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COMPACT QUOTIENT SPACES OF C2 BY AFFINE
TRANSFORMATION GROUPS

TATSUO SUWA

The purpose of this paper is to classify the compact complex surfaces of the
form C2/G, where G is a properly discontinuous and fixed point free group of
affine transformations of the two-dimensional complex vector space C2. Except
for the use of some theorems on numerical characters of a compact complex
surface, the method is mostly elementary.

§ 1 contains preliminary considerations on some properties of a fixed point
free affine transformation group of C2. In § 2 we perform the classification.
Denoting by bλ the first Betti number of the quotient space S = C2/G, we
prove that if bx = 4 then S is a complex torus (Theorem 1), if bx — 3 then S
is a fiber bundle of elliptic curves over an elliptic curve (Theorem 2), if bγ — 2
then S is a hyperelliptic surface (Theorem 3), and if bλ = 1 then S is an ellip-
tic surface over the projective line with multiple singular fibers (Theorem 4).

1. A fundamental lemma

Let G denote a group of affine transformations of the two-dimensional com-
plex vector space C2. Assume the action of G is (A) properly discontinuous,
i.e., for any pair (K19 K2) of compact subsets in C2, the set {g e G | gKx Γϊ K2Φίd}
is finite, and (B) fixed point free, i.e., for all g e G, g Φ 1, g has no fixed
points. Thus the quotient space C2/G is a complex manifold of complex dimen-
sion 2. Finally we assume (C) C2/G is compact. The problem is to classify the
compact complex surfaces of the form C2/G. In this section we prove a funda-
mental lemma for this purpose.

First of all, each element g of G is expressed by a 3 X 3 matrix:

Mite) cιu{g)
g = a2ί(g) a22(g)

\ 0 0

which acts on C2 = {z \ z = fc, z2)} by
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(an(g) aιt(g)

ω fl22ω *,(g) k
o o l l\ί)

We put

/flH(g) an(g)

Note that det A(g) Φ 0. Moreover, that g has no fixed points means the linear
equation

(A(g) -

has no solution for (ZlY where / denotes the 2 X 2 unit matrix. In particular,

( 1 ) d e t U ( g ) - / ) = 0 ,

( 2 ) if b(g) = 0 , then * = 1 .

For elements g and /ι of G we have

= A(g)b(h) + b(g) .

Next we consider the space E(2,1) of lines in C2 and the action of G on
E(2,1). A line L is a subvariety of C2 defined by a linear equation a0 + aλzλ

+ a2z2 = 0, (al9a2) Φ (0,0). Let £(2, 1) denote the set of lines in C2. Two
equations a0 + axzx + a2z2 = 0 and a'Q + a[zλ + a'2z2 = 0 represent the same
line if and only if there exists a complex number λ Φ 0 such that a[ = λav for
y = 0,1, 2. Hence we have a bijection

E(2,1) - ^ > P2 - {p} , p = ( 1 : 0 : 0 ) ,

given by L = {(zι,z2)\a0 + #& + a2z2 = 0} ^ (ζ0: d : ζ2) = (a0: αx: αr2),
where P2 denotes the two-dimensional complex projective space with
homogeneous coordinates (ζ0: d : ζ2). We identify E(2, 1) with P2 — {p} by
this bijection. If we denote by G(2, 1) the set of lines in C2 passing through
the origin, then G(2,1) is the projective line P 1 in E(2,1) defined by ζ0 = 0.
We have a fibering π: E(2, 1) -> G(2, 1) defined by (£>: d :C2) ̂  (Ci: d) Thus
E(2,1) is a complex line bundle over G(2, 1) = P 1 of degree 1. Since G is a
group of aίfine transformations, G acts naturally on E(2, 1). Take L e £(2, 1)
which is represented by a0 + axzx + α^^ = 0. Then L is transformed by g to
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the line a'Q + a[zx + a'2z2 = 0, where αj = a0 + (a19 a2)b(g), (a{, oQ = (a19 a2)

• A(g)~ι. Since G acts as a group of bundle automorphisms, G acts on the base
space G(2, 1) = P 1 = {(£: ζ2)} by the formula

© - 'A<srfά •
For a point p of G(2,1), let Hp = {g e G\gp = /?} be the isotropy subgroup
of G at /?.

