case (i) of Theorem 4.1, if $\operatorname{dim} M=n=\operatorname{dim} N$, then f is a regular and homothetic mapping of (M, g) onto a connected component of (N, \bar{g}); if $\operatorname{dim} M=n<\operatorname{dim} N$, then $f:\left(M, g^{*}\right) \rightarrow(N, \bar{g})$ is an isometric immersion, which is totally geodesic, and $g^{*}=\rho^{2} g$ with constant $\rho^{2}>0$. Thus, in case (i) of Theorem 4.1 if (N, \bar{g}) is a sphere (S^{p}, \bar{g}_{0}) of constant curvature, then (M, g) is necessarily a sphere (S^{n}, g_{0}) of constant curvature.

We now assume that $r=0$ and $\bar{\sigma} \leq 0$. Using (3.10) and (3.17), from Lemma 3.1 we have

$$
\frac{1}{2} \Delta\|d f\|^{2} \geq\|B\|^{2}+\boldsymbol{R}_{j}{ }^{h} g_{n i}^{*} g^{j i} \geq\|B\|^{2} .
$$

Thus, if M is compact, then $R_{j}{ }^{h} g_{n i}^{*} g^{j i}=0$, which and (3.15) imply

$$
\begin{equation*}
\lambda_{1}\left(R_{j i} e_{(1)}{ }^{j} e_{(1)}{ }^{i}\right)+\cdots+\lambda_{n}\left(R_{j i} e_{(n)}{ }^{j} e_{(n)}{ }^{i}\right)=0 . \tag{4.1}
\end{equation*}
$$

Hence it follows from (4.1) that

$$
\begin{equation*}
\lambda_{s}\left(R_{j i} e_{(s)}{ }^{j} e_{(s)}{ }^{i}\right)=0, \quad(s=1,2, \cdots, n), \tag{4.2}
\end{equation*}
$$

since $\lambda_{s}\left(R_{j i} e_{(s)}{ }^{j} e_{(s)}{ }^{i}\right) \geq 0$. (4.2) means that the Ricci tensor of (M, g) is of rank $\leq n-m$ when f is of rank m everywhere. Consequently taking account of Proposition 2.3 we obtain

Theorem 4.2. Let $f:(M, g) \rightarrow(N, \bar{g})$ be a harmonic mapping of a Riemannian space (M, g) into another Riemannian space (N, \bar{g}), and assume M to be compact and connected. Then either f is an affine mapping of constant rank $m \geq 0$ and the Ricci tensor of (M, g) is of rank $\leq n-m$, or f is a constant mapping, if the following condition is satisfied:
(A_{3}) $\bar{\sigma} \leq 0$, and (M, g) has positive semi-definite Ricci tensor and $r=0$, where r is defined by (3.16). In this case, Trace g^{*} is necessarily constant.

In Theorem 4.2, if (M, g) is connected and irreducible, then f is a constant mapping because of Proposition 2.4; if f is of rank n everywhere and (N, \bar{g}) is a flat torus, then (M, g) is also a flat torus, and the isometric immersion $f:\left(M, g^{*}\right) \rightarrow(N, \bar{g})$ is totally geodesic when $\operatorname{dim} M<\operatorname{dim} N$.

Bibliography

[1] S S. Chern \& S. I. Goldberg, On the volume-decreasing properties of a class of real harmonic mappings, Amer. J. Math. 97 (1975) 133-147.
[2] J. Eells, Jr. \& J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109-160.
[3] S. I. Goldberg \& T. Ishihara, Harmonic quasi-conformal mapping of Riemannian manifolds, Bull. Amer. Math. Soc. 80 (1974) 562-566.
[4] S. Ishihara \& S. Ishikawa, Notes on relatively harmonic immersions, Hokkaido Math. J. 4 (1975) 234-246.
[5] T. Ishihara, A remark on harmonic quasi-conformal mapping, J. Math. Tokushima Univ.

