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CONDITION (C) FOR THE ENERGY INTEGRAL ON
CERTAIN PATH SPACES AND APPLICATIONS

TO THE THEORY OF GEODESICS

KARSTEN GROVE

Introduction

Let M be a complete connected Riemannian manifold, and L\{I, M) the
Hubert manifold of absolutely continuous maps from the unite interval / =
[0,1] to M with square integrable derivative. See, e.g., Eells [4] for the mani-
fold structure on L\(I, M), or Karcher [9] and Palais [16] for analogous spaces.
There are various interesting submanifolds of L\(I, M) related to the study of
different kinds of geodesies on M, which appear as critical points for the en-
ergy integral on the submanifolds.

This paper is divided into three sections. In the first two sections we point
out some interesting submanifolds of L\(I, M) and their related geodesies on
M, and study to which extent the energy integral satisfies Condition (C) of
Palais and Smale (a necessary condition for making critical point theory like
Morse theory and Lusternik-Schnirelmann theory on infinite dimensional man-
ifolds). Our first result was a generalization of those obtained by McAlpin or
Karcher [9] and Palais [16]. However Eliasson has recently obtained a general
result on Condition (C) based on the notion of weak submanifolds and local
coercive properties of the involved function [5]. Conversations with Eliasson
made it clear that his results applies to our case, so that Theorem 2.4 now in
some sense is the best possible result on Condition (C) for the energy function
on path spaces. The author is indebted to Eliasson for pointing out this to him.
Immediate applications of Theorem 2.4 are made to geodesies between sub-
manifolds of M and to geodesies invariant under an isometry without fixed
points by invariant we mean that the geodesic is mapped onto itself with the
direction of speed preserved. In the last section we apply the results of the first
two sectionsto get existence thorems for geodesies on a compact manifold in-
variant under a given isometry. Our main results in the last section are con-
tained in

Theorem. Let M be a compact Riemannian manifold, and A: M —> M an
isometry on M.
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(1) If A is homotopic to the identity map lM of M, then it has a nontrivial
invariant geodesic.

(2) // πx(M) = 0, then A has a nontrivial invariant geodesic except pos-
sibly when A has exactly one fixed point.

Finally there exist compact manifolds with ίsometries which have no non-
trivial invariant geodesies.

We note that V. Ozols in [15] studied the square of the displacement func-
tion δA: M—>R of an isometry A defined by δA(x) = dM(x, A(x)) for all x e M.
If A has small displacement, i.e., if A(x) is never in the cut-locus of x for any
x e M, then the critical points for δA are the points p e M for which the con-
tinuation of the unique minimizing geodesic from p to A{p) is invariant under
A. Thus, if M is compact and A : M —> M has small displacement, then A has
a nontrivial invariant geodesic. Part (1) of our theorem obviously generalizes
this result.

1. Critical points

Let (M, < , )) be a complete Riemannian manifold. Then Ll(I, M) has a
natural complete Riemannian structure given by

where Xσ and Ύa are elements of the tangent space at a € L\(I,M)9 i.e., Xσ is
an absolutely continuous vector field along σ on M with square integrable
covariant derivative VaXa (see, for example, Flaschel [7] or Klingenberg [10]).
All submanifolds of L\(I, M) will be given the induced Riemannian structure
from « , » .

It is easy to see that the map P: L\(I,M) -> M x M defined by P(σ) =
(σ(0),σ(l)) for all σ^L\(I,M) is a submersion so that the preimage of any
submanifold of M x M by P is a submanifold of L\(I, M). If N c M X M, we
write AN(M) for P " 1 ^ ) .

Example 1.1. Let V and F7 be closed submanifolds of M. Then ΛVxV,(M)
is a complete Riemannian Hubert manifold. The study of ΛVxV>(M) is as we
shall see related to that of geodesies from V to V orthogonal to V and V.
(Note the special cases where V, V or both are points of M.)

Example 1.2. Let A: M -> M be an isometry on M, and let GG4) denote
the graph of A. Then ΛGU){M) is a complete Riemannian Hubert manifold.
The study of ΛGU)(M) is related to that of ^-invariant geodesies on M. (Note
that in the special case A = 1M, ΛG(A)(M) = ΛΔ(M) is the space of closed
curves on M, which is denoted by Λ(M) in Klingenberg's notation [10]).

