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THE TOTAL ABSOLUTE CURVATURE OF CLOSED
CURVES IN RIEMANNIAN MANIFOLDS

F. BRICKELL & C. C. HSIUNG

1. Introduction

This paper is concerned with some extensions of the theorems of Fenchel
[3], Milnor [5], Fary [2] on the total absolute curvature of closed curves in
euclidean space. We obtain a theorem for closed curves in a complete simply
connected riemannian n-manifold with nonpositive sectional curvature, and
this leads to more precise results when the curvature is constant. Throughout
this paper the summation convention for repeated indices is used, and all in-
dices take the values 1, - - -, n unless stated otherwise.

2. Some geometry of shells

Let O be a point on a closed C~ curve C embedded in a riemannian n-
manifold M, and suppose that C lies in a normal neighborhood of 0. Then C
can be expressed in terms of its arc length s as

exp, r(s)¢(s) , 0<s<L,

where r(s) > 0, {(s) is a unit vector in the tangent space T,M, and L is the
total length of C. The functions r, { are C~ functions, and we extend them by
continuity to the closed interval 0 < s < L.

Lemma 1. The extended functions r, { possess right-hand and left-hand
derivatives of all orders at s =0 and s = L respectively. They have the partic-
ular values

r(0) = r(L) = 0; (dr/ds)(0) = —(dr/ds)(L) = 1;
€0) = —L(L) = (dC/ds)(0) .
Proof. Choose a system of normal coordinates determined by an ortho-
normal frame at 0. Let {,(s),i =1, -..,n, be the components of ¢ with

respect to this frame, and c,(s) be the values of the coordinate functions on C.
Then )
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ci(8) = r(9)¢;(s) , 0<s<L,

where the C= functions c¢; can be regarded as periodic functions of period L.
Because ¢,(0) = 0, we can express ¢; = sA4,; where the A; are C~ functions.
Consequently, for s > 0,

The statements in the lemma about the value s = O follow from these formulas
and the relations

(dc[ds)(0) = A,0) , 3] ((dc;/ds)(0) = 1.

Similar arguments can be used to justify the statements about s = L. q.e.d.

Let 2 denote the set of points (y, s) in R? (throughout this paper R¢ denotes
the i-dimensional space of real numbers) such that 0 <y < r(s), 0 < s < L,
and define f: 2 — M by

f(y,8) = exp, Y¢(s) .

We call (2, f) the shell on C with vertex 0. The curve s — £(s) which lies on
the unit sphere in T,M is called the indicatrix of the shell. Denote by £, the
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subset of 2 where y > ¢ > 0. Since from Lemma 1, dr/ds is continuous and
(dr/ds)(0) = 1, the function r(s) is strictly monotonic increasing on some
interval 0 < s < «. Similarly, r(s) is strictly monotonic decreasing on some
interval 8 < s < L. Now for s ¢ [, ], r(s) > 0 and so r(s) has a positive mini-
mum b on [«, f]. Consider any e such that 0 < ¢ < min {r(), r(8), b}. The
equation r(s) = ¢ will have just two solutions for s € [0, L], thatis, for & suf-
ficiently small the line y = ¢ will meet the boundary of 2 in just two points.
Essentially our method is to apply the Gauss-Bonnet theorem to the induced
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metric on (£,, f), and then to let e — 0. The key result is Theorem 1. Unfortu-
nately there are some technical difficulties due to the singularities of f.

We will make use of the structure equations for a riemannian r-manifold
expressed in polar coordinates. Choose an orthonormal frame at O, and let
u', - - -, u™ denote the normal coordinates determined by the frame. Extend the
frame to a moving frame X, - - -, X,, on the normal neighborhood by parallel
translation along the geodesics through 0. Denote the dual moving coframe by
g, ---,6, and let 85 = —0] be the components of the connection form with
respect to these frames.

Define the mapping F: R**'— M by u(F(t,a', - --,a") =ta*,i=1, ..., n.
It is shown in [10, p. 27] that

(1) F*0' = atdt + f',  F*6. =g,

where the forms §%, 5i do not involve dt. These forms are zero for ¢t = 0, and
satisfy the differential equations

(2) 0p'/ot = da* + a’B. ,
(3) 9p./ot = (R, 0 F)a* g,

where R¢;,, are the components of the curvature tensor with respect to the
moving frames. For our purposes it is useful to note that

(4) B = t(ioF)da’ ,  ai(ioF) =a,

where the 2} are determined by 6° = 2idu’. Both equalities follow from the
first relation in (1).

