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ON THE PRODUCT OF SCHUBERT CLASSES

PHILIP O. KOCH

1. Introduction

1.1. In his paper [1] Kostant has described the generalized Schubert classes
which serve as a basis of the cohomology ring of a large class of homogeneous
spaces. The problem investigated here is that of determining the product of
two Schubert classes as a linear combination of the others. The extensive
notation needed to discuss this question is recalled in § 2. In § 3 some pre-
liminary results are developed, and it is shown that it is sufficient to study the
case of the generalized flag manifolds. § 4 contains the main result in which
it is shown how the application of a certain linear operator to the product of
two Schubert classes yields the product in terms of the other classes. § 5
contains some general statements about the products, including formulas
applicable in some simple cases.

2. Background

2.1. Let % be a complex semi-simple Lie algebra, and let ϊ c g be a fixed
compact real form of g. So g = I + zϊ is a real direct sum; and the Cartan-
Killing form, denoted by ( , ) , is negative definite on ϊ. This permits a ^opera-
tion to be defined on g by (JC + ίy)* = — x + iy for x, y e ϊ. For any subspace
3, 3* = {x*\xeg\.

Let b C g be a fixed Borel subalgebra. Then ΐj = b Π b* is a Cartan sub-
algebra. Let J C ΐ)', the dual of ϊ), be the set of roots associated with ί). If
vx = [x e Q I (JC, y) = 0 yy <=. b}, then b = ή + m and g = b + m*. Both m
and m* are maximal nilpotent subalgebras, and they are both ^-modules under
the adjoint action of ϊ) on g. Therefore m is the complex span of {eψ \ φ e Δ(xn)}
for a well-defined subset J(m) c Δ. Similary, m* is the span of {eφ\φ e J(m*)}.
One can show that ef is a nonzero multiple of e_φ, so that J(m*) = — J(m)
and one can describe a lexicographic ordering in fy for which the positive roots
Δ+ — A(m) and the negative roots Δ_ — J(m*). Finally, one can normalize
the root vectors {eφ\φζ Δ) so that both (eφ, e_φ) = 1 and ef — e_ψ are satisfied.
This is the normalization we shall assume hereafter. If xφ ζ. ϊj denotes the root
normal corresponding to the root φ, then the following product formulas hold:
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[e9, e_φ] = xφ, [xφ9 eψ] = (φ, φ)eφ, [xφ9 e_φ] = — (φ, ψ)e_ψ .

2.2. More generally, suppose u is any fixed parabolic subalgebra: 6 C u
C g. Put 9i = u Π u*. If π = {* € g | (*, y) = 0 vy e u}, then u = gx + n and
g = u + n*. Both n and n* are gΓmodules under the adjoint action of gx on
g. So n is the complex span of {eφ\φe J(n)} similarly for n*. From b C u,
it follows that n c m, n* c m*, and ζ c glβ

Define the subspace r = n + π*. r is not a Lie subalgebra of g; but we
make it a Lie algebra by giving it the product of g on n and n* and putting
[JC, j ] = 0 for JC 6 n and yen*. Now consider the exterior algebra Λr. Since
n and n* are gΓmodules, r and Λr are too. Denote the invariants by C, that is,
C is the subspace of Λ t each of whose elements is annihilated by every x e gx.

2.3. We now introduce a series of operators on C, recalling some facts
about some of them. These operators will play an important role in the solu-
tion of our problem. Let 3 e End Λr be the usual boundary operator, and
b e End Λ r be the corresponding coboundary operator, that is, the negative
transpose of 3 with respect to the Cartan-Killing form on Λr. Since C is stable
under the action of 3 and b, we denote by these same symbols their restrictions
to C Now denote by d e End Λg the usual coboundary operator on Λg. In
general, Λr is not closed under the action of d, but it turns out that C is, and
we denote by this same symbol its restriction to C.