The relation between the Hubert manifolds ΛN(M) and the corresponding
Banach manifolds C°N(M) of continuous maps with the uniform (compact-open)
topology is given by
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Theorem 1.3. Let N c M x M be a submanijold of M x M. Then the
inclusion ΛN(M) —• C°N(M) is a homotopy equivalence.

Proof. C°(/, M)->M x M is a fibration by Serre [18], and L\(I, M)^M
X M is a fibration by Earle and Eells [3, Proposition, p. 40]. Thus the
homotopy sequences for

I 1
L\(I,M) : — • C\I,M)

I ' 1
M x M • M x M

and the five lemma give that Λ[p}x[q}(M) -* C°[p}x{q](M) induces isomorphisms
on all homotopy groups for all fibers P~K{p} X {q}) because the inclusion
L\(I,M) —> C°(/, M) is a homotopy equivalence by a general theorem of Palais
[17, Theorem 13.14]. Now using this on the inclusion between the fibrations

I

N

together with the five lemma yields that ΛN(M) —> C°N(M) induces isomorphisms
on homotopy groups and hence is a homotopy equivalence because ΛN(M) and
C°N(M) are ANR's (even manifolds).

The energy integral is defined by

E(σ) = \

for all σ<=L?(/,M). E is differentiate, and its differential at σeLl(I,M) is
given by

dEσ(Xσ) =

for all Xa € TσL\(l,M) (see, for example, Flaschel [8] or Karcher [9]). Thus
we have
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Proposition 1.4. If a e L\(I, M) is a geodesic on M, then the differential

of E at σ is given by

dEXXa) = <X,(1),</(1)X(1) - <Xσ(0),(/(0)χ ( 0 )

Proof,

d
, γ.ω>.(t) -

dt x

almost everywhere (see, for example, Karcher [9]), and

σ geodesic = > σf € TaL\(I, M) A V aσ
f = 0 .

On the other hand, we have
Proposition 1.5 (regularity). If X is a submanίfold of L\(I,M) such that

TσX for σeX contains all Xσ e TaL\(I,M) with Xχθ) = 0 and Xχi) = 0,
and if σ is a critical point for E\x, then σ is C°° and σ is a geodesic.

Proof. We just remark that our condition on X is sufficient for us to give
a proof quite similar to a part of Karcher's proof of Theorem 8.39 in [9],
which states that critical points for E:Λ(M) —• R are closed geodesies.

Combining Propositions 1.4 and 1.5 we get
Theorem 1.6. (1) Let V and Vf be submanίfolds of M. Then

σ € ΛVxV,(M) is a critical point for E: AVxV>(M) —> R iff σ is a geodesic on M
starting orthogonal to V and ending orthogonal to V, i.e., <τ'(0) e TamVL and
af(\) e Tσa)V^.

(2) Let A: M —» M be an isometry on M. Then σ e ΛGU)(M) is a critical
point for E: AGU)(M) —> R iff σ is a geodesic on M with the property that
A^a{Q)(a\0)) — σ'(l), i.e., that the unique maximal geodesic on M determined
by σ'(O) € Γσ(0)(M) is invariant under A.

Proof. First note that the manifolds ΛN(M) satisfy the condition on X in
Proposition 1.5 since the tangent spaces are given by

T A (Mλ — [Ύ ε T mi Mλ I (X (0) X (1)) ε T N\

(1) Assume that σ 6 AVxV,(M) is a critical point for E: ΛVxV>(M) -+ R. By
Proposition 1.5, a is a geodesic on M, so that dEXXa) = (Xχ\),σf(\y)σ{l) —
<(Xσ(0),(/(0)χ(0) by Proposition 1.4. Now since σ is critical, we get from this
that <Z,(1),</(1)>,(1) = <Xσ(0),c/(0)X(0), yXσ <= TσΛVxV,(M), but this cannot
happen unless both are zero.

Assume next that σ is a geodesic orthogonal to V and V. By Proposition
1.4 and the assumption, dEχXσ) = <Xχi),σf(l)yσω - <Z,(0),</(0)>,(0) = 0,
yXσeTσΛVxV,(M).
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(2) Assume that σ € ΛGU)(M) is a geodesic on M with A%m(σ'(0)) = σ'(l).
By Proposition 1.4

dEσ(Xσ) = <Zσ(l

= 0 since 4̂ is an isometry.