We denote the components of the vector {(s) with respect to the frame X,
o, X, by &(s),i=1,...,n The mapping f is expressed in terms of the
normal coordinates u', - - -, u™ by ui(f(y,s)) = y¢,(s). Consequently, at any
point (3, 5),

g, o
ds out

0 ) 0
5 — = Gi > =
(5) gy =S s Ty =7

Because £ is a unit vector, it follows that the vectors f,9/dy, f,0/ds are linear-
ly dependent iff f,.9/8s = 0. Therefore f is an immersion except for points on
the lines y = 0 or s = « where « is any number such that (d{/ds)(«) = 0. The
latter singularities correspond to the points C(«) at which the curve C is
tangent to the geodesic from 0.

In order to use the structure equations we introduce the function ¢ : R* —
R"*! defined by

(y, S) - (y’ §1(5)> ) Cn(s)) .
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Consequently f = Fo+r. We define C~ functions w;, w;; = —;; in R? by
(6) V*B = wds VB = wjds

and note that the relations (4) imply that

(7) w; = y(;0Hdl;/ds ,  C;Aiof) =C; .

It follows from (5) and (7) that, at any point (y, s),
0 0
(8) f*a_y =0X; s f*g = 0;X; .

The functions w;, »;; are zero for y = 0 and satisfy differential equations which
are consequences of the structure equations (2) and (3). The equations are

(9) Ow; [0y = d{;/ds + L0y ,
(10) —aa)jz‘/ay = R lro; .

We make one immediate deduction. It follows from (9) that (3/0y)¢;w; = O.
Therefore, because w; is zero for y = 0, we can deduce that

The riemannian metric on M induces a metric Y; (f¥6,)* in R (1), (6), (11)
can be used to show that this metric is

3
dy + Ids where h = < 5 w;) .
It is positive definite.except at the singularities of f, which are therefore the
zeros of h. The Gaussian curvature K is defined at the nonsingular points and
it is easy to check that

(12) K= —@h/ay)/h .

In fact the integrand KdA, where dA is the area element Adyds, still makes
sense at the singularities of f on £,. This will follow from Lemma 4.

We will need to compare K with the sectional curvature of M. We denote
by K, the sectional curvature of the plane section spanned by f,9/dy, f.,0/0s.
This function is defined at the nonsingular points of f, and it follows from (8)
that

Ky = —Rjz’kLCjwiCsz/hz .

Consequently we obtain from (9) and (10) that
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(13) 0w [0y = RjilejCkwL s
and therefore
Ky = —0,(0%0;/0y") | 1* .

In fact, the integrand K,dA still makes sense at the singularities of f on £.
This will follow from the next lemma. But before we give the proof we intro-
duce a convenient notation. A sequence of functions such as w,, - - -, w, will
be regarded as the components of a function w with values in R", and we will
make use of the standard norm and scalar product on R®. Thus, for example,

(14) h=lol, Ky= —<0,d/0y)H .
Lemma 2. The function A, defined by
(15) 4y = —{w,d0/dy>>/h, where h #+ 0; A,y = 0 otherwise,

is continuous on 2.
Proof. A, is obviously continuous where 4 + 0, and at these points

| Ay | < 1|0°w/0Y*] -

Clearly this inequality holds at all points of £. (13) shows that the functions
?’0'/0y* are zero where A = 0. Consequently the continuity of 4, at these
points follows from the inequality and the continuity of the functions d*w?/ay*.
The next two lemmas deal with properties of the function A.
Lemma 3. The function 6h/dy is continuous on Q. It is equal to
\|dC/ds|| on the line y = O and is zero at the other points where h = 0.
Proof. The function & is C~ where it is nonzero and its partial derivative

(16) oh/dy = {w,dw|3y>/h .

We will calculate this derivative at the points where 2 = 0. According to the
first equality in (7), o; = yu; where p; = (20f)d¢;/ds. Consequently, for
¥y >0, h=y|p|. Now 2i(0) = ¢, and therefore x(0,s) = d¢/ds. It follows
that for points on the line y = O the right-hand derivative

oh/oy = |0, s)| = ||dC/ds]| .

