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FIBRE BUNDLES AND THE EULER CHARACTERISTIC

DANIEL HENRY GOTTLIEB

1. Introduction

For any fibre bundle F > E > B there are three important maps: the
projection p, the fibre inclusion /, and the evaluation ω : ΩB—+F. In this paper
we demonstrate formulas for each of these maps involving the Euler-Poincare
number of the fibre.

Let M be a compact topological manifold with possibly empty boundary M,
χ(M) the Euler-Poincare number of M, G any space of homeomorphisms of
M with a continuous action on M, ω : G —> M the evaluation map for some

base point, M > E > B any (locally trivial) fibre bundle, and L c B a
(possibly empty) subcomplex of the CW complex B.

Theorem A. For connected M and any coefficients

χ(M)ω* = 0 : ff*(M) -> H*(G) .

Theorem B. There exists a transfer homomorphism τ : H*(E, p~ι(L)) —>
H*(B,L) such that r o p * = χ(M)l for any coefficients.

Theorem C. There exists a transfer homomorphism τ : H^(B, L) —>
H^iE,p~\L)) such that p^oτ = χ(M)l for any coefficients.

Special cases of Theorem A were discovered by the author in [3] and [4].
Note that B and C reduce to the classical transfer theorem for covering spaces
when M is a finite set of points. Borel proved a version of Theorem B for M

a closed connected differentiate manifold and M >E >B an "oriented"
fibre bundle with structural group acting differentially on M and cohomology
groups with fields of coefficients whose characteristics does not divide χ(M), [2].
This result was improved by the author in [1] and [3].

All these theorems are consequences of the next. Let E be the subspace of

E consisting of those points of E which are in the boundaries of the fibres con-

taining them. Then (M, M) > (E, E) > B is a fibre pair. If M is empty,
then E is empty.

Theorem D. Let Mn be orientable and connected, and assume πλ(B) acts
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trivially on Hn(Mn, M\ Z) ^ Z. Then there exists a χe Hn(E, E; Z) such
that *'*(χ) = χ(M)μ where μ generates Hn(M, M; Z).

The author would like to acknowledge several conversations with J. C.
Becker which greatly helped him on several occasions.

2. Integration along the fibre

Here we record some well known facts concerning integration along the fibre.

Suppose (F, F') —• (E, E') > B is a fibred pair, and L is a subcomplex of
B. Then the Serre spectral sequence converges to H*(E, Ef U p~\L) G)) and

Ef>*gzH*(B,L;{H*(F,F';G)}).
Suppose TΓJCB) operates trivially on Hn(F, F' Z) ^ Z and W(F, Fr Z) ^ 0

for / > n. Then integration along the fibre is defined as the composition

p^: Hn(E, E' U p~\L)) — » E^n >—> E\~^n ^ Hίn(B, L Hn(M, Mf G)

Integration along the fibre satisfies three properties:

a) If E > Ef > B are two fibrations, then

(qop\ - ^ o p Γ

b) If we have a fibre square

(E,E' U p-\L))—U {E,E' U f '

I' ,
and (F, F') and (F, F') both have cohomological dimension n, then

/?*(£, £' U p-\V» J^~ H\E, E U p-\L))

Hi-"(B,L;G)<

commutes, where ψ is induced by /* and a homomorphism on the coefficient
group corresponding to the map induced by /1 (F, F').

c) If ueH*(B,L;G) and v e H*(E, E' GO then ^(/?*(M) U V) =

u U KW s ^ * ( β > L G " ) , w h e r e G a n d G ' P a i r t o G " a n d ft : H*iE, E' U
p-XL)) -» fl*(β, L), and ^ : H*(£, £') — fl*(B).

Dually, we may define pή as the composition
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H^iB, L G)^ £»_„.» —*• £Γ-«.« ^ - > #*(£> & U p " U ) G) .

Properties a) and b) hold in a dual formulation. For cap products

Π : H*{X, Ax G) <g> J ϊ n (Z, Λ U Λ2 GO -> J ϊ n . g ( Z , Λ G")

we have the following formula:

P*(* Π / % ) ) = p<(α) n y β H*(B9 L GO ,

where y € ^ ( B , L ; G 0 , α e # * ( £ , E' G), p": fl*(B, L) -> # * ( £ , E ; U p-

3. Proof of Theorem D

Let G be a group of orientation-preserving homeomorphisms on M with
compact-open topology acting transitively on M = M — M. Let H be the sub-
group of G leaving the base point * fixed. We take * e M.