2.4. Consider the vector space C and the linear operators d, b, and d. It
has been shown that d and d are disjoint, that is, ddx = 0 implies dx = 0 and
day = 0 implies dy = 0 for x, y <= C. Because d and d are disjoint, the laplacian
operator S = dd + 3d induces a Hodge decomposition of C: C — Ker S + Im S.
In this direct sum decomposition Ker S = Ker 3 Π Ker d and imS = Im3 +
Im d. Also Ker 3 = Ker 5 + Im 3 and Ker d = Ker S + Im d. So, if # ( C , a)
denotes the homology group Ker d/Im a, the projection Ker 3 —> //(C, 5)
induces an isomorphism of Ker S —> H(C, 3). Similarly, the projection
Ker d —> H(C, d) onto the cohomology group H(C, d) induces an isomorphism
of Ker S —> H(C, d). Thus each equivalence class of H(C, 3) contains a unique
harmonic cycle from Ker 5, and each equivalence class of H(C, d) contains a
unique harmonic cocycle from Ker S.

Since the operators b and 3 are also disjoint, the laplacian operator L =
b3 + 3b induces a second Hodge decomposition of C.C — KerL + I m L .
Identical statements to those made about the first decomposition also hold for
this one. In particular, Ker L plays a similar topological role to that played
by KerS. Since H(C,d) is isomorphic to both KerS and KerL, we have
described isomorphisms ψStL : Ker L —• Ker S and ψL>s: Ker S —• Ker L.

2.5. The operator ψStL, which turns out to be of prime importance, has
been determined in terms of other operators which can be described explicitly.
L can be inverted on Im L. Defining Lo e End C to be the inverse of L on
Im L and 0 on Ker L, we have LL0 = LQL = / on Im L, = 0 on Ker L.
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Now let TΓ: r —> End Λ t be the adjoint representation. In terms of π define
the operator E e EndC by E = 2 ΣΨed+ π(eφ)π(e-Ψ)' It has been shown that
E is related to S and L by the formula S = L + E. Finally, define R e End C
by R = —L0E. R is clearly nilpotent so that (/ — R)~ι = I + R + R2 +
• + RN where RN+1 = 0. It has been shown that the operator ψs L =
(/ - R)'1.

2.6. We will denote by W the Weyl group of g. For any σ e W we define
a subset of Δ+: Φσ = (σΔ_) ΓΊ Δ+. The expression of σ in terms of reflections
is not unique, but the set Φσ is unique. We will consider the elements of W as
expressed by means of these sets.

Corresponding to a particular parabolic subalgebra u, there is a subset W1

of W defined by Wι = {σ e W\Φσ c J(n)}. When u = b, then n = m and
W1 = PF. For each σ e ί f denote by n(σ) the number of roots in Φa. Then for
any integer / define Wι(j) = {σ zWι\ n{σ) — /}. For example, σ e W(\) precisely
when Φσ is a simple root and σ is the corresponding simple reflection. Let
w\j) be the number of elements in WιQ).

Let G be a simply-connected Lie group whose Lie algebra is g. Let U c G
be the connected Lie subgroup corresponding to u C g. Consider the compact
homogeneous space G/U. We are interested in the singular cohomology of
G/U with complex coefficients. It is zero in odd dimensions, and in dimension
2/ is a complex vector space of dimension w^j). A basis can be given for the
cohomology group of G/U whose elements, the generalized Schubert classes,
are dual to the homology classes of the generalized Schubert cells in G/U.
There is a basis element corresponding to each σ eW1.

The cohomology ring of G/U with complex coefficients is isomorphic as a
ring to H(C, d), the product of the latter being induced by exterior multiplica-
tion. For any σ e W1 we consider the equivalence class in H(C, d) which passes
under this isomorphism into the basis element indexed by σ, and we choose
from this class its unique harmonic representative si — sσ /λσ e Ker 5. These
harmonic elements have been fully described. λσ is a normalization coefficient.
sσ e Ker S is defined by first defining an element hσ e Ker L and then putting
sσ = ψSίLhσ. In § 3, where the discussion of our own results begins, the defini-
tion of hσ will be recalled. Only in § 5 will the properly normalized Schubert
classes si be used. For the problem investigated here, the sσ's are the natural
elements.

3. Preliminary discussion

3.1. We have H(C,d) = Σ σ € T Γ i C{sl}. The problem we have studied is
that of multiplication in this ring in terms of the basis of Schubert classes.
Actually we have worked with the unnormailzed classes sσ. Specifically, let
a € W\k) and ξ e W\ϊ). Then {sσ}-{sξ} = Σ^WΠ^D CU{SΛ-

 W e will develop
a method for determining the coefficients c*e. This problem is equivalent to
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the following one. sσ and sξ eKeiS; so they are both cycles and cocycles.
Because d is a derivation, sσ A sζ is a cocycle, but it is rarely a cycle.
However, one can choose xσξ e C2k+2l~1 such that sσ Λ s* + d;t,e € KerS and is
thus both a cycle and a cocycle. Although xσξ is not unique, dxσξ is unique.
So the coefficients cη

aζ also appear in sσ Λ Je + ώfffe = S*ewi(*+i) ^ e ^

3.2. We wish to compare the problem for a general parabolic u D 6 with
that for b itself. # ( C , d) in the case of general u can be regarded as a subspace
of H(C, d) in the case of b, namely, the subspace spanned by the Schubert
classes indexed by W1 c W. We will show that the ring structure is not affected
by regarding it in this way. For this purpose we temporarily introduce the
superscripts U and B to distinguish the two cases. In the case of b the ring
involves some products which have no meaning in the case of u, but they do
not concern us now. Let σ, ξ e W1. Regarding them as elements of W and
looking at the cohomology ring of G/ B, we would write:

(3.2.1) sσB A sξB + dBxB

ξ = Σ clBs*B .
ηζ.WUc + 1)

On the other hand, regarding them as elements of W1 and looking at the
cohomology ring of Gj U, we would write the same equation with B replaced
by U.

Proposition 3.2. c'f = c f for ηeW1, = 0 for η $ W1.
Proof. It has been shown that the elements sσ are invariant in the sense

that sσU = sσB. Because n C m, Aτu c Λ r β . Because Ij c &, Cu c CB.
From the way that 3 and d are defined, it is obvious that du and du are 5 β

and dB restricted to Cu. So 0 = 3 ^ ^ Λ sζU + d^jefj = 35{^σjB Λ sζB + d Λ ^ }
identically. This implies that, having chosen xξξ eCu a CB, one may chose
xB

ς = jcĵ . Then the lefthand sides of (3.2.1) and the corresponding equation
with B replaced by U are equal. Upon equating the righthand sides and
replacing s^ by s*B we have L , 6 ^ ( Λ + l ) clfs*B = Σ9ei7i(*+o c f J ' Λ . Since the
{j'fl|3y 6 P̂ (A: + /)} are a basis of (Ker SB)2k+2\ the assertion follows, q.e.d.

Implicit in this proposition is the first information we have about vanishing
products.

Corollary 3.2. // σ, ξ e W occur together in Wι corresponding to some
U D 6 and if η $ W\ then clζ = 0.

The import of this proposition is that the multiplication table for any G/U
is contained in the single table for GjB. So to solve this single problem is to
solve all the others as well. This is not quite as ideal as it sounds since the
single problem is the most difficult of all. However, because the elements hσB

are far more tractable than the hσU, we have of necessity limited our attention
to the all-encompassing case u = b. In this case, n = m, & = ϊj, and x —
m + m*, and it is this case alone that is discussed in the following sections.

3.3. We now recall the description of the Schubert classes in some detail
because the procedure we will follow in multiplying them is patterned on that
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one would follow in doing a specific example. We will use the following nota-
tions. If Φ c Δ is any subset of roots, specifically Φ = {φ19φ2, •• , <pn}, then
we will denote eΦ = eψl A eψ2 A Λ eψn. In this case, when —Φ —
{ —Px, —φ2, , —φn}9 e_Φ = e_ψn A e_ψn_x A Λ e_ψx. We will denote <Φ>