The other points where # = O lie on the lines s = a where « is any number
such that (d{/ds)(«) = 0. At these points 0h/dy = 0.

It follows from the formula 4 = y ||| that Ak /dy is continuous at the points
on the line y = 0 where p = 0. The other points at which 2 = 0 are the points
(a, a) such that (d¢/ds)(a) = 0. To demontrate continuity at these points we
use the inequality
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an |oh/0y| < [|0w/3y]| .

For h + 0 this inequality is a consequence of (16), and it is easy to check that
it also holds where 2 = 0. The functions dw;/dy are of course continuous, and
are zero at (a,a). Therefore it follows from (17) that 9k /9y is continuous at
(a,a).

Lemma 4. The function 8*h/dy* is continuous on £,.

Proof. 1t is convenient to put

(18) A = —3h/dy* .
We find from (16) that at points where & = 0
(19) A=Ay — h¥(|o|?||dw/oy |} — {w, dw/dy)?) .

The points of £, at which # = O lie on the lines s = « where « is such that
(d¢/ds)(@) = 0. Consequently 4 = O at these points.

The continuity of 4 at points where 4 == 0 is obvious from (19). According
to Lemma 2 the continuity of 4 at the zeros of 4 will follow from that of
Ay — A. To establish this we obtain from the first equality in (7)

00 L 4 3( 25 o),
ay y wz‘i'y au" ka;urwr s

where [¢]] is the matrix inverse to [4{ o f]. The right-hand side is linear in the
functions w; with coefficients which are bounded on £,. Consequently an in-
equality

10w/dy|| < 4 ||o|| = Ah

is valid on 2, where A is some constant depending on e. Therefore using (19),
we find

(20) 0< Ay — A< [[d/dy|t/h < A%h

and this inequality implies that 4, — /A is continuous at the zeros of .

We have to consider also the geodesic curvature « of the curve C : s — (r(s), 5)
in (2, f). This curvature is defined at the points where f is an immersion, and
it is easy to check that

Q1) & = oh/dy — (dr|ds®)|h .

Let k, denote the geodesic curvature of the curve C in M, ¢ the unit tangent
vector of C, and y the second fundamental form of (£, f). Then from the well-
known formula



TOTAL ABSOLUTE CURVATURE 183

£% = £* + the square of the length of 7,

it is clear that |k, | > [£|. Our aim is to extend « to an integrable function,
defined almost everywhere on the interval [0, L] such that the inequality con-
tinues to hold.

It is convenient to define k(s) = A(r(s), 5), ¢ = w(r(s), s) so that £ = || 4|
As the parameter s is the arc length along C it follows that

(22) K+ (dr/ds) = 1.

The following lemma establishes properties of the function k.

Lemma 5. (i) k is absolutely continuous on [0, L].

(ii) k is differentiable at the points where it is nonzero. It is differentiable
at a zero s = a iff (dp/ds)(a) = 0.

Proof. Because ¢ is a C~ function, there is a constant B such that
ld$/ds|| < B on [0, L]. We obtain, using the mean value theorem,

[k(b) — k(@)| = [l — @] < [|¢(b) — $(a)|| < B(b —a) ,

where 0 < a < b < L. This Lipschitz condition implies that k is absolutely
continuous.

The first statement in (ii) is obvious. To prove the second we suppose that
¢(a) = 0 but (dp/ds)(@) + 0. Then ¢ = (s — @)y where + is a C~ function
and () # 0. Consequently k = |s — «||[| is not differentiable at s = a.
On the other hand if (dg/ds)(@) = O, then ¢ = (s — «)?A where 1 is a C* func-
tion. Consequently £k = (s — @)* ||| has a zero derivative at s = a.

We will show that the geodesic curvature can be extended by using the func-
tion ¢ defined on [0, L] by

sin @ = dr/ds , —in<0< ir.

Do

It follows from (22) that cos § = k. In the induced metric on (2, f), 4 is the
angle between the tangent vector to C and the s-axis. The required properties
of @ are established in

Lemma 6. The function 6 is absolutely continuous on [0, L]. It is differ-
entiable at a point « iff k is differentiable at .

Proof. The function sin~! is uniformly continuous on the closed interval
[—1, 1], and so there exists a number 2 > O such that [sin™' o — sin™! 8] < =
when | — 8| <2, —1 < &, B < 1. The function r is C= on [0, L], and so
there exists a number B > 0 such that |d’r/ds*| < B on [0, L]. Let s, s, be
such that 0 < s,, 5, < L, |5, — 5,] < 2/B. We will write 6,, r;, k; for the values
of the functions @, r' = dr/ds, k at the points s;, i = 1,2. From the definition
of § we obtain

sin (0, — 6,) = rik, — rik, = k(r; — r) — ritk, — k),
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and therefore
[sin (6, — 6)| < |ry — 1] + |k, — Ky .

It follows from the mean value theorem that [sin 6, — sin 4, | < 1. Consequently
|6, — 6,] < %z, and so we may use the inequality |6, — 6,| < 4= |sin (6, — 6,)]
to conclude that

|6, — 6,] < %ﬂ(lr; - ril + |k, — kl') .

The absolute continuity of § now follows from that of the function £ (Lemma
5) and the C> function dr/ds.

To investigate the differentiability of ¢ we consider first the points where
k + 0. At these points cos § # 0, and the formula sin § = dr/ds gives

(23) dg/ds = (dr/ds?) |k .

On the other hand, in a neighborhood of a zero of k the function sin @ + 0, and
the formula cos § = k gives

df/ds = —(dk/ds)|(dr|ds)

iff dk/ds exists.

Since an absolutely continuous function is differentiable almost everywhere
[4, p. 205], it follows from Lemma 3, Lemma 6 and the formulas (21) and
(23) that the definition

(24) £ = 0h/dy — df/ds

extends the domain of « to [0, L] except for a set of Lebesgue measure zero.
Further, the proofs of the lemmas show that 1 = 0 where £ = 0. Consequent-
ly the inequality |, | > || holds almost everywhere on [0, L].

We are now able to prove the key theorem. The statement of this theorem
makes use of the meanings which we have attached to curvatures at the
singularities of f.

Theorem 1. Let O be a point on a closed C> curve C imbedded in a
riemannian n-manifold M, and suppose that C lies in a normal neighborhood
of 0. Construct the shell (Q2,f) on C with vertex 0. Let K be the Gaussian
curvature of the induced metric on (2,f), and use dA for its area measure.
Denote by k the geodesic curvature of C considered as a curve in (22,1), and
let s be its arc length. Then

JL/cds=7r+l—IKdA,
0 Q2
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where L is the length of C, and | is the length of the indicatrix of the shell.
Proof. Lets,, L — s, be the values of s at which the line y = ¢ meets the
curve y = r(s). By definition
j KdA =1lim [~y 45
9 &

~0 ) o, 3y

— lim (_r'”ﬂ(r(s), s)ds + jmﬂ(e, s)ds) .
oy si 0y

e—0 51

It follows from Lemma 3 that
| f Kdd — — jLﬂ(r(s),s)ds 41,
2 0 gy

The proof is completed by substituting for 94/6y from the definition (24). For,
according to Lemma 6, § is absolutely continuous and therefore [4, p. 207]

"0 45 — o) — 6(0) .
o ds

Lemma 1 shows that the right-hand side is equal to —x.

3. An inequality for the total absolute curvature

Theorem 2. Let M be a complete simply connected riemannian manifold
with a nonpositive sectional curvature function K,,. Then the geodesic curva-
ture ky of any closed C> curve C imbedded in M satisfies the inequality

25) f Jngdszzn_fKMdA,
C 2

where (2, ) is any shell on C.

Proof. Itis well known that such a manifold M is a normal neighborhood
of each of its points so that the shell (2, f) is defined. According to Lemma 1
the indicatrix of the shell joins a pair of antipodal points on a unit sphere and
therefore its length | > x. Consequently as |k, | > |«| we obtain, using Theo-
rem 1,

I[/:Mldszrjlcfdszrxds=n-+l—j KdA > Zn—j KdA .
(o} 0 0 Q Q

The proof is completed by (K,, — K)d4 = (4, — A)dyds > 0, which follows
from (12), (14), (15), (18), (20) (on M wherever K and K, are defined the
formula K,, — K > 0 is due to J. L. Synge [8]).
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It should be remarked that by a completely different method J. Szenthe [9]
has shown that f |ky| ds > 2z, which is obviously weaker than our inequality
c

(25).

For K, + 0, from (25) we prove immediately the following conjecture of
N. H. Kuiper:

Corollary. The total absolute curvature of any closed C curve imbedded
in a complete simply connected riemannian manifold with negative sectional
curvature is greater than 2r.

We can obtain more precise results in the case when M has constant sectional
curvature. But we will need some information about imbedded closed curves
in the hyperbolic and euclidean planes. As in euclidean space we will say that
a subset S of hyperbolic space is convex if {P, Q} C S implies that the geodesic
segment joining P to Q also lies in S. An imbedded closed curve C in the
hyperbolic plane is said to be convex if it is the boundary of a convex subset
of the plane. In our case C will be of class C*, and then an equivalent condi-
tion is that C lie entirely on one side of each tangent geodesic.

Theorem 3. Let M be a hyperbolic (resp. euclidean) space, and denote its
sectional curvature by v. Then the geodesic curvature k, of any closed C>
curve C imbedded in M satisfies the inequality

I[xM|dS22n—uA,
(o}

where A is the area of any shell on C. If the equality occurs for some shell
on C, then C is imbedded as a closed convex curve in a hyperbolic (resp.
euclidean) plane in M.

Proof. The first statement is a special case of Theorem 2. To prove the
second statement we suppose that the equality occurs for a shell (2,f) on C
with vertex 0. According to the proof of Theorem 2 the indicatrix of this shell
has length z and is therefore a great semi-circle on the unit sphere in T, M.
Consequently C lies in the totally geodesic surface S through O tangent to the
plane of this great semi-circle. The surface S with its induced metric is a hyper-
bolic (resp. euclidean) plane in M, and the geodesic curvature of C, considered
as a curve in S, is equal to x;. We will need

Lemma 7. k, has a constant sign.

Proof. 1t is clear that £, = £ at the nonsingular points of f, that is, where
h = 0. Suppose that £, («) > 0. Then £, > 0 on some open interval I contain-
ing «. The function 4 is not everywhere zero on I, because that implies the
restriction of C to I is a geodesic and so xy(a) = 0. Therefore £ = &5, > 0
on some subinterval of /. Similarly, the supposition &, (a) < 0 implies that £ <0
on some interval of values of s. Consequently, unless «, has a constant sign,
there is a strict inequality
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L L
Ifx]ds>fxds,
0 0

and so, from the proof of Theorem 2, a strict inequality in the statement of
Theorem 3.

It follows from Lemma 7 that C is convex. This fact is well known in the
euclidean case [1, p. 21], and we prove it for the hyperbolic case in the ap-
pendix (Theorem 5).

Theorem 3 is an extension of a well-known theorem of Fenchel [3]. The fol-
lowing theorem is an extension of the theorems of Fary [2] and Milnor [5].

Theorem 4. Let M be a hyperbolic or euclidean space of dimension three,
and denote its sectional curvature by v. Let &y be the geodesic curvature of a
C= knot C in M. Then for some shell on C

I|EM|dsz4ﬂ—uA,
c

where A is the area of the shell.

Proof. Let D denote a closed imbedded C* curve in M such that there is
no shell on D which satisfies the stated inequality. Therefore, for any point O
on D,

I|/cM|ds<4n-—uA,
D

where A is the area of the shell on D with vertex 0. On the other hand, the
proof of Theorem 2 contains the inequality

j|xM|ds2n+z—yA,
D

where [ is the length of the indicatrix of the shell. Consequently | < 3z. Our
aim is to show that this condition implies that D is unknotted. We will prove
first that the condition implies there is a plane through O (hyperbolic or euclidean
respectively) which meets D in just one other point and is transversal to D at
both points of intersection. Then Theorem 6, which is proved in the appendix,
shows that D is unknotted.

Consider an oriented great circle G on the unit sphere X in T,M. G lies in
a plane 7 in T,M and gives an orientation to y. Choose an orientation for 7,M.
This orientation is determined by the orientation of y and a unit vector normal
to y. The measure of a set of oriented great circles on X is, by definition, the
area measure of the corresponding unit normals considered as points of X.
We attach to each great circle G the number n(G) of its points of intersection
with the indicatrix of the shell. Applying Crofton’s theorem [1, p. 33] we find
that
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(26) In(G)dG — 47l < 127 .

It is clear that n(G) > 1, which, together with (26) and the following Lemma 8,
implies that the set of great circles on X' with n(G) = 1 has strictly positive
measure because otherwise

In(G)dG > f 3dG = 127 .

Lemma 8. The measure of the set of great circles on X with n(G) = 2 is
zero.

Proof. The indicatrix {: s — {(s) joins antipodal points P, Q on 2. Any
great circle on 3 meeting { in just two points either goes through P and Q
or is tangent to { for some s, 0 < s < L (“tangent to £ is to include going
through a singular point where d{/ds = 0).

Consider the set S, of oriented great circles on X through P and Q. Since
their normals lie on a great circle on X, obviously S, has measure zero.

Consider the set S, of great circles on Y tangent to ¢ for some 5,0 < s < L.
If I = I,x,(0) is the normal to the plane of such a great circle, then

We will show that S, has measure zero by using Sard’s theorem [6]. Consider
the projection ¥ X I — X where I is the open interval (0, L). Let y be the
restriction of this projection to the 2-dimensional submanifold N of points (I, 5)
such that [;{; = 0. A point p = (I, s) € N is critical for y iff 9/ds is tangent to
N at p. This is so iff [,d¢;/ds = 0. Consequently the set of critical values of
x is the set of unit vectors I satisfying (27). Sard’s theorem implies that this
set (and hence S,) has measure zero.

The set of great circles with n(G) = 2 is contained in the union S, U S, and
therefore has measure zero. q.e.d.

Each oriented great circle G determines an oriented plane ¢ in M (hyperbolic
or euclidean respectively) whose tangent plane at O contains G. The planes
corresponding to the great circles with n(G) = 1 are transversal to D at 0, and
meet D in just one other point. We have to show that some of these planes are
transversal to D at both points of intersection. Let P denote a general point on
D distinct from 0, and ¢ an oriented plane containing P and 0. Consider those
planes which are not transversal to D at P.

Lemma 9. As P varies on D, the union of the corresponding great circles
on X has measure zero.

Proof. We will show that this union is the set S, introduced in the proof
of Lemma 8. Consider an oriented plane ¢ containing P and 0, and suppose
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that its normal at O is [,x;(0). Then its normal at P is [;x;(P). The plane ¢ con-
tains the geodesic OP and therefore

(28) LLs) =0

It follows from (8) that ¢ is not transversal to D iff L;w;(r(s),s) = 0. For spaces
of constant nonpositive sectional curvature v the functions w; are proportional
to d¢;/ds. To show this we will integrate (13) which simplifies to

azﬂ)i/ayz = —Yw; .

Imposing the initial conditions w; = 0, and dw;/dy = d{;/ds when y = 0, we
find

1
V=
w; = ydg;/ds , y=20.

w; =

sinh (x/——vy)& , y <0,
ds

Consequently ¢ is not transversal to D iff
29 1,d¢;/ds = 0 .

As (28) and (29) are the same as (27), it follows that the set of great circles
which we are considering is the set §,. q.e.d.

Consequently by Lemma 9, almost all great circles on ¥ with n(G) = 1
determine planes which are transversal to D at both points of intersection.

4. Appendix

In this appendix we prove two theorems which have been used in our pre-
vious work.

Theorem 5. Let H be the hyperbolic plane of constant sectional curvature
—1, and C be a closed C* curve imbedded in H. Then C is convex iff it can
be oriented so that its geodesic curvature £ > 0.

Proof. Let (x,y) be the standard coordinates on R?. We will take as our
model of H the subset of R? where x > 0, together with the metric

(dx) + (@dy)?
x2

The sign of the geodesic curvature of a curve in H depends on a choice of an
orientation for H. We choose the orientation defined by the chart (x, y). Then
it is easy to derive the formula

(30) k= @y —yx" —xy)|x,
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where the primes denote differentiation with respect to the arc length s. It fol-
lows at once that the lines y = constant are geodesics in H, and our proofs
will make use of this fact. If a curve C is tangent to such a geodesic, then in
a neighborhood of the point of contact we can use the coordinate x as a para-
meter on C. It is not difficult to verify the formula

31) k= x2£<y_,> .

xz

We are now ready to begin the proof of the theorem. To show that the stated
condition is necessary we suppose that C is convex, but that it cannot be
oriented to have its geodesic curvature £ > 0. Therefore there are points on C
at which £ > 0, and also points where £ < 0. Consider a point where £ > O,
and choose the arc length parameter so that this point has parameter value
zero. Let & be the supremum of those values of s for which £(#) > 0,0 <t < s.
Then k(a) = 0, and in any neighborhood of « there are values of s for which
£(s) < 0.