Assume next that σ e ΛGU)(M) is a critical point for E: ΛGU)(M) -» R. By
Proposition 1.5, σ is a geodesic on M, so by Proposition 1.4,

since A is an isometry. This together with dEσ = 0 gives that σ'(l) = ^ ^ ( / ( O ) .
That the maximal geodsic determined by σ is ^-invariant follows easily from

A*σφ)σ\Q) = </(l) either by "geometry" or by the fact that A induces an iso-
metry on ΛGU)(M), which commutes with the energy integral, and similar for
A~\

Remark. If A = 1M in Theorem 1.6, then we get that σ € Λ(M) is a critical
point for E: Λ(M) —> R iff σ is a closed (periodic) geodesic on M. From Theo-
rem 1.6 it is interesting to know under which conditions on F, V, M and A
the energy integrals on ΛVxV>(M) and ΛGU)(M) respectively satisfy Condition
(C) of Palais and Smale. The next section will be concerned with this by first
looking at ΛN(M) in general as a closed submanifold N of M x M.

2. Condition (C)

Using the metric <X , » of § 1 on the various submanifolds of L?(/, M) we
define the corresponding vector field — gradZs. To establish Condition (C) of
Palais and Smale we must show that whenever {σn}neN is a sequence on which
E is bounded and for which IHgradZ^JH^ —» 0 when n —» oo, σn has a con-
vergent subsequence, where || | | | | , denote the norm in TσX corresponding to

Let us first examine what the boundedness of E on {σn}neN cz L\(I, M) implies
Lemma 2.1. Let S c L\(l,M) be a subset of L\(I,M) on which E is

bounded. Then S is an equi-continuous family of curves on M with uniformly
bounded length.

Proof. Write dM for the distance on M, and LM for the length of a curve
on M. For a e L\(I, M) we have

dM(σ(O, σ(t2)) < LM(σ\ίtlM) = J V « , σ'(t)>σ(t)
dt

< I h - t21
1/2 (2E(σ))1/2 by Cauchy-Schwartz,
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from which it follows that S is an equi-continuous family of curves on M and
furthermore that LM(σ) < 2E(σ) for all σ in Ll(I,M), where equality holds iff
σ is parametrised proportional to arc length.

Proposition 2.2. Let N C M x M be a closed submanifold of M x M
with compact Pλ(N) C M or P2(N) C M. Then any sequence {σn} in ΛN(M),
on which E is bounded, has a subsequence converging uniformly to a continu-
ous path h e C°N(M) on M.

Proof. Assume without loss of generality that Pλ(N) C M is compact. From
Lemma 2.1 we have that {σn}nζN is an equicontinuous family of curves on
M of bounded length, i.e., there exists a closed and bounded set K C M such
that σn(I) C K for all n e N since σn(0) eP^M) for all n e N. Since M is a
complete Riemannian manifold, K is compact by the Hopf-Rinow theorem and
hence we can apply Ascoli's theorem to obtain the statement of the proposi-
tion.

Remark. It is easy to see that the conclusion of Proposition 2.2 fails in
general when we omit the condition that P^N) or P2(N) is compact. Since
the manifold topology on ΛN(M) is stronger than the uniform topology
Woo(/, g) = max ί € 7 dM(f(t),g(t)), it becomes more difficult to obtain conver-
gence in ΛN(M).

Definition 2.3. By a "natural chart" around σ in L\(I, M) we understand
a chart defined by means of the exponential map for <( , > in the following way:

is given by exp, (Xσ)(t) = expff(ί) Xσ(t) for all Xσ <= TσL\(l,M) and all t <= /;
exρσ is a diffeomorphism of a neighborhood around 0σ in TβL\(J, M) on a neigh-
borhood around a in L\{1, M), i.e., a chart on L\{I, M), (Eells [4] and Karcher
[9]). We can as well consider TaL\(I,M) as L?-sections in the pullback σ*TM
of TM by σ.

Theorem 2.4. Let M be a complete Riemannian manifold, and N dM x M
be a closed submamifold of M x M such that P^N) C M or P2(N) C M is
compact. Then E: ΛN(M) —> R satisfies condition (C) of Palais and Smale.