= ψ\ + ψi + * + <Pn>

Now consider r. We know {eψ\φ e Δ] is a basis of x. So for n = 1,2,
the elements eΦ for each distinct subset of Δ containing n roots form a basis
of Λrw . Because [JC, ep] = (φ,x)e9 for JC e ή, the adjoint action of c on
eφ € Λ t n is multiplication by the scalar « $ > , * > . Then it is clear that C is
the subspace of Λ t spanned by 1 and the elements of the form eΦ for which
(φy = 0 (n = 2, 3, •)• We shall use them as a basis for C. It is also clear
that C can be decomposed into a direct sum C = ΣeeΛ Q where A a fy and
C e = (Λm) f Λ ( Λ m * ) " f . (Λm) f is the subspace of Λm on which the adjoint
action of x e ^ is multiplication by <£, JC). Since any basis element of C can
be written as eφ A e_ψ where Φ, Ψ c Δ+ and <(Φ) = (ψy, this element clearly
lies in Cζ with f = <Φ>.

Put g = K ^ + ) a n c ^ f σ — 8 — σ8 f°Γ a nY o ζ,W. Cleary ξσ = (Φσ}. For any
ξ 6 ^ define the scalar 6(£) = \g\2 - \g - ξ f where \ξ|2 = (?, f). It has been
shown that on the subspace Cζ the action of the operator L is simply multi-
plication by the scalar b(ξ). We also know that ξσ e A and that b(ξ) = 0 for
ξ e A if and only if ξ = fσ for some σ € ίΓ. In general the spaces Cζ are not
1-dimensional, but the spaces Cξσ are 1-dimensional.

Let σ € JF(n) then f σ = <Φσ)>. The element /ισ mentioned in § 2 can now
be defined. hσ = ( 2 π i ) " n ^ Λ ^_Φσ. Clearly /zσ 6 Cu C KerL. Since Z?(f) Φ 0
for ξ Φ ξa, the elements /zσ form a basis of Ker L. We shall refer to the
elements of this basis as terms of the form ha.

Recall now that C = Ker L + Im L. We have chosen a basis for C and
have noted that the terms of the form hσ are a basis of Ker L. We now show
that the remaining basis elements form a basis of Im L.

Lemma 3.3. Let Φ, Ψ c Δ+9 and ξ = <Φ> = <r> Φ ξσ for any σeW.
For all such choices, the elements eφ A e_ψ form a basis of Im L.

Proof. eφ A e_ψ eCξ. But ξ Φ ξ σ for any σ e W implies b(ξ) Φ 0. Thus
(eφ A e_ψ)/b(ξ) <= Cξ, and L((eφ A e_ψ)/b(ξ)) = eφA e_ψ. So eφ A e_ψ e Im L.
Each of these basis elements of C is in Im L. Since the rest are in KerL, these
form a basis of Im L.

Remark 3.3. We have proved that when an element of Im L is written in
terms of our basis for C, the expression contains no terms of the form hσ.

3.4. hσ e Ker L C Ker 9 for any σ e W implies that {hσ} is a well-defined
homology class in H(C, 3). However, in general dh" Φ 0. As described in § 2,
hσ has a unique harmonic representative sσ = ψs,Lnσ £ Ker S. And, since ψs>L

is known explicitly, sσ can be computed:

,$• = ( / _ R)-'h° = (2πi)-n
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In the case that σ e W(l) and thus Φσ = {a} where α is a simple root, a
much simpler expression for sσ has been given. Then sσ = (2πί)~ι Σφej+ na(φ)
• eφ Λ e_ψ where na(φ) is the integral coefficient of a in the expression for φ
in terms of the simple roots.

With respect to the basis for C, hσ consists of a single term whereas, in
general, sσ consists of many terms. Even in simple cases the elements sσ can
be very complicated. However, they have a property which, in certain situa-
tions, will enable us to ignore their complexity. In the formula for sσ above,
the leading term (/ = 0) is hσ. In fact, we have

Proposition 3.4. h° is the only term of the form hv, v € W, which ap-
pears in sσ.

Proof. There is a unique boundary dyσ such that sσ = hσ + dyσ. dyσ e Imd
C Im L. So by Remark 3.3 no terms of the form h% v € W, will occur in dyσ.
So hσ itself is the only such term in sσ.

Remark 3.4. Because {hσ\σ e W) are a basis of Ker L, {sσ|σ <= W) are a
basis of Ker S. In the problem which concerns us, we will have z e Ker S
written in terms of the basis of C and will wish instead to know it in the form
z = Σσζwbσsσ. Approached directly, this would have been difficult for two
reasons. First, unless σ e W(l), we may not know the proper expression for
sσ. Second, even if we did know the sσ's, we would have trouble recognizing
them in z because a single basis element of C can appear in many different
5σ's. As a result of Proposition 3.4, neither of these difficulties need concern
us. Let z e Ker S. Like any element of C, z can be written as z = Σσζwbσhσ + w
= Σσζwbσsσ where w e l m L . By Remark 3.3, w contains no term of the
form h\ By Proposition 3.4, sσ contains hσ and no other term of the form hv.
So necessarily bσ = bσ. Thus we can determine the representation of z e Ker 5
in terms of the basis {sσ \ σ e W} by simply observing the terms of the form hσ.

4. Computation of products

4.1. We now return to the problem of determining the unique dxσζ for
which sσ Λ sξ + dxσξ e Ker S. For this purpose we continue the discussion of
the laplacians L and S which was begun in § 2. S can be inverted on I m S .
Denning So to be the inverse of S on Im S and 0 on Ker S, we have SS0 = S0S
= / on Im S, = 0 on Ker S .

It is clear from the definition of S and L that dS = Sd, dS = Sd, and
dL = Ld. Also we have

Lemma 4.1 . dS0 = Sod, 6S0 — Sod, and dL0 = Lod.

Proof. dSQ = Sod on Ker S since both So and d vanish there. So to prove
this formula for C it suffices to show that it also holds for Im S. Now Im S is
closed under 5, So, and d (also 3). Since S0S = SS0 = I there, dS0 = S0SdS0 =
SodSSo — Sod. The other two assertions follow in the same manner, q.e.d.

Now consider the subspace Im d C Im L ΓΊ Im S. Clearly Im d is closed
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under S. Since S is an automorphism of Im S, S is also an automorphism of
Im d. Similarly L is an automorphism of Im d. Thus So and Lo are also
automorphisms of Im d.

We can now express the action of So on Im 3 in terms of operators which
are known explicitly.

Proposition 4.1. On Im 3, SQ = (I — Λ)"1^.
Proof. Because S — L + E, Im 9 is also closed under E and thus under

R = - L 0 E . Since Im a c Im L Π Im 5, LL0 = LQL = SS0 = SΌS = Z o n

Im d. Then L0S = L0L + LQE = I - R. So So = 50LL0 = (L0S)~ιLQ =
(/ — R)-1^ on Im a. q.e.d.

Note that this formula is not a proper expression for So on all of Im S.

4.2. We can now give an explicit formula relating dxaζ to the Schubert
classes sσ and sζ.

Theorem 4.2. // sσΛsξ + dxσξ e Ker S, ί/ιe« dxaξ=—dd{I—R)-ιLQ{sσAsξ).
Proof. Because j α Λ s* + dxaζ € Ker S, Sdxσξ = —S(sσ Λ sζ) so 50Wxffi

= —S0S(sσ Λ s f) Because dxσξ d m rf C Im S, S0Sdxσξ = dxaV Moreover,
d(sσ Λ sξ) = 0 implies that S0 σ Λ ^e) = ^a(5σ Λ ^ f) So we have shown that
dxaξ = —Sodd(sσ Λ J f) = —dSod(sσ Λ J e). Then, applying Proposition 4.1,
d;tσί = —d(I — R)~ιLQd(sσ Λ 5e). 5 commutes with L o; because it commutes
with L and S, it also commutes with E, R, and (/ — R)'1. So djcβί =
-d3(/ - R)-1^ Λ JO-

Corollary 4.2. Given the cocycle sσ A sζ, [I - ddil - RyιL^{sβ A sξ)
6 Ker S is the unique harmonic cocycle which represents the same cohomology
class.

4.3. According to Remark 3.4, we can write this harmonic cocycle in
terms of the basis of Schubert classes by simply observing the terms of the
form h°. For this reason, we can replace it by another expression which is not
even in Ker S but in which the coefficients of the terms of the form hσ remain
the same. In doing this we will be able to replace the operator
[/ — dd(I — R^LQ] by a simpler one.