Consider the universal principal bundle G-^EG-+ BG. Then the classifying
space for H is BH = EG XG M since G/H = M. Let BH denote EG XGM,
and let BH denote EG XGM. We have the following diagram of fibre squares:

M

( 1 )

Here / and / are inclusion maps.
Lemma 1. Regarding j as a map of pairs

j : (π*(SH), π*(AH)) -> (π*(BH), ft*(BH)) .

Then j and j are homoίopy equivalences.
Lemma 2. (τr*(5H), **(£*)) = (EG x H M, EG x H M).
Proof.

M M

EG χHM > EG XGM = BH

i
Eo x β M =
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The existence of this fibre square implies that EG χH M = π*(BH).
I*

Since M is oriented, Z ^ Hn(M, M — *) > Hn(M, M) is an isomorphism
where i is inclusion. Thus by Lemmas 1 and 2 and the naturality of integration
along the fibre (§ 2(b)) we have the following commutative diagram:

Hn(EG χHM, EGχH(M-*))^*Hn(π*(BH), π*{BH))J^-H"(π*(BH), τt*(BH))

H\BH) > H\BH) < 1 H\BH)

Note that p^ is an isomorphism because the fibre of the fibre pair (EG X H M,

EG X H (M — *)) > BH is (M, M — *) which has the cohomology of
(Rn, Rn — 0) thus the spectral sequence for p takes a very simple form, and
Pt, may be thought of as the Thorn isomorphism.

Now we define U e Hn(EG χH M,EG χH(M — *)) by the equation p^(U)
= 1. Define Ux € Hn(π*(BH), π*(iH)) by U, = (/*)-1Γ*(t/). Then π^U_ι) = 1
€ fl0^) by diagram (2).

We have the fibre square

(M9 M) > (Λf, M)

I I
( 3 ) M χ(M,M) > {π*(BH), n*(BH))

I
M

arising from the fibre inclusion M —^ BH-^ BG, and restricting diagram (2)

to the bundles over the fibres yields

Hn(MχM,MχM - J)l^XHn(MX M, MX M) J—Hn(M χM,MχM)

(4) ψ , [h \s
H\M) > H\M°) z > H\M)

where Δ denotes the diagonal.
Define U e Hn(M x M, M x M - Δ) by p^U) = 1, and define Ux e

Hn(M χ M , M χ M ) a s image of U.
Now let T:X x Y -^Y x X stand for the twisting map. Noting that
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T : π*(BH) —> π*(BH) arises from the restriction of the twisting map to it*(BH)
C BH x BH, we have a commutative diagram:

[Jζ yJjjj), 7Γ \£> H)) > \JC \-DJJ

}' τ ί
(M x M,M X M) > (M x M,M X M)

where ϊ comes from the fibre square (3).
Define U2 e Hn(π*(BH), T(π*(BH)) by U2 = ( - l ) w T * ( t / 1 ) . Similarly define

U2 € Hn(M X M,M X M). Then the naturality of integration along the fibre
and diagram (5) implies that £7, Ux and U2 defined in the universal case pull
back under inclusion to U, U1 and U2 defined in the product case.

Now consider Uλ U U2 β H2n((M,M) x (M,M)). We have a relative fibre
bundle pair

(M, M)-^(M X M, (M x M) U (M X M)) - ^ > (M, M) ,

and we may define integration along the fibre πλ: J^*((M, M) X (M, M)) —•
Hi~n(M,M). In this simple situation, π4 is the same as the slant product with
the fundamental class ze Hn(M,M) (that is, π^(y) = y/z). We call χ =
π}fj]ι U t/2) the Euler class in Hn(M, M). This definition is easily seen to agree
with that of Spanier [5, p. 347]. Thus we have χ = χ(M)μ € Hn(M, M) where
μ is the appropriately chosen generator.

On the other hand we have

& U ϋ 2 € H*n(π*(BH\ π*{BH) U T(βt*(ύs))) .

Note that T(π*(6H)) = π-ι{BH). Thus we are lead to consider the relative
fibre bundle pair

(M, M) -> (**(£*), τr*(5H) U T Γ - 1 ^ , , ) ) - ! U (BH, AH) .

Thus we have integration along the fibre

π^: H\π*(Bff), n*{ύH) U π~\BH)) -> W~\BH, BH) .

Define the Euler class χ = π^Uι U t/2) 6 Hn(BH, BH). By naturality of πk, we
see that /*(χ) = χ(M)μ for /: (M, M) —> ( 5 ^ , ^ H ) , the fibre inclusion.

Since (M, M) —> ( 5 ^ , J5H) > β G is the universal bundle pair for bundle
pairs (M, M) —> (E, E) -+B with structural group preserving the orientation of
(M, M), we always can find a fibre square
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(M, M) — U (M, M)

\> , 1<
( 6 ) (£, E) —+ (BH, BH)

i , I-
B - >BG .

Define χ <= Hn(E, E) by χ = /*(χ). It is clear that i*(χ) = χ(M)μ, so Theorem
D is proved.

Note that every possible / which arises in diagram (6) must be fibrewise
homotopic to any other [4], so χ is uniquely defined.

4. Proof of Theorem A

It is clear that Theorem A would be true in general if we can prove
Theorem A for the case where G is the identity component of the group of
homeomorphisms of M. So we make that assumption.

First we shall prove Theorem A when M is an oriented manifold. We have
the fibre square

G X (M, M) > (M, M)

< 1

( 7 ) EG X (M,M)^(EG XGM,EG XGM)

ϊ I
BG > BG

where ώ is the action of G on M, and φ takes (e, x) •-> <e, x}. Since G is con-
nected, we may apply Theorem D to the nbration on the right. Thus ώ*(χ(M)μ)
(i X l)*0*(χ). Since EG is contractible, we see that

ώ*(χ(M)μ) = 1 X (χ(M)μ) e Hn(G X (M, M);Z) .

Let a € H\M G) be any element for i > 0. Then a U (χ(M)μ) 6 Hn+ί(M, M G)
^ 0. Thus

0 = ώ*(α U (χ(M)μ) = ώ*(α) U (ώ*(χ(M)μ)

= ((ω*(αr) X 1) + other terms) U (1 X (χ(M)μ)

= (ω*(α) X (χ(M)μ)) + (other terms) U (1 X

= ω*(α) X (χ(M)μ) = χ{M)ω*(a) X μ .
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Hence χ(M)ω*(a) = 0 when M is oriented.
Now we assume that M is unoriented. Let M be the oriented double cover-

ing of M, and D the mapping cylinder of the projection M—>M. Then D is a
manifold with boundary. We may think of G as acting on M by lifting every
homeomorphism h : M —> M to that lifting h: M->M which preserves orienta-
tion. Then G acts on D as a group of homeomorphisms by g(x, t) — (g(t), t).

Thus we obtain the following commutative diagram:

G

<*> F\
M-

Since the inclusion / is a homotopy equivalence, Theorem A holds for G > M

if it holds for G > D. But this is the case as follows from the following
lemma.

Lemma 3. D is orientable, and G preserves the orientation.
Proof. First assume that M is closed. Then D = M and is orientable. An

examination of the homology exact sequence of the pair (D, D) shows that
Hn+1(D, b) ^ Z. So D is orientable.

Now assume that M has nonempty boundary M. Then D = M U D(M) where

D(M) is the mapping cylinder of M-^->M restricted to 3 M - > M . Now either
D(M) is M x / in case M is orientable or it is the mapping cylinder of the
bundle covering of M. In either case D(M) is orientable. Thus D is orientable.
Then the homology exact sequence of (D, D) implies that D is orientable. It is
easily seen that G preserves the orientation.

5. Proof of Theorem B

We first proves Theorem B for the case when M is connected and orienta-
ble and πx{B) operates trivially on Hn(Mn, M) ^ Z in the fibration (M, M) -^

Define τ : H*(E, p~\L) G) -+ H*(B G) by letting τ(a) = π^(a U χ).
Lemma 4. τ o p*(a) = χ(M)a for all a e H*(B, L G).
Proo/. From the fibre square

(M, M) — L (M, Aί)

v . i
(9) (M,M)-U (£,£)

lπ'

> B



46 DANIEL HENRY GOTTLIEB

we have π^χ) = ττζ/*(χ) by identifying iϊ°(*) with H°(B). So τr̂ (χ) = π{(i*(χ)) =
**(χ(M)μ) = χ(M)τrί(/i) = χ(M)l. Hence τ o p*( α ) = ^(p*(α) U χ) - a U τr<(χ)
= α U (χ(M)l) = χ(M)α.

From now on we shall surpress L and p~\L) in our notation.
Next we shall show Theorem B is true for M unoriented and connected.

Let D be the mapping cylinder as in diagram (8). The projection q: D —> M
is equivariant with respect to the action of G. Thus we get a fibre square

1 . I
(10) E — U E

Pi \P
Y

B ι

 > B .

The left fibration satisfies the previous case since D is oriented and G preserves
the orientation by Lemma 3, so there exists a transfer τλ: H*(E; G) —*
H*(B; G). Define τ : # * ( £ ; G) -> / / * ( 5 ; G) by τ = τ ^ * . Then r o p * =
τ^*/?* = ΓxP* = χ(/))l = χ(M)l.

Now we assume that M is orientable and connected but that πλ(B) does not
act trivially on Hn(M,M; Z). Then we obtain the commutative diagram

M

E

X P 2 Λ

1
X P 2 ^ >

B •

M

1
E

V
B

1

where P2 is the real projective plane, and π is projection on the first factor.
The fibre bundle on the left satisfies the above case since M x P2 is unorienta-
ble. Thus there exists a transfer Tl: H*(E x P2; G)-+H*(B; G). Define
τ:H*(E;G)->H*(B;G) by τ = r ^ * . Then τo/?* = τ iτr*p* = r r f =
χ(M X P2)l =

Now assume that M is not connected. Then the fibre bundle M—+E > B

factors through the fibre bundles E —^> B —^> B, where B is an TV-fold
covering of B, and M is N disjoint copies of Mo. Thus we have a transfer for

M0—>E —2-> B call it τ2. Also we have the classical transfer for the covering
Π. Define τ : H*(E G)^H*(B ;G)byτ = τ1o τ2. Then τ o p* = Γ l o τ2 o p*op*
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op* = Nχ(M0)l =

In the case where E is not connected, we obtain a transfer for each com-

ponent of E. Then we sum them to obtain the transfer for E > B. Finally,

if B is not connected, (we assume that each fibre of E > B is M), then the

direct sum of the transfers over each component of B will yield the transfer
we seek.

6. Proof of Theorem C and remarks

We begin as before, by assuming that E and M are connected and M is
orientable, and that πx(B) preserves orientation. Then we have the Euler class
χ e Hn(E, E). Define the transfer τ : H*(B, L;G)-> H^E, π~\L) G) by τ(a)
= χΠ π\a) where π*: H*(B, L G) -> #*(£, E U π~\L) G). Then p# o τ(a)
= P*(X Π π"(α)) = π^χ) Π α = χ(M)l Π ĉ  = χ(M)α.
The remainder of the proof is dual to § 5.

Several remarks are in order.
1. Various other transfers may be defined based on characteristic numbers

of a manifold, however, not in the generality as the one we have defined. The
essential point is to find the appropriate version of Theorem D. For example,

if Mn is a closed connected differential manifold, M > E > B is a fibre
bundle with structural group G acting differentially on M, and M has a non-
zero Pontryagin number /?7, then there is a class v e Hn(E; Z) such that i*(v)
= pTμ. Then we may prove, as before, that p7ω* = 0 where ω : G—>M is the
evaluation map from the structural group G, and obtain transfer theorems but
only under the above restricted hypothesis. To see that pτμ is in the image of
/*, we follow the idea of Borel [2, Lemma 3.2]. Similarly, for M a closed
connected topological manifold we may define transfers (in Z2 coefficients) by
using Stiefel-Whitney numbers.

2. Theorem D is true for Z2 coefficients with no orientability condition on
M or the fibre bundle.

3. The Euler-Poincare number in Theorems A, B and C is essential. For
example, 0(3) acts on S2 and it is well known that ω* : ίϊ*(S2; Z2) ->
#*(O(3) Z2) is not that trivial homomorphism. But χ(S2)ω* = 2ω* = 0 since
2 is zero in Z2. An example in the case of the transfer comes from the universal

principal bundle G — U EG - ^ > BG. Here τ o p* = χ(G)l. But H*(EG) = 0.
So χ(G) = 0.

4. Applications will appear elsewhere. Among them they include the fact
that RP2n or CP2n or QP2n or Cayley p2 do not fibre with a manifold as a
fibre.
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