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HARMONIC AND RELATIVELY AFFINE MAPPINGS

KENTARO YANO & SHIGERU ISHIHARA

The theory of harmonic mappings of a Riemannian space into another has
been initiated by Eells and Sampson [2] and studied by Chern [1], Goldberg
[11,[3], T. Ishihara [3], [5] and others.

In this paper, we study projective and affine mappings of a manifold with
symmetric affine connection into another and harmonic and relatively affine
mappings of a Riemannian space into another.

1. Differentiable mappings of a manifold with symmetric affine
connection into another

Let (M, ) be a manifold of dimension » with symmetric affine connection
7, and (N, V) a manifold of dimension p with symmetric affine connection 77,
where n, p > 2. Let there be given a differentiable mapping f: M — N which
we denote sometimes by f: (M, F) — (N, ). Manifolds, mappings and geo-
metric objects which we discuss in this paper are assumed to be of differen-
tiability class C=. Take coordinate neighborhoods {U; x"} of M and {U, y} of
N in such a way that f(U) C U, where (x*) = (x}, %, - - -, x") and (%) = (',
¥%, - - -, yP) are local coordinates of M and N respectively. The indices 4, i, j,
k,l,m,r,s,t run over the range {1,2, - - -, n}, and the indices «, 3,7, 8, 4, , v
the range {I,2, ---, p}. The summation convention will be used with respect
to these two systems of indices. Suppose that f: (M, ) — (N, F) is represented
by equations

(1-1) ya == ya(xl, x2’ ° "x")
with respect to {U, x*} and {U, y*}. We put
(1'2) Aia == aiyu(xl9xza ot .,xn) s

where 9; = 9/0x*. Then the differential df of the mapping f is represented by
the matrix (A4,) with respect to the local coordinates (x*) and (y*) of M and
N.

When a function p, local or global, is given in N, throughout the paper we
shall identify o with the function pof induced in M. We denote by I'% the
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components of the affine connection /' in M, and by I, those of the affine
connection V in N.

In this and the next sections, X, Y and Z denote arbitrary vector fields in M
with local expressions X = X*3,,Y = Y"3, and Z = Z"3, respectively. Then
(4,°X%0,, where 8, = d/dy", is the local expression of the vector field (df)X
defined along f(M). If we put in U

(1.3) Ajia = Vina ’
where
(1.4) VA7 = 0,4 + I's,A7AP — A",

then (A4,,°X7Y")9, is the local expression of a vector field B defined along f(M),
and 4;;° = A4,,°.

Consider a curve y: I — M in M, I being an interval, and denote by 7 =
foy: 1 — N the image of y by f. When 7 is locally represented by x* = x*(¢),
t being a parameter belonging to I, 7 is so by y* = y*(x"(¢)). If y satisfies

daix" ndxd dxt

dx"
dr 14 dt dt a()dt

with a certain function «(?) of ¢, then 7 is called a path of (M, V). It is easily
seen that the above equations can be reduced to

aixt g dxd dxt
dr: dr dt

by a suitable change of the parameter z. In this case y is called a path with
affine parameter t. A path in N and the affine parameter on this path will be
similarly defined.

Now, using y* = y*(x*(¥)), (1.3) and (1.4), we find
d

24 a
1.5 Yoor
(1.5) = +

dy" dy* a( d*x" 5 dx? dx") LAx7 dxt
“—_ZA F,‘————— Al —_—
" dr di N Y aa) Y a a

We assume that an arbitrary path in (M, F) is mapped by f into a path in
(N, 7). Such a mapping f is said to be projective. Under this assumption, we
have from (1.5)

dy® dx’ dxt
)2 = A i —
A dt Todt dt
for any path y: x* = x"(¢) in (M, V), p(¢) being a certain function of ¢. Thus,
7 being arbitrary, we find pA4,¢" = A4,,°¢7¢" for any direction & = £"9,, at any
point of M, from which we conclude that



HARMONIC MAPPINGS 503
(1.6) A, = pAS+ DA S

for some local functions p; u: U, which are the components of a 1-form in M.
The converse being evident, w e have

Proposition 1.1. In order for a mapping f: (M, V) — (N, F) to be projec-
tive, it is necessary and sufficient that A ;* has the form (1.6).

We next assume that an arbitrary path in (M, V) is mapped by f into a path
in (N, 7) with the affine parameter preserved. Such a mapping f is said to be
affine. Under this assumption, we have from (1.5)

A Ldx! dxt

1.5 e dxaxt
(1.5) odt dt

for any path y: x* = x"(¢) in (M, V). Thus, y being arbitrary, we have A4 ,,°¢7&¢
= 0 for any direction ¢ = £"3, at any point of M, from which we conclude
that 4, = 0. The converse being evident, we have

Proposition 1.2. In order for a mapping f: (M,V) — (N, F) to be affine, it
is necessary and sufficient that A;;* = 0.

2. Differentiable mapping of a Riemannian space into another

Let (M, g) and (N, g) be Riemannian spaces of dimensions » and p respec-
tively. Let there be given a mapping f: M — N denoted sometimes by f: (M, g)
— (N, g). We denote by g;; the components of the Riemannian metric g in M,
and by g,, those of the Riemannian metric g in N. The Christoffel symbols

h

formed with g;; and g,, are denoted by {ji} and {;{Yg} respectively. Thus, de-

noting by // the affine connection determined by {Z} and by I that determined
by {;73}, we can regard f as f: (M, V) — (N, 7).
If we put
2.1 g;‘ki = grﬂAinﬁ ,
then g7 are the components of the tensor g* = f*g induced in M from g by
f. For g* = pg, f: (M, g — (N, g) is said to be conformal, homothetic or
isometric according as the function p is positive, constant or equal to 1.
Differentiating (2.1) covariantly, we find

(2.2) ng;'ki = Dy + Dy;;

where we have put
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2.3) Dyji = A48, -
Changing indices in (2.2), we obtain

2.4 V8t = Djxi + Djir »

(2.5) Vig¥i = Dixj + Diji -
Forming (2.2) + (2.4) — (2.5), we find

(2.6) Dyy = 3(Vigl + Vgl — Vigky)

where we have used D,;; = D;; which is a direct consequence of 4,;* = A4 ;"
When Fg* = 0, that is, when V,g% = O is satisfied, f: (M, g) — (N, g) is said
to be relatively affine (see [4]). Since we can see from (2.2) and (2.6) that
V.g¥ = 0 and D,;; = O are equivalent, we now have

Proposition 2.1. A mapping f: (M, g) — (N, g) is relatively affine if and
only if Dij; = 0, i.e., if and only if A,;Ag, = 0.

Thus any affine mapping is relatively affine.

The conditions Fg* = 0 and g* = p’%g imply p* = const. Thus we have

Proposition 2.2. If a mapping f: (M, g) — (N, g) is relatively affine and at
the same time conformal, then it is homothetic.

It is easily seen that the rank of the mapping f: (M, g) — (N, g), i.e., the
rank of (4,%) is equal to the rank of (g¥) at each point of M. If the mapping f
is relatively affine, then Fg* = O which implies that g* is of constant rank m.
Therefore, if f is relatively affine, then f is of constant rank m. Assume that f
is relatively affine and of constant rank m < n, and for any point p of M put
D, ={X eT,M)|(df),X = 0}, which is a subspace of dimension n — m in
the tangent space T,(M) of M at p. Therefore the correspondence D: p — D,
defines an (n — m)-dimensional distribution D in M, which is called the vertical
distribution. 1t is easily verified that a vector field X belongs to the vertical
distribution D if and only if 4,“X* = 0, or equivalently, if and only if g£X* =
0. By considering such a vector field X and differentiating 4,°X* = 0 covari-
antly, we then obtain A4 ,,°X¢ + A,V ;X* = 0. Thus transvecting 4,°g,, to this
equation and using D, ;; = 0, we have g}V, X* = 0, i.e., (df)(FyX) = 0. Con-
sequently, we arrive at

Proposition 2.3. Let a mapping f: (M, g) — (N, g) be relatively affine. If
M is connected, then f is of constant rank m. When 0 < m < dim M = n, the
vertical distribution D is of dimension n — m and parallel.