Remark. Thus we get a representation of G into the group of one-dimen-
sional projective linear transformations PGL(1, C). The kernel is the subgroup
{g € G\A(g) = 1}, i.e., the group of translations.

Lemma 1.1. There exists a point pQ on G(2, 1) for which HPo = G.
Proof. Suppose for any point p,HpQG. Fix an element g which acts non-

trivially on G(2, 1). Note that the number of the fixed points of g on G(2, 1) =
P 1 is 1 or 2.

Case I : g has only one fixed point pλ. By a suitable coordinate transfor-
mation, we may assume that pγ = 0 = ( 1 : 0) and g(co) = 1, oo = (0: 1),

1 = ( 1 : 1). In view of (1) we have A(g~ι) = (1 ^ J. By assumption, there

exists an element h such that h(pj Φ pλ. If we put ιA{h)~ι = (a ,J, then

c Φ 0. On the other hand, 0 = det (A(h~γ) -I) = (a- \){d - 1) - be by (1).
Thus we have det (A(h~ιg-1) - I) = (a - \)(d - 1) - be - c = -c φ 0.
This means gh has a fixed point on C2, a contradiction.

Case I I : g has two fixed points px and p2 on G(2,1). By a suitable coordi-
nate transformation, we may assume pλ = 0 and p2 = oo. This implies that

A(g)~ι = fe ®) with a Φ d. On the other hand, 0 = det (A(g)'1 - I) =

(a — \){d — 1). By assumption there exist elements gt <£ HPί, for / = 1,2.
Now we can divide our discussion into the following three cases.

(a) gι * HP2. Put ̂ f e ) " 1 = (£ fy. Then gι(0) φ 0 and ^(oo) φ oo

imply that bγcλ Φ 0. On the other hand, 0 = det U f e ) " 1 — /) = (a, — 1)
,{dx — 1) — V i P u t Δ = det {Λ{gχιg~ι) — /)• Then we have

Δ = {a- Did, - 1) + (d - l)( f l l - 1) ,

where (a - \){d - 1) = 0 and (a, - \){dx - 1) Φ 0. Hence Δ Φ 0, which
means ggλ has a fixed point on C2.

(β) g2 $ HPl. We can get a contradiction by the same argument as in
case (a).

(γ) gλ e HP2 and g2 e JH P I . We have g^2 <£ H P l and ^g2 $ HP2, and this case
is then reduced to case (a) if we replace gx by gλg2. q.e.d.
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By a suitable coordinate transformation, we may assume p0 = oo^H^ = G.

Then for any element g of G, A(g) = (ί *) is a triangular matrix. Hence

we get
Corollary. The group G is solvable.

From now on, we always assume a2l(g) = 0 for every g € G.
Remarks. 1. In the proof of the lemma, we only used the fact that the

action of G on C2 is fixed point free. Moreover, from this fact we have either
an(g) = 1 for all g e G or a22(g) = 1 for all g e G.

2. Every element g of G is compatible with the projection (z1? z2) >-> z2 of
C2 onto the second factor U2. This suggests the fiber structure of C2/G over
U2/G (see the proofs of Theorem 2 and 4).

2. Classification

We need some formulas for numerical characters of a compact complex sur-
face. Denote by S a compact complex surface, i.e., a compact complex mani-
fold of complex dimension 2, and by Θ and Ω% respectively, the sheaves over
S of germs of holomorphic functions and holomorphic y-forms. Define hv>μ =
dim Hμ(S, Ωv). The geometric genus pg and the irregularity q of S are defined,
respectively, by pg = /z0'2 and q = h°Λ. By the duality theorem, pg = h°>2 = Λ2'0.
Moreover, we denote by bv the y-th Betti number, and by cv the y-th Chern
class of S. Among these numerical characters, the Noether formula due to
Hirzebruch, Atiyah and Singer holds:

( 3 ) 12(p, - q + 1) = c\ + c2 .

Moreover a theorem of Kodaira [3,1, Theorem 3] says

if bx is even, then 2q = bλ and /zM = q

if bλ is odd, then 2q = bλ + 1 and /z1'0 = q - 1 .

Take an affine transformation group G of C2 satisfying conditions (A),
(B), and (C) in § 1. Note that G, being the fundamental group of a compact
space, is finitely generated.

The following proposition is obvious.
Proposition 1. If Hp = G for every point p of G(2,1), i.e., if every ele-

ment of G is a translation, then S = C2/G is a complex torus.
From now on, we assume that there exists an element of G which is not a

translation. We classify the cases as follows:

3 g9, 3gi,

3g2,

an(ά) = a22(g)

βiifei) Φ 1

^2 2fe) Φ 1

= 1 . w
(rD
(r2)
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V g, a12(g) = 0 , 3 g2, α22(g2) =£ 1 . (β)

Lemma 2.1. Cflse (7Ί) is reduced to case (β).
Proof. Take two elements g and h of G. Their commutator is given by

- 1) - a12(gXau(h) - 1), *\

1 , 0 .

0 , 1/

Since ghg~ιh~λ has no fixed points on C2, we have

a12(h)(an(g) - 1) - a12(g)(au(h) - 1) = 0 .

By assumption, there exist g0 and gλ with tf12(g0) =£ 0 and an(gλ) Φ 1. Thus there
exists a nonzero complex number λ such that #i2(g) — λ(an(g) — 1) = 0 for

any g. If we introduce new coordinates (zί,z0 of C2 by ίz}) = (^ 1 ) ( Z l ) '

we see that case (γl) is reduced to case (β). q.e.d.
In view of this lemma, we may assume απ(g) = 1 for any g € G in any case

(cf. Remark 1 at the end of § 1).
Lemma 2.2. Case (γ2) is reduced to case (β) if there exists a complex num-

ber λ such that, for any g,

( 5 ) a12(g) + Λ(a22(g) - 1) = 0 .

Proof. This can be done by applying the coordinate transformation (Zlλ

Thus in case (γ2), we assume that
( * ) for any complex number λ, there exists an element g such that (5) does

not hold.
Lemma 2.3. In cases (β) and (γ2), the center C of G is given by

C = {geG\A(g)=I9b2(g)=O}.

Proof. It is clear that an element g with A(g) = / and fc2(g) = 0 is in C.
Take an element g in C. For any element h of G, we have

a12(g)(a22(h) - 1) - a12(h)(a22(g) - 1) = 0 ,

( 6 ) (a22(g) - \)bM - (a22(h) - I)b2(g) = 0 ,

al2(g)b2(h) - al2(h)b2(g) = 0 .

We claim that a22(g) = 1. In case (γ2), this is trivial in view of the assump-
tion (*). In case (β), this is proved as follows. Assume α22(g) Φ 1 and put λ =
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b2(g)l(a22(g) — 1). Introducing new coordinates of C 2 by (z{, zQ = (Zi,z2 + X),
we see that we can assume b2{h) = 0 for any heG. Then G acts on the line
z'2 = 0 effectively, and the action is properly discontinuous. Hence we have
G C Z Θ Z , where Z denotes the ring of integers. Thus C2/G cannot be com-
pact (see the following proposition).

Finally, the existence of an element g2 with a22(g2) Φ 1 implies au(g) =
b2(g) = 0.

Proposition 2. Let F be a free abelian group acting on C2 freely and
properly discontinuously. // the rank of F is less than or equal to 3, then the
quotient space C2/F cannot be compact.

Proof. As C 2 is an acyclic space, we have an isomorphism

Hn(C2/F, Z) ̂ > Hn(F, Z) , n = 0,1 , ,

where Hn(F, Z) denotes the n-th cohomology group of F with coefficients in
the trivial F-module Z. Let r be the rank of F. Then the cohomology groups
Hn(F, Z) are isomorphic to the cohomology groups of the real r-torus Tr. If
C2/F were compact, we would have H*(C2/F, Z) = Z. On the other hand,
H\F, Z) = H\Tr, Z) = 0 since r < 3, which is a contradiction.

Lemma 2.4. For any g e G, a22{g) is a root of unity.
Proof. First we prove that \a22(g)\ = 1 for every g eG. Assume there ex-

ists an element g with | a22(g) \ Φ 1. By taking its inverse, if necessary, we may
assume | a22(g) \ < 1. The n-th power of g is given by

where

a22(g) - 1

βn = nbx{g) + ( ( f l ~iΛ2 ~" — ) _ )'a^(s)b2(g)

Put a = -al2(g)/(a22(g) - 1) and δ = -b2^g)/(a22(g) - 1). Then an -+ a,
γn —> 0, and δn -> δ as /i -> + oo.

For any element /*, we have

0, a22(h)
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onho-n) = f-Ul$n(an(a22(h) αn62(A) + W
- δn(a22(h) - 1)

Thus

as

where e(Λ) = δ(a(a22(h) - 1) + *12(A)) + αfc2(A) + ^(A).
Choose positive numbers cλ and c2 so that |ε(A)| < c1. Consider the compact

set K in C2 denned by

K = {(z1? z2) | |zx | < cx and \z2 - δ\ < c2} .

Since gnhg~n(0, δ) converges to the point (ε(/z), δ) as n -> + 0 0 , gnhg~n(0, δ) £ K
for any large n. Since the action of G on C2 is properly discontinuous, some
positive power of g should commute with h. Moreover, since G is finitely gen-
erated, some power gN of g should be contained in the center C. Hence we have
a22(g)N = 1 by Lemma 2.3, which is a contradiction. Thus we have proved
|022(g)| = 1 for any g € G.

Since each entry of the matrix gnhg~n remains bounded as n tends to infi-
nity, by a similar argument as above we can prove a22(g)n = 1 for a positive
integer n. q.e.d.

Let G* be the normal subgroup of G defined by G* = {g € G|fl22(g) = 1}.
Since G is finitely generated, Lemma 2.4 implies G/G* is finite. Moreover, G*
is a nilpotent group. Thus we have

Corollary. The group G* is a nilpotent subgroup of G of finite index.
Lemma 2.5. The first Betti number bγ of the quotient space S = C2/G is

given by

14 or 3 , in case (a) ,

2, in case (β) ,

2 or 1 , in case (γ2) .

Proof. First we note that d/dzι is a nonvanishing G-invariant holomorphic
vector field on C2. Hence by a theorem of Bott [1], we have c\ = c2 = 0 in
each case. Next we find the number of lineraly independent G-invariant holo-
morphic forms on C2. The pullbacks g*dzι of dz«, / = 1, 2, by an element g
of G are given by g*dzx = dZi + al2(g)dz2 and g*dz2 = ct22{g)dz2. Thus we have
g*(dZi Λ dz2) = an{g)dzx Λ dz2.

Case O). Since 022(g) = 1 for every g in G, a holomorphic 2-form
f(z)dzι Λ dz2 on C2 is G-invariant if and only if / is G-invariant. If / is G-in-
variant, / is considered to be a holomorphic function on the quotient space
C2/G, which is compact. Thus / is a constant, so that the geometric genus pg
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of S = C2/G, which is equal to the number of linearly independent holomorphic
2-forms on S, is equal to 1. Since the Noether formula (3) implies q = 2, by
(4) we have bx — 4 or 3.

Case (β). Since al2(g) = 0 for every g in G, the subgroup G* = {g e G
#22(#) = 1} of G consists of translations. Moreover, by the corollary to Lemma
2.4, the quotient space T = C2/G* is a finite unramified covering of S, which
is compact. Thus T is a complex torus. Any G*-invariant holomorphic 2-form
on C2 is of the form cdzγ A dz2 with c a constant. Since we have an element
g2 in G with a22(g2) Φ 1 > n ° holomorphic 2-form on C2 is G-invariant, so that
pg = 0. Moreover, any G*-invariant holomorpnic 1-form on C2 is of the form
adzi + bdz2 with α and b constants. Since g}(adzχ + bdz2) = adzλ + ba22(g2)dz2,
the scalar multiples of dzx are the only G-invariant holomorphic 1-forms on
C2, which means A1'0 = 1. Therefore (3) and (4) imply bγ = 2.

Case (r2). Consider G* = {g <εG\a22(g) = 1}. The quotient space S* =
C2/G* is a finite unramified covering of S = C 2/G and is a surface of case
(α). As is seen in case (a), any G*-invariant holomorphic 2-f orm on C2 is of
the form cdzx Λ dz2 with c a constant. Since there is an element g2 in G with
2̂2(̂ 2) Φ 1> w e have p^ = 0, and therefore (7 = 1 by (3). Hence (4) implies

6X = 2 o r 1.
Theorem 1. // bγ — 4, then S = C 2 /G w « complex torus.
Proof. If G consists of only translations, the theorem is obvious. Thus we

consider case (a) with bx = 4. From the assumption, we have A1'0 = 2. Let ψ
and ψ denote linearly independent G-invariant holomorphic 1-forms on C2,
and write ψ = ψι{z)dzλ + <p2(z)dz2 and ψ = ψ^dzi + ψ2(z)dz2. Conditions
for ψ and ψ to be G-invariant are given by

p2(z) - <pi(gz)au(g) ,

for any g e G. From (8), we have ^(z) = ^ and ψλ(z) = ψx are constants, so
that (9) reduces to

(10) φ2(gz) = φ2(z) - φ&.ig) , ψ2(gz) = ψ2(z) - iM12(g) .

Since ^ Λ ψ = (ψιΨ2(z) — Ψιψ2(z))dzί A dz2 is a G-invariant holomorphic 2-
form on C2, ψιψ2(z) — Ψιψ2(z) = c is a constant. We have ψ ^ — ̂ ψ =
(Ψi^fe) — <PiΨ2(z))dz2 = cdz2. If c = 0, we would have φx = ψx = 0, and then
ψ2{z) and ψ2(z) would be constant by (10), which is a contradiction. Hence
c Φ 0. Consider the Albanese variety A of S = C 2/G. Since 4̂ is a complex
torus whose lattice Γ is generated by the periods of ψ and ψ on four free gen-
erators for H^S, Z) , we have a canonical mapping Φ\ S-> A dfined by

= (\ φ, ψ ] (modΓ) for zeS. The Jacobian of Φ is given by
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) = c, so that Φ is an unramified covering mapping. Hence S = C2/G is
a complex torus.

Example. Consider the group G generated by four elements:

g2 =

\o o 1/

Then, by a suitable coordinate transformation φ, say φ(z19 z2) = fo — jzl, zz),
G is transformed into a group of translations. Moreover, φgiψ~\ i = 1, , 4,
are linearly independent over R. Thus C2/G is a complex torus.

Theorem 2. // bλ = 3, ί/ẑ π 5 = C2/G is a fiber bundle of elliptic curves

over an elliptic curve.
Proof. Take two elements g and h of G. Their commutator is given by

/I 0 a12(g)b2(h) - au(h)b2(g)\

ghg-1h'1 = \0 1 0

\0 0 1 /

Let G (1) = [G, G] be the commutator group of G. Then we have the following
exact sequence:

(11) 1 > G ( 1 ) > G - ? U H.iS, Z) > 0 ,

where S = C2/G. Note that for any element g of G ( 1 ), 4(g) = / and b2(g) = 0
and that G (1) is commutative.

Let U1 and t/2 denote the first and second factors of the product C2. Then
G ( 1 ) acts on Uλ effectively as a group of translations. Moreover, since the ac-
tion of G (1) on C2 is "parallel" to the z raxis, we see that G(1) acts on U1

properly discontinuously. Hence G (1) is a subgroup of Z® Z.
(i) First we assume G (1) = 0. Then we have G = HX{S, Z). The free part

F of G is a free abelian group of rank 3. The quotient space C2/F, being a
finite covering of C2/G, is compact, which is a contradiction (see Proposition
2).

(ii) Secondly we assume G ( 1 ) = Z. Let Λo be a generator of the infinite cyclic
group G ( 1 ), γl9 γ2, and γz generators of the free part of H^S, Z) , and τ1? , τt

generators of the torsion part of H^S, Z). Choose elements hί9 i = 1, 2, 3, and
&j = 1, , t, of G so that φ(hi) = ^̂  and (̂A^ ) = τ^. Then G is generated
by h0, h19 h2, h3, k19 -- ,kt.

Lemma 2.6. L^ί g be an element of G. If φ(g) is a torsion element, then

b2{g) = 0.
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Proof. The condition implies that some positive power gn of g is contained
in G ( 1 ). Hence we have 0 = b2{gn) = nb2{g).

Lemma 2.7. For any element g of G there exist integers nt, i = 1,2,3,
such that

b2(g) = Σ nAQid .
ί = l

Proof. Since b2(gh) = b2(g) + bjjh) for any two elements g and h of G, the
lemma follows from Lemma 2.6. q.e.d.

Consider the natural action of G on the second factor U2 of C2, which is
given by g: z2 »-• z2 + b2(g) for g e G, and let Gx denote the kernel of the ac-
tion. Since G is free on C2, if b2(g) = 0 then al2(g) = 0. Thus an element g
of G is contained in Gλ if and only if b2(g) = α12(g) = 0.

Lemma 2.8. GjGλ acts properly dίscontinuously on U2.
Proof. Since the commutator group G ( 1 ) is generated by h0, there exists an

integer niά for each pair (Aί? h3), i, j = 1, 2, 3, such that

(12) a12(ht)b2(hj) - a^hj^ih,) = mjbte) .

From (12), we get

(13) nub2(hz) + n2Zb2(h^ + nzιb2(h2) = 0 .

Assume n12 = n23 = n3l = 0. Then G should be commutative, which is a con-
tradiction. Therefore at least one of of nί2, n23 or n31 is nonzero, and we get a
nontrivial linear relation (13) among b2(hi) with integer coefficients. This fact,
together with Lemma 2.7, implies the lemma, q.e.d.

Now we have C2\G = (σ/GJKG/GJ, where C2\Gλ = (C/JG^ X t/2.
Since G/Gi acts properly discontinuously on U2, C2/G is a fiber bundle over
the one-dimensional complex manifold U2I(GIG^) with fiber UJG^ Hence
U1/G1 and U2/(G/Gι) are compact. Moreover, since Gι and G/Gx act on Ux

and C/2 respectively as groups of translations, U1/G1 and U2/(G/G1) are elliptic
curves.

(iii) Finally, we assume G (1) = Z®Z. We have C2/G = (C 2/G ( 1 ))/(G/G ( 1 )).
Since G(1) = Z®Z acts trivially on U2, C2/Gω = (UJGω) X U2 is the
product of the elliptic curve UJGω and U2. Let 71 denote the kernel of the
natural action of G/Gω on U2. Since G/Gω acts properly discontinuously
on (C/1/G(1)) X C/2, whose first factor is compact, (G/Gω)/Γ acts properly
discontinuously on U2. Now as in case (ii), take elements hx,h2, and hz of G
such that ^(AJ, p(A2), and φ(h3) generate the free part of H^S, Z). Then G ( 1 )

/I 0 ω<A
is generated by hihjh^hj1 = I 0 1 0 I, /, / = 1, 2, 3, where ω^ = au(hi)

\ /
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>b2(hj) — a12(hj)b2(hi). On the other hand, since (G/Gω)/Γ acts on U2 prop-
erly discontinuously, we have a nontrivial relation:

3

(14) Σ nib2{hd = 0 ,

where ni9 i = 1, 2, 3, are integers with (n19 n29 n3) Φ (0, 0, 0). Note that (14)
implies 2 L i nia\i^hi) = 0. Thus we have the following equalities:

(15) nλωl2 — n3ω23 = 0 , n2ω23 — nλω3λ = 0 , n3ω3l — n2ωί2 = 0 .

Since (n19 n29 n3) Φ (0, 0,0), (15) implies that rank G ( 1 ) < 1, which is a con-
tradiction. This completes the proof of Theorem 2.

A comact complex surface S is said to be an elliptic surface if there exists a
holomorphic mapping ψ of S onto a nonsingular curve Δ such that the inverse
image Ψ~\ύ) of any general point u € Δ is an elliptic curve. For the theory of
elliptic surfaces we refer to Kodaira [2]. Let Ψ: S-^ Δ be a (holomorphic) fiber
bundle of elliptic curves over an elliptic curve Δ, and assume that the first
Betti number bx of S is equal to 3. Then the functional invariant of S is con-
stant and the homological invariant of S is trivial [2, II, § 7], [4, p. 470]. Thus
the basic member B is trivial; B = C x Δ, where C denotes the typical fiber
of S —> Δ. Hence the canonical bundle K of S is simply given by K = W*(fc),
where K denotes the canonical bundle of Δ, [3,1, Theorem 12]. Since K is trivial,
so is K. Therefore, by Theorem 19 in [3,1], S is biholomorphic to a quotient
space of C 2 by an affine transformation group G, which is generated by four
elements g19 g2, g3 and g4 with a fundamental relation g3g4 = gψg4g3, where m is
a positive integer.

The fiber bundles over an elliptic curve Δ with fiber an elliptic curve C whose
homological invariants are trivial are described as follows. First we express C
as a quotient group: C = C/Γ, where Γ denotes a discrete subgroup of C
generated by 1 and ω, Im ω > 0, and for any ζ € C we denote by [ζ] the cor-
responding element of C = C/Γ. We have the following sheaf exact sequence
over Δ

0 — Γ -> Ω — β(C) — 0 ,

where Ω and £?(C) denote the sheaves of germs of holomorphic functions and
holomorphic mappings into C respectively. We have the corresponding coho-
mology exact sequence

> HKΔ, Ω) -A> HKΔ, Ω{C)) - 1 > H2(Δ, Γ) > 0 .

Any fiber bundle S over Δ with fiber C whose homological invariant is trivial
is written in the form (C X Δ)\ for some η e H\Δ, fi(C)), [2, II, Theorem 10.1],
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[4, p. 470]. Moreover, S = (C X Δ)η is a deformation of S' = (C X ΔY if
the characteristic classes are the same; c(η) = C(J/), [2, III, Theorem 1L4]>
The first Betti number bγ of S = (C X Δ)η is 4 or 3 according as 0(27) = 0 or

c(yj) φ 0, [2, III, Theorem 11.9]. For each element γ e H2(Δ, Γ) = Γ -=^>
Z®Z, we can construct a bundle 5 r with characteristic class p as follows (cf.
[3, II, p. 684]). Take a point p on Δ, and let z be a local coordinate with center
p and U = {z\ \z\ < ε} a small disk around /?. 5Γ is defined by Sr = U X C U
(J - p) X C, where (z, [ζ]) e ί / χ C a n d (z, K']) e (Δ - p) X C are identified
if and only if [ζ'] = [ζ + (γ/2πί) log z]. Thus any fiber bundle S over Δ with
fiber C with bx = 3 is a deformation of 5 r for some γ e Γ, γ Φ 0. If 7* = A + kω,
A and A: € Z, we have ^ ( S , Z) = Z Θ Z 0 Z φ Z m , where m = (A, k).

A hyperelliptic surface is a fiber bundle of elliptic curves over an elliptic
curve with bλ — 2. For the classification of hyperelliptic surfaces we refer to
[4].

Theorem 3. // bx = 2, then S = C2/G is a hyperelliptic surface.
Proof. By the characterization (D) in [4, p. 476] of hyperelliptic surfaces.
Remark. S is algebraic as pg = 0 and bγ is even [3,1. Theorem 10]. We

can also prove 04), (B) or (C) in [4, p. 476] directly.
Theorem 4. // bλ = 1, then S = C2/G has the following structure:

'(1.) S is an elliptic surface over the projective line P\
(2) S has no singular fibers over the base curve P1 other than multiple
fibers of the form mΘ, where Θ is a nonsingular elliptic curve and m
the multiplicity (type Jo in [2]),
(3) the multiplicities mt of the multiple fibers mfli, i = 1, , r, of
S satisfy the equality Σr

ί=1 (1 — 1/m*) = 2.