Let P denote the point on C of parameter «. We can use a proper isometry
of H to move C so that it becomes tangent at P to the x-axis with x’ > 0 at P.
The curve C remains convex, and its curvature is unaltered. Because x(s) > 0
for 0 < s < «, the formula (31) shows that some part of C lies above the
x-axis. Therefore, because C is convex and the x-axis is a geodesic, C lies
entirely above the x-axis. Of course, if Q is any other point on C, we can again
move C so that it becomes tangent to the x-axis at @ with x’ > 0 at Q. But if
Q is near to P, then we need only move C a small amount. Consequently, if
Q is near enough to P, then C will still lie above the x-axis.

We can choose Q so that ¥ < 0 at Q. Because y’ = 0 at Q, it follows from
the formula (30) that y”” < 0 at Q. This inequality contradicts the previous
conclusion that C lies above the x-axis. Therefore C can be oriented so that
£ > 0.

To prove the converse implication we begin with a technical lemma.

Lemma 10. Let C be a C* closed curve imbedded in the hyperbolic plane
H with geodesic curvature £ > 0. Suppose that a geodesic y = constant is tangent
to C at a point P of arc length parameter «, and that x'(a) > 0. Then there
exist numbers a, b such that

a<a<b,ys)>ya for a<s<b,
y(a) > y(a) , y(b) > y(a) .

Proof. Let [d’,b’] be the largest closed interval containing o on which
£ = 0. On this interval the curve C coincides with the geodesic y = y(a). We
can choose a, b to satisfy the conditions a < a’, ¥’ < b and x’ > 0 on the
interval [a, b]. The fact that a, b also satisfy the conditions stated in the lemma
is an easy consequence of the formula (31). q.e.d.
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To complete the proof of the theorem we suppose that £ >0 on C, but that
C is not convex. Consequently there are points of C on both sides of some
tangent geodesic. We can move C so that this tangent geodesic becomes the
x-axis with x* > 0 at the point of contact, P. Lemma 10 gives us information
about the shape of C near to P. But there are also points on C for which the
y-coordinate is strictly negative. It follows that there is at least one local maxi-
mum for y on C at which x’ > 0. Lemma 10 implies that such a local maximum
cannot exist. Therefore C must be convex.

In the next theorem we will be dealing with hyperbolic or euclidean space
M of dimension three. Let D be a closed piecewise C* curve imbedded in M.
A plane (hyperbolic or euclidean respectively), which meets D in just two
points and its transversal to D at each point of intersection, will be said to be
transversal to D. In this definition a plane is transversal to D at a point of
intersection of two C= arcs if it is transversal to both arcs and also separates
them. It is not difficult to see that if a plane p is transversal to D, then any
plane sufficiently near to p is also transversal to D. If D admits a transversal
plane through each of its points, then we will say that it has the transversal
property.

Theorem 6. Let C be a closed piecewise C* curve embedded in hyperbolic
or euclidean space M of dimension three. If C has the transversal property,
then C is a trivial knot.

Proof. (The idea of the proof is due to T. Poston.) Let D be a closed piece-
wise C* curve embedded in M, and suppose that D has the transversal prop-
erty. We will describe a procedure for splitting D into two new closed curves
which also have the transversal property. Choose a point Q on D and a plane
q through Q transversal to D. Let R denote the second point of intersection.
The plane g divides D into two arcs I',, I',, and we complete these arcs to
closed curves D,, D, by adding on the geodesic segment OR.

To show that the new curves D,, D, also have the transversal property we
restrict our attention to D,. First of all note that if P lies on the segment OR,
then a suitable small variation of the plane g will provide a plane through P
transversal to D,. If P is not on this segment, then there is a plane p through
P, transversal to D, which does not go through Q or R. If p meets D again in
the arc I",, then it cannot meet the segment QR and is therefore a transversal
plane for D,. On the other hand, if p meets D again in the arc [,, then it must
also meet the segment QR. It will meet this segment transversally and so will
again be a transversal plane for D,.