Similar to JR, we define an operator R = —EL0. Like JR, i^ is nilpotent;
RN+1 = 0 implies RN+2 = 0.

Define the projection operator P by P = / on Ker L and P = 0 on Im L.
Then the effect of the composite ΨS,LP o n a n y element of C is first to an-
nihilate all terms but those of the form hσ and second to replace them by the
corresponding sσ's.

Theorem 4.3. In terms of the Schubert classes, the product {sσ}-{sζ} is

{ψs,LP(I - JR)"V Λ s%
Proof. From Theorem 4.2 we have

dxσζ = -ddil - RYιLQ{s° A sζ)

JR^LoKs Λ sζ)
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, R)-1^ + dd(! - /?)-1L0](r Λ sζ)

= -E(I - Ry'Lois* Λsζ) + z where z d m L .

One computes that — E(I — R)'1^ = [(/ — JR)" 1 — / ] . The harmonic cocycle
which represents {sσ} {s*} = {sσ A sξ} is 5 f fΛ5 f + dxσξ = (/ — Λ)""V Λs e ) + z.
Because Pz = 0, when this is written in terms of the Schubert classes, it
becomes ψStLP(I - R)-ι(sσ A sξ).

Remark 4.3. Although Theorems 4.2 and 4.3 are stated and proved for
the product of two Schubert classes, it is clear that the entire discussion applies
equally well to the product of any number of classes.

4.4. Although Theorem 4.3 can, in principle, be applied to determine
the product of any Schubert classes, it is sufficiently complicated that general
results are difficult to obtain from it. The difficulty is due to the operators
(/ — R)'1 and (/ — R)'1. Ordinarily one begins with a knowledge of Φσ and
thus hσ. The first of these operators is necessary in determining sσ — {I—R)~ιhσ.
Then the exterior product of two or more such elements is formed and the
operator (/ — R)~ι is applied.

These two operators can be dispensed with in certain special cases. If we
consider a product of k Schubert classes, each corresponding to a a € W(l),
then we may use the simple formula for sσ, thus dispensing with the operator
(/ — R)~\ On the other hand, if we are concerned with a u such that n is
abelian, as it is whenever G/U is a complex symmetric space, then du = 0.
If W1 corresponds to this u and we choose σt e W1, 1 < i < k, then the pro-
duct sσi A - Λ sσk € Ker d ΓΊ Ker d = Ker S. In this case it is not necessary
to use Theorem 4.3. It is clear that {sσi} {sσk} == {ψs,LP(sσi Λ Λ sσk)}.
Most of the results described in the next section apply to cases where one or
both of these simplifications occur.

5. Various applications

5.1. In Corollary 3.2, we have already seen a condition which implies
that the coefficient cv

σξ = 0. We can now describe further circumstances in
which the same null result occurs. Note that the given condition will be
sufficient but not necessary.

Proposition 5.1. Let σ, ξ,η e W. If there is a simple root a such that there
is φ <zΦσΌ Φξ for which na{ψ) > 0 but there is no ψ eΦv for which na(ψ) > 0,
then cη

aξ = 0.
Proof. Suppose there is ψ e Φσ U Φζ and na(ψ) > 0. Then eψ is a factor of

either hσ or hζ. By the nature of the operator R, either every term of sσ or
every term of sζ will contain a factor eθ for which na(θ) > 0. So the same can
be said for sσ A sζ. By the nature of the operator R, every term of
(/ — R)~Ksσ A sξ) will contain a factor eΨ for which na(ψ) > 0. So, by
Theorem 4.3, if it were true that cη

σξ Φ 0, then hη would contain a factor eΨ
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for which wβ(ψ) > 0 and it would follow that there is ψ e Φη for which
naW > 0> contrary to hypothesis.

5.2. In the remainder of this section, we will present several formulas
involving products of Schubert classes and will phrase them in terms of the
true classes, the si = sσ lλσ. The normalization coefficient λσ had formerly
been computed only in the case σ e WO) and thus Φσ = {a} where or is a
simple root. In that case λσ = 2/(a, a). It is now known [2] that in general
these coefficients are given by the following formula. Suppose σ e Win) then
its inverse σ~ι <= Win). Let Φσ_λ = {φ19 , φn}. Then 1 βa = (g, φj.. (g, p n ).