As a corollary to Proposition 2.3, we have

Proposition 2.4. Let f: (M, g) — (N, g) be relatively affine. If (M, g) is a
connected and irreducible Riemannian space, then f is either of rank n(=dim M)
or a constant mapping.

We now put
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2.7 A = g4~ ,

where (g7%) = (g;)™'. Then the vector field T with components A« defined
along f(M) is called the tension field of the mapping f: (M, g) — (N, g). It is
well known that f: (M, g) — (N, &) is harmonic if and only if 7 = O, i.e., if
and only if 4« = 0 (see [2]).

Consider the divergence of the vector field with local expression
(g"tA;A*g,,)d, in M. We then obtain

V(g4 A%g,,) = A"APg,, + AV, AP)g"g,; ,

where we have put
2.8) FiA® = 3,4 + {0;}AJAﬁ .
T

Thus we have
Proposition 2.5. A mapping f: (M, 8) — (N, g) is harmonic if M is com-
pact and VT = O which means V;A* = 0.

3. Laplacian of || df|?
We shall compute Laplacian of ||df|f* for later use. We now put in U
a a 7 m a m @
(3.1) VkAji = akAji + {;;}Alc Ajiﬁ - {kj}Aml - {kl}Ajm ‘

Then (V,A,;,"X*YZ%)3, is the local expression of a vector field defined along
f(M). Taking account of (1.3), (1.4) and (3.1), we obtain the following formula
of Ricci-type:

(3.2) VijAia — VijAia == R‘;,ﬁaAkﬁAjTAiﬂ —_ RkjihAhn Py

where R, ,* and R, ;,* are the components of the curvature tensors of g and g
respectively. We are now going to compute Laplacian of ||df|?>. We then have

sd||df|! = 38"V Vi (A7A,87'8,.)

3.3) 3

= glk(VszAjﬂ)Aiag“gpa + ”BHZ s
where
(3.4) | Bl = Au’A;i"8" 8" g;, -

Thus using (3.2) and putting R, ,, = R,,;’¢,.. from (3.3) we obtain
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4 df |} = (VjAﬁ)Aiagjigﬂa + || BIF
+ Ra,paAzsAirAkﬂAjaglkgji + Rihgtjgij s

(3.5)

where R ;* = R;;g"* are the mixed components of the Ricci tensor of (M, g) and
;A are defined by (2.8). Thus taking account of (3.5) we have
Lemma 3.1. For a harmonic mapping f: (M, g) — (N, g), we have

(3.6) $4|dfIF = | BI + RippuASATAFA g7 + R g7 .

Let e, - - -, e, be n orthonormal vectors at each point of (M, g) such that
3.7 8ji = €nj€myi T+ + €myi€myi »
(3.8) g =2ewln: + ++ + Anlmyi€myi »

where e )" are the components of e.,, and e,; = e,"g,;- Then we find
(3.9 Aty >0

If we now put &, =(df)e,,, then &, has components of the form e ,*=4e,".
Therefore we get

3 kit — 5
R, 5 AP ATAFA; 8 = 3 Ry €’ € e "
TH#S
and hence

(3.10) RﬁrﬁaAleirAkﬂAjuglkgji = — Z;&; (8 sy €5))A s »

where 3(X,Y) denotes the sectional curvature of (N, g), X and Y being any
two linear independent vectors at any point of (N, g).
On the other hand, we can easily find

(3.11) S A= —3 A — D2 + nn — DE,

T#S

where we have put

o
Il

(3.12) —jl—ul o+ ) >0,

nl is sometimes denoted by
(3.13) Trace g* = nl = g¥g?* > 0.

We here consider the following condition :
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(C) There is a constant c such that ¢ > a(X,Y) for any two linearly inde-
pendent vectors X and Y at any point of (N, g).
Then using (3.10) and (3.11) we obtain

(.14) R, A/A7ASAS SR > ¢ 3 (3 — D' — n(n — Vel

when condition (C) is satisfied.
Next, using (3.7) and (3.8), we have

(3.15) R grg’ = A(Ryenieqy’) + -+ + W(Rjem’en)

where R;; = R;"g,; are the components of the Ricci tensor of (M, g). Assume
M to be compact and put

(3.16) L = min R, 474%,
n

where A = A"3, runs over the unit sphere bundle over (M, g). Then by (3.15)
and (3.16) we find

(3.17) Rpgrglt >,

and use of (3.14), (3.17) and Lemma 3.1 thus gives
Lemma 3.2. For a harmonic mapping f: (M, g) — (N, g) we have

(3.18) LAVdfIF > IIBIF + ¢ X A — A + n(n — D)k + rd,
when M is compact and condition (C) is satisfied.

4. Theorems

First we shall give some remarks. If | B|f = 0, then we have B = 0 which
means that f: (M, g) — (N, g) is affine. If 3, = -.- = 2, = 4, then g* = Jg,
which means that f: (M, g) — (N, g) is conformal when 1 # O everywhere and
that f is a constant mapping when i = 0 everywhere and M is connected. Thus,
if [B|f=0and 4, = .- = 4,, and M is connected, then f is a homothetic or
constant mapping, because of Proposition 2.2. Consequently from Lemma 3.2
we have

Theorem 4.1. Let f: (M,g) — (N,g) be a harmonic mapping of a
Riemannian space (M,g) of dimension n into another Riemannian space
(N, 8), and assume M to be compact and connected. Then

(i) f: (M, — (N, g) is a constant or homothetic mapping of rank n
everywhere, if (M, g) has positive definite Ricci tensor and there is a constant
¢ > 0 such that ¢ > &, ¢ being the sectional curvature of (N, g), and the fol-
lowing condition is satified :



508 KENTARO YANO & SHIGERU ISHIHARA

A Trace*<—r~,
(A) g S = De

where r is defined by (3.16);

(i) f: (M,g) — (N, g) is a constant mapping, if the following condition is
satisfied .

(Ay) G < 0and (M, g) has positive definite Ricci tensor.

In case (i) of Theorem 4.1, if dim M = n = dim N, then f is a regular and
homothetic mapping of (M, g) onto a connected component of (N, g); if
dimM = n < dim N, then f: (M, g*) — (N, g) is an isometric immersion,
which is totally geodesic, and g* = p’¢ with constant p* > 0. Thus, in case (i)
of Theorem 4.1 if (N, g) is a sphere (S?, g,) of constant curvature, then (M, g)
is necessarily a sphere (S, g,) of constant curvature.

We now assume that » = 0 and @ < 0. Using (3.10) and (3.17), from Lemma
3.1 we have

34 || dfIF = || BI! + R;"gf.8" > ||BIf .
Thus, if M is compact, then R "g¥,g/" = 0, which and (3.15) imply
4.1 ARjeqeqy’) + - + L(Rjeneqn) =0.
Hence it follows from (4.1) that
4.2) (Rjee,) =0, (s=12,.--,n),

since A(R; ;e e,") > 0. (4.2) means that the Ricci tensor of (M, g) is of rank
< n — m when f is of rank m everywhere. Consequently taking account of
Proposition 2.3 we obtain

Theorem 4.2. Let f: (M,g) — (N,g) be a harmonic mapping of a
Riemannian space (M, g) into another Riemannian space (N, g), and assume
M to be compact and connected. Then either f is an affine mapping of constant
rank m > 0 and the Ricci tensor of (M, g) is of rank < n — m, or f is a con-
stant mapping, if the following condition is satisfied :

(A) 7<0, and (M, g) has positive semi-definite Ricci tensor and r = 0, where
r is defined by (3.16). In this case, Trace g* is necessarily constant.

In Theorem 4.2, if (M, g) is connected and irreducible, then f is a constant
mapping because of Proposition 2.4 ; if f is of rank n everywhere and (N, g)
is a flat torus, then (M, g) is also a flat torus, and the isometric immersion
f: (M, g*) — (N, @) is totally geodesic when dim M < dim N.
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