We now outline the small amount of knot theory which we need. For details
we refer to [7]. The procedure we have just described factorizes the knot D
into the product of the knots D;, D,. Associated with any knot is a nonnegative
integer called the genus of the knot. It satisfies the simple relation.

(32) genus D = genus D, + genus D, .
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This relation, together with the fact that a knot is trivial iff it has genus zero,
is all that we use.

We will say that the closed curve D satisfies condition A if, for any splitting
of D into closed curves D,, D,, at least one of the curves is a trivial knot. As
a product of a finite number of trivial knots is a trivial knot, Theorem 6 is a
consequence of the following lemmas.

Lemma 11. A piecewise C* knot C which has the transversal property can
be split into a product of knots each satisfying condition A.

Proof. Either C itself satisfies conditon A4 or it can split into a product of
knots C,, C, which have the transversal property and which are not trivial
knots. The relation (32) shows that C, and C, will each have a genus strictly
less than that of C. If C,, C, both satisfy condition A4, then the proof is com-
plete. Otherwise we can continue by splitting C, or C, (or both) into products.
This process will terminate after a finite number of steps because the genus of
a knot is a nonnegative integer.

Lemma 12. A piecewise C= knot D which satisfies condition A is a trivial
knot.

Proof. We will say that an arc I" of D is trivial, if there is a transversal
plane through its end points Q, R, and the closed curve formed by I" and the
geodesic segment QR is a trivial knot.

We first note that any point P on D lies in the interior of a trival arc. For
consider a plane p through P transversal to D, and let P’ denote its second
point of intersection with D. The plane p divides D into two arcs at least one
of which is trivial. Rotate p about P’ to increase the length of the trivial arc.
If the rotation is sufficiently small, the new arc will also be trivial. It will, of
course, include P in its interior.

Because D is compact, we can cover D by a finite number of trivial arcs.
We can also arrange that the cover is minimal in the sense that no arc is con-
tained in the union of the remaining arcs of the cover. Let '}, - - -, I, be such
a minimal cover, and let Q;, R; be the end points of I';. Divide D into two
arcs by a transversal plane g, through Q,, R;, and construct a new knot D’ by
replacing the arc I', by the geodesic segment Q,R,. The relation (32) shows
that if D’ is a trivial knot, then so is D. Apart from the segment Q,R, the knot
D’ lies entirely on one side of g,, and we will say that it lies in a half-space .

Now consider the knot D’. Some of the arcs I, - - -, I", will be arcs of D’,
and the remainder will have just one end point on I",. Let I", denote an arc
with an end point Q, on [',. There is a plane g, through Q,, R, transversal to
D. The plane g, must intersect the segment Q,R,, and we will denote the point
of intersection by Q,. One of the arcs Q,R, or R,R, is contained in I",. The
union of this arc with the segment 0’0, or Q%R respectively, gives an arc I,
of D’.

It is not difficult to show that /™, is a trivial arc of D’. In fact, for this pur-
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pose by assuming Q, to be on I', we have to show that the closed curve E
consisting of the segment Q.Q,, the part of /I, from Q, to R, and the segment
R, Q' is a trivial knot. We are given that [, is a trivial arc of D. This means
that the closed curve F consisting of the arc /', and the segment R Q, is a
trivial knot. Consider the closed curve G consisting of the arc I’,, the segment
R,Q’ and the segment Q.0,. G is isotopic to F because we can deform the
broken geodesic segment R,Q.0, into the segment R,Q, keeping within the
transversal plane g,. Since # is a trivial knot, G is also a trivial knot and there-
fore genus G = 0. Since the knot G is the product of the knot E and the knot
consisting of the arc of /', from Q, to Q,, the segment Q,Q’, and the segment
Q’Q., the relation (32) implies that genus E = 0, and hence that E is a trivial
knot.

We carry out the above modifications where necessary, and obtain a cover
of D’ consisting of the segment Q,R, and trivial arcs I, - - -, [,

We can now construct another new knot D" by replacing /7, by a geodesic
segment lying in a transversal plane g,. As before D" lies in a half-space =,
and if D is trivial then so is D’. After n such steps we will arrive at a knot
S consisting entirely of geodesic segments. S will lie on the boundary of the
convex set formed by the intersection of the half-spaces z,, - - -, x,, and will
therefore be a trivial knot. Consequently D is a trivial knot.
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