The preceding discussion applies in its entirety to the sj's as well as to the
r ' s . In computing a product, one has only to replace the coefficients cη

σξ by
[λη/iλσλξ)]clr One sees from their definition that the coefficients λσ have the
same invariance property that the sσ's have; so the sfs have this same pro-
perty, and Proposition 3.2 and Corollary 3.2 hold for them as well. Clearly
Proposition 5.1 is also unaltered.

5.3. The simplest nontrivial product is {si} {sf} where σ, ξ β WiV). In this
case we can easily write down answers which apply to all cases. Let σ, ξ <ε WO).
Let a and β be the simple roots such that Φσ — {a} and Φζ = {β}. Furthermore,
if γ is any simple root, let ηiγ) be that element in ^(1) for which Φη{γ) = {γ}.
We will denote the simple roots by 77, the product in W by o, and the Cartan
integers by caβ = 2(/3, a)/iβ, β). Then the following formulas hold.

Theorem 5.3. {si} {s(} = {s{oξ} if caβ = 0 ,

{si} {si} = {JΓ*} + {si-} if caβ<0,

Proof. The details of the computation will not be given here. They are
considerably simplified by facts about the structure of the sets Φσ which have
not been mentioned here. Because σ, ξ e WO), the simple formulas for sσ and
sζ can be used. The first of these statements is almost immediate. Since φσ = {a}
and Φζ = {β}, we know from Proposition 5.1 that the only η β Wil) for which
cη

σξ could be nonzero would be one for which a and β both figure in Φr

Because caβ = 0, there is only one such η g Wil), and it is η = σoξ = ξoσ
for which Φσoζ = {a, β}. It is clear that hσoζ is the leading term of sσ Λ sζ, and
also that this term will never occur in Rjisσ A sξ) for / > 1. So the result is
obtained by simply observing the coefficient of the leading term. The two
other formulas are established in a similar way except that R comes into play.
One observes first, with the help of Proposition 5.1, the small number of j/s
in JF(2) for which cη

σξ could be nonzero. Then one observes in each case the
small number of ways in which hη can occur in (/ — R)~ιisa Λ sζ). Finally
one computes the coefficients of these terms alone and combines them. The
highest power of R which enters is R3 and that occurs only in establishing the
second formula in the case caβ = — 3 .
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5.4. Let a be any simple root. Put A{a) = {φ e Δ+ \ na(φ) > 0} and
N(a) = Max {na(φ) \ ψ e A(a)}. We will consider now the case where N(a) = 1.

Theorem 5.4. Let σ e W{\) and Φσ = {a} where N(a) = 1. In the product
{s{}k, the coefficient of {si}, ηeW(k), is 0?/(λσ)k)kl if Φv c A(a) and 0
otherwise.

Proof. One can see that the span of the {eφ\ψ e A(a)} is a Lie subalgebra
n corresponding to a parabolic u. Because N(a) = 1, n is abelian. Our σ z W1

corresponding to this u. So, as mentioned at the end of § 4, the operator
(I — R)'1 can be replaced by /. It is then a question of what terms of the
from hv appear in (sσ)k. From the simple formula for s% a e W(l), we see
they correspond exactly to those η € W(k) for which Φη c A (a). In that case
the term of the form hη occurs with coefficient 1, k\ times.

5.5. In the case where N(a) > 1, the problem is much more difficult;
but an answer can be given in the special case of the highest nonzero power.
Since A(a) and its complement in Δ+ are both closed under addition of roots,
there is a ξ(a) 6 W for which Φζ{a) = A(a). Denote by D(a) the number of
roots in the set A(a) and by H(a) the product H(a) = Π nJ<ψ)'

<P<=.A(a)

Theorem 5.5. Let σ € W(l) and Φσ = {a}. Then

Proof. Clearly (sί)D(a) = (l/(λσ)D(a))D(a)! H(aWM. But Rhζia) = 0.
Hence the result follows upon introduction of λζia).
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