Proof. Let{an}n(zN be a sequence in Λn(M), on which E is bounded (say
E(σn) < k e R+yn € Λθ and for which |||gradE(σn)\\\σn -> 0, or, equivalently,
llldZsGrJIH^ —> 0. We want to show that {σn} has a convergent subsequence.
Now by Proposition 2.2 we can assume that σn converges uniformly (in the
d^-topology) to a continuous map h € C°N(M). From this follows that all σn

from a certain step, say n0 e N, is in the domain of a "natural chart" on L\(I9 M)
without loss of generality centered at a C°° curve say a € C^(M).

From now on we work locally in a natural chart around a. Let Θa c a*TM
be an open neighborhood of the zero-section such that exρα: L\(Θa) —> L\(I, M)
is a natural chart around a in L\(I,M), where Ll(Φa) is Li-sections of a*TM
belonging to O.a9 i.e., an open neighborhood oίOa'mTaL\(l,M) = L\(a*TM).
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Now by the orthogonal decomposition L\(a*TM) = L{(a*TM)0 + V where
Li(α*TM)0 is the subspace of L\(a*TM) consisting of sections being zero at
the endpoints, we have

V = {X e L\(a*TM) I « Z , Y » = 0 V Y e L\{a*TM\}

= 0

F' = {Z|F2Z = Z} = {X\X(t) = cMXM + Φ)X2(t)} ,

where c" — ci9 c^O) = 1, c^l) = 0, c2(0) = 0 and c2(l) = 1, or precisely,

Cl(t) = - e~l eι + e~\ di) = eι 1
~ι e e~ι e e~ιe — e~ι e — e~ι e — e~ι e — e~ι

and Xx and X2 are parallel fields along a.
V D Vf is obvious, and F = V then follows since both have dimension 2n.
Let Λfα c 0α(O) x ί?α(1) be the submanifold of ύ?α(0) x ΘaiX) which by

expα(0) x expα(1) is mapped into N c M x M. Then P~α(Nα) = L^ α (0 α ) is
mapped diffeomorphically by exρα onto an open neighborhood of a in ΛN(M),
where P α : L?(^α) —> ̂ α(o) X ^α(i) is of course the map defined by Pa(X) —
(X(0),X(l)). From Ll(a*TM)o C T^^^ίM) and the orthogonal decomposition
L{(a*TM)0 +V = Ll(a*TM) it then follows that 1^.(0,) = (L?(α*TM)0 +
F^) Π jy((Pβ) where VN = {X β F | (Z(0) ,X( l ) ) = (Z 1 (0),Z 2 (l)) eiVα} is a
submanifold of the 2«-dimensional vector space V. Thus L2

1Na(Θa) is difϊeomor-
phic to the product of a finite dimensional manifold and an open subset of
Hubert space.

Let Xn = exp^1 (σn) so that there exists an Z M € C^α(ίPα) such that
\\Xn — Z ^ ||oo —> 0 when n —• oo. Using the local expression for the energy (see
Eliasson [6]) it follows from the boundedness of E that | | |Z T O | | | is bounded.
Furthermore, the estimates in [6] also show that E is locally coercive (see also
Eliasson [5]), i.e., there exist constants λ > 0 and C such that

( * ) (dE(X) - dE(Y))(X -Y)>λ \\\X - Y\\\2 - C \\X - Y\\l

for sufficiently small \\X\\n and || Y W^ we have used EίoτEo exρα which should

cause no confusion.

Write now Xn = X°n + Yn where X°n e LJ( )0 and Yn e VN. Then (*) gives

Jill*, - Z, | | | 2 < C \\Xt - Z,|U + (dEN(XJ - dEN(Xj))(Xi - Z p

+ (dE(Xd -

or
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<\\\dEN(X

where EN denotes E\Lhr^. From \\Xn - X J U -> 0, \\\dEN(Xn)\\\-> 0 and the
boundedness of | | | Z n | | | it follows that the first two terms on the right side of
the above ineqality tend to zero, and that the last term also tends to zero by
using the local expression for dE in [6] and the fact that Yn converges, since
Xn converges uniformly and the C°-norm dominates the F^-norm. Thus
{Xn}nzN is a Cauchy sequence and therefore convergent. Hence {σn}nζίN is
convergent.

Corollary 2.5. Let M be a complete Rίemannian manifold, V and V be
closed submanifolds of M, and A: M -+ M be an isometry on M. Then the
following hold:

(1) