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ON TWO NOTIONS OF STRUCTURAL STABILITY

IVAN KUPKA

Introduction

In the literature one can find two notions of structural stability. First the
original one given by Andronov and Pontriagin (see [1],[2], [5]) stated for
vector fields, that is, for the actions of the additive group of real number R on
a manifold M. This definition says roughly that an Inaction on M is structurally
stable if, for any other R-action close-to, in the sense that the vector fields
generating these actions are close, there exists a homeomorphism of M onto
itself mapping the orbits of the first action onto the orbits of the second. This
definition can readily be extended (see below § 1), to actions on M of a given
real Lie group G in particular G — Z — additive group of all integers.

Another definition was proposed more recently by Smale (see [8] and [9])
for Z-actions on M. Such an action is generated by an difϊeomorphism φ: M
—> M. Smale's definition is roughly that φ is structurally stable if any difϊeomor-
phism ψ sufficiently close to φ in the C^topology is topologically conjugate to
φ. Smale's definition, which can also be extended to action on M of any given
real Lie group G, seems more restrictive than the one of Andronov and
Pontrjagin.

The purpose of this note is to show that in the case G = Z, the two defini-
tions are equivalent if the dimension of M > 1 and M is connected.

In § 1 we give precise statements of the two definitions, first in the case G =
Z (which is the one of interest to us) and then in the general case, for com-
parison sake.

The author wants to thank Professors S. Smale and J. Palis for reading a
first draft of this paper and for making some interesting comments which he
included.

1. Definitions of structural stability

A C^Z-action on a compact C°° manifold M is generated by a C^difϊeo-
morphism φ: M—*M.

Definition 1 (Andronov-Pontrjagiή). A C^diffeomorphism φ\M-*M is
structurally stable if for any ε > 0 there exists a neighborhood U of φ in
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Dift1 (M) for the (^-topology (DifE1 (M) = group of all CMiffeomorphisms of M
onto itself) such that for any ψ e U there exists a homeomorphism h: M —• M
with the following two properties: (a) h maps the orbits of φ onto the orbits
of ψ. (b) d(x, h{x)) < ε for all x e M where d is some chosen metric on M com-
patible with its topology. A homeomorphism with property (b) is called an ε-
homeomorphism.

Definition 2 (Smale). A C^-diffeomorphism φ: M —> M is said to be struc-
turally stable if for any ε > 0 there exists a neighborhood U of φ in Difϊ1 (M)
for the (^-topology such that for any ψ e U there exist an ε-homeomorphism
h: M-+M and / equal to + 1 or — 1 such that ψ = hoφtoh~ι.

In fact in Smale's definition t = 1 always. We introduce this little compli-
cation in Smale's definition in order to square it off with the general definition.
It will follow from what will be proved later that t = 1 always (provided one
chooses U small enough).

Now we give the same definitions in the general case of any Lie group
G. A enaction of G on a manifold M is a homomorphism φ: G—>Diff1 (M)
(also called representation) such that the mapping G X M—>M: (g,x) —>
φ(g)[x] is of class C1. Call Aι(G, M) the set of all these enactions. It is a subset
of C°(G, Diff1 (M))? the set of all continuous mappings G -• Diff1 (M). This set
carries the compact open topology (Diffx(M) being endowed with the C1-
topology). Hence A\G,M) as a subset of C°(G, Diff1 (M)) is endowed, by
restriction, of the compact open topology. The orbit of x e M under the G-
action φ is the set {φ(g)(x)\g e G}.

Definition 1. A C'-action φ0: G ^ D i f F ( M ) of G on M is said to be
structurally stable if for any ε > 0 there exists a neighborhood U of φ0 in
A1(G,M) with the compact open topology such that for any φ e U there ex-
ists an ε-homeomorphism h: M-+M mapping the orbits of φ0 onto the orbits
of φ.

Definition 2. A enaction φ0: G -^ Diff1 (M) of G on M is said to be struc-
turally stable if for any ε > 0 there exists a neighborhood U of φ0 in A\G, M)
with the compact open topology such that for any φ e U there exist an ε-homeo-
morphism h: M —• M and an algebraic automorphism t: G^G such that
h o φ(g) = ^0(ί(g)) o h for all g e G.

It is obvious that Definitions 1 and 2 stated previously in the case G — Z
are particular cases of the general Definitions 1 and 2 stated above.

Remark (due to J. Palis). For G Φ Z it is obvious that in general De-
finition 1 does not imply Definition 2. In fact in the case G = R consider
a Morse-Smale vector field with 2 or more closed orbits with different periods.
It seems that it would be more appropriate to have the reparametrization t to
depend on the points on the manifold too so that in Definition 2 one should
replace t: G-+G by t: G X M->M and the following equation by:

h(φ(g)x) = φo(t(g,x)Mx) .
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Now we state our main result.
Theorem. In the case G = Z the two definitions are equivalent at least if

dimM > 1 and M is connected.
It is obvious that Definition 2 implies Definition 1. So we only have to show

the converse. This will follow from some lemmas.
Comment on the case dimM = 1. In that case M = S1. Our proof below

does not cover that case but the theorem is true in that case. The proof (due
to J. Palis) is as follows: by Peixotos theorem [5] the structurally stable, in
the sense of Definition 1, Z-actions are the Morse-Smale actions, and then it
is an easy particular case of a theorem of J. Palis [3] that the Morse-Smale
actions are stable in the sense of Definition 2.

2. Some auxiliary lemmas

Lemma 1. (a) If φ: M —>M and ψ : M —>M are two Cι-diffeomorphisms
such that there exists a homeomorphism h: M —> M mapping the orbits of φ
onto the orbits of ψ , then h maps the set Per (φ) of all periodic points of φ
onto the set Per (φ) of all periodic points of ψ.

(b) // a O-diβeomorphism φ: M -+M is structurally stable, then Per (φ)
is countable.

Proof. All this is well known. We only give the proofs for the sake of
completeness, (a) follows immediately from the fact that a point X e M is
periodic for φ if and only if its orbit is compact, and compactness is preserved
by a homeomorphism. To prove (b) we use a general approximation theorem
(see [4] or [7] or [8]) which implies that the set E of all C^-diffeomorphisms φ,
such that Per (ψ) is countable, is a Baire subset of Difϊ1 (M). Hence choose a
ψ e E so close to φ that there exists a homeomorphism h: M-^M mapping the
orbits of φ onto the orbits of ψ. Then by (a) h maps Per (φ) onto Per (ψ), and
hence Per(^) is countable.

Lemma 2. Assume that dimM > 1 and M is connected, and that D is a
countable subset of M. Then M — D is arcwise connected.

Proof. Let U, U U2 U U Un be a finite covering of M, Uj9 j = 1, ,
n, being domains of charts (Ui9 at)9 and at mapping Ut onto the unit open ball
Bd(0,1) in the euclidean spare Rd (d = dimension of M). Let Dj = D Π Uj
and Cj = oίj(Dj). It is obviously sufficient to prove that for x and y in Uj —
Dj there exists a continuous curve in Uj — Dj joining x to y or what is the
same that there exists a continuous curve in Bd(0,1) — Cj joining aj(x) to
ocj(y). Let E be the 2-plane in Ra spanned by 0, aj(x)9 aj(y) (if aj(x) = 0 or
aj(y) = 0, take any 2-plane containing 0 and <χt(y) or aj(x)). Let A(x) be the
set of all lines in E joining aj(x) to the points of Cj ΓΊ E, and Δ(y) the corres-
ponding set for ctjiy). Δ(x) and Δ{y) are countable. Hence they exist, as close
as we want to the line (aj(x), aj(y)), a line δx <£ Δ(x) passing through ccj(x) and
a line δy <£ Δ(y) passing through aj(y). These lines meet at a point ζ close to the
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segment aj(x)aj(y). As this segment is contained in Bd(0,1) so will be ζ ; as

Bd(0,1) is convex, the 2 segments aό{x)ζ and ζaj(y) will be in Bd(0,1) and,

in fact, in Bd(0,1) — Cό by construction since aό{x)ζ lies on δx and ζctjiy) on

δv. Hence the polygonal curve aj(x)ζ U ζaj(y) joins α (̂jc) to afy) in Bd(0,1)

— Cj, and Lemma 2 is proved.

3. Proof of the theorem

Assume φ and ψ are two C^diffeomorphisms M -> M such that there exists
a homeomorphism h: M-+M mapping the orbits of φ onto the orbits of ψ and
that Per(^) is countable (hence by Lemma 1 (a) Per(ψ) is). We are going to
show that there exists an integer q e Z such that ψq o h = h o φ.

Choose a point x0 in M — Per (0). Then there exists an unique integer q ζ Z
such that ψq(h(x0)) = h(φ(x0)). So we are going to show that if j is any other
point in M — Per(0), then ^q(h(y)) = h(φ(y)). By Lemma 2 there exists a
continuous arc p C M — Per (0), joining JC0 to y parametrized by the continu-
ous map ί € / = [0,1] -> Λ(ί) e M - Per (0), JC(O) - JC0, JC(1) = y. Let T m =
{t\t eI,ψm(Kχ(t))) = h(φ(x(t)))}.

Lemma 3. (a) The Tm are closed. (b) TmΓιTk = 0 if mφ k.

(C) Umα^m =/•

Proo/. (a) follows from the fact that the 2 functions / -> ψm(h(x(ί))) and
t-* h{φ{x(t))) are continuous.

(b) If ί0 € Tm Π Γfc, then ψm(A(jc(ί0))) - A(^U(ί0))) = ψ*(λ(*(ί0))). Hence
ψm-*(A(jc(/o))) = A(JC(/O)). So A(jc(ί0)) € Per (ψ). By Lemma 1 (a) Λ(/0) 6 Per (0).
But x(ίQ) e γ C M — Per (0), a contradiction.

(c) is obvious for given any x € M, h(φ(x)) e ψ-orbit of A(Λ ) and hence
there exists an n such that ψn(h(x)) = h(φ(x)). If x e M — Per (0), this n is
unique; otherwise not.

Let / m be the interior of Tm, and let ω = (Jmgz-'m
Lemma 4. (a) ω w op^n αnd ^βnsβ m /.
(b) Every connected component of ω is contained in one and only one Tm.
Proof, (a) Since / is the union of the countable class of closed sets Tm,

(a) follows from the Baire property of /.
(b) Since ω is the union of the open disjoint sets / m , the components of ω

are those of the Jm. Hence (b) follows from this and Lemma 3 (b).
Let K = / — ω. If K is empty, ω — I. / i s the sole connected component

of ω and hence contained in a unique Tm by Lemma 4 (b). As 0 e Tq (x(0) =
JC0 and Ψ?(/Ϊ(JC0)) = Φ(Kx0)) by assumption), m = q so 1 e Tq and ψq(h(y)) =
Ψ9(/Z(JC(1))) = h(φ(y)). We will show that i£ ^ 0 leads to a contradiction. Let
£ m = K Π TTO. Then the Km are closed and £ = U m α XTO

 A s a closed sub-
set of /, K has the Baire property, so one of the set Km, say Kp, has a non-
empty interior in the space K. This means that there exists an open interval
δczl such that δ Π K ψ 0 and δ ΓΊ K C i ^ . By Lemma 4 (a), 3 Π ω Φ 0. Let
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]a, b[ = {ί\a < / < b] be a connected component of ω meeting δ. Then one
of the extremities a, b is contained in δ, for otherwise ]a, b[ ZD δ and then δ Γi K
= 0. Assume for example that a e δ. As a ε K, a e δ Π Kd Kp. So a e Tp.
But by Lemma 4 (b), ]a,b[ is contained in a unique Tk. As α e closure of
]α, fr[ and this closure is also contained in Tk (Tk being closed), a e Tk. As
Tk Γ\ Tp = 0 if k Φ p, by Lemma 3 (b) it follows that k — p. So we have
proved that if a connected component of ω meets δ, then it is contained in Tp.
Thus δΠωCZTp. As δ Π K(ZKpcTp7 it follows that δdTp; hence δ C Jp

as δ is open. But then δ C ω which contradicts the fact that δ Γϊ K Φ 0. So
£ = 0, and we have proved the following:

Lemma 5. ψq oh = hoφ.
Lemma 6. q = ± 1.
PJΌO/. If <gr :£ ± 1 , then Λo0

fc = ψqkoh for all & € Z, (easy to see by in-
duction), and hence Λ(0-orbit of x) = {ψqlc(h(x))\k e Z). This last set is not
the whole orbit of x, unless q == ± 1 if x $ Per (^).

Finally we have proved the following:
Proposition. // φ,ψ: M —>M are two O-diβeomorphisms such that there

exists a homeomorphism h: M-+M mapping the orbits of φ onto the orbits of
ψ, then ψq oh = hoφ where q = 1 or — 1.

Now assume φ: M —> M is structurally stable in the sense of Definition 1.
For any ε > 0 there exists a neighborhood U of φ in Diffx (M) such that for any
ψ e U there exists an ε-homeomorphism h: M-^M mapping the orbits of φ
onto the orbits of ψ. By the proposition it follows that ψqoh = hoφ where
q = +1 or — 1. But there exists a possibly smaller neighborhood U C U of
φ in Diίϊ1 (M) such that if ψ € U then g = 1. For, if such a neighborhood did
not exist, then we could find a sequence {ψj\j = 1, 2, •}, ψj, e U and ψj —>
^ in Diίf: (M) as / —> + oo, and a sequence {Â  | / = 1, 2, } of homeomor-
phisms such that hj maps the orbits of φ onto the orbits of ψ and
sup^g^ (x, hj{x)) -+ 0 as / —> oo, and ψq- o Λ̂  = hjoφ with <? = — 1. Thus taking
the limits as / —> + oo we get φ~ι — φ, and all points in M would be periodic
of period 2 contradicting Lemma 1 (a). Hence the theorem is proved.
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