Proof. Consider the normal subgroup G* = {g e G\a22(g) = 1} of G. By
the corollary to Lemma 2, 4, G/G* is finite. We have C2/G = (C2/G*)/
(G/G*). The surface S* = C 2 /G* is compact and is a surface of case (a). Thus
the first Betti number bf of S1* is either 3 or 4. If bf were equal to 4, then by
Theorem 1, S* would be a complex torus, which is a Kahler manifold. Thus
the finite quotient space 5 = 5*/(G/G*) is also a Kahler manifold, which is a
contradiction since the first Betti number of S is odd. Hence bf = 3. By
Theorem 2, S* is a fiber bundle of elliptic curves over an elliptic curve J * . Let
Gf be the kernel of the natural action of G* on the second factor U2 of C2.
Then as is seen in the proof of Theorem 2, the base curve Δ* is the quotient
space C/2/(G*/Gf), and the typical fiber of the fiber bundle S* —• Δ* is the
quotient space Uι/Gι, where U1 denotes the first factor of C2. For z = (zί7 z2)
e C2 and g € G, the second component of gz is given by ^ ( g ) ^ + b2(g) and

depends only on z2. Hence G acts naturally on U2, which means that the action
of G/G* on the fiber bundle S*—• Δ* is fiber preserving. We have the follow-
ing commutative diagram:
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s*.

i
Δ*

π—»

TZ
>

s =

> Δ =

: S*/(G/G*)

= j*/(σ/σ*).

Since each element (different from the identity) of the group G/G* is repre-
sented by an element g of G with 022(g) ^ 1, the action of G/G* on J * is effec-
tive. Moreover, the action is properly discontinuous since the projection map
Ψ* is proper. Thus G/G* is a finite cyclic group acting on the elliptic curve
Δ* with fixed points, and the quotient space Δ*/(G/G*) is biholomorphic to
the projective line. For zγ e U19 z2 e U2, and g e G, we denote by [zjjfe] and
[g] the corresponding points in UJGf, U2/(G/G*) and G/G*, respectively. If
a point p on Δ* is not a fixed point of G/G*, the fiber Ψ~\π{p)) is biholo-
morphic to the elliptic curve UJG*. Consider a fixed point p = [zξ] of G/G*
on J * , and let [g°] be a generator of the isotropy subgroup (G/G*)p of G/G*
at /? and m the order of [g0]. The group (G/G*)p acts on the fiber Ψ*~\p) =
UJG? by [zj •->• bi + tfi2(g°)z2 + &i(g°)] T n i s action is effective since other-
wise some power of [g°] would have fixed points on S*. Thus we get a multi-
ple fiber mθ, Θ - ^ > (Ul/G*)I(G/G*)p, of type m/0 in the elliptic surface
W: S —• Δ over the point ττ(p). Moreover, the mapping π is a ramified cover-
ing map with ramification exponent m at p. Hence the Hurwitz formula implies
the equality in (3).

Remarks. 1. For the structure of a neighborhood of a multiple fiber of
type m / 0 , see [3, II, p. 685].

2. As is seen in the proof of Theorem 4, G/G* is a finite cyclic group
acting effectively on an elliptic curve with fixed points. Thus the order of G/G*
is 2, 3,4 or 6.

3. Let S be a complex surface with the property (**). Then the first Betti
number bx of S is either 2 or 1, [3, II, p. 686]. Moreover, S admits a fiber
bundle S* of elliptic curves over an elliptic curve as an unramified covering
[3,11, p. 690], [4, p. 476]. If bγ = 2, then S is a hyperelliptic surface [4, p.
476(C)], and S* is a complex torus. If bx = 1, then the first Betti number b*
of S* is 3, and S* is a quotient space of C 2 by an affine transformation group
(see p. 239). The canonical bundle of S* is trivial. Thus in both cases, S is
a quotient space of C2 by an affine transformation group [3, II, § 11, especially
Theorem 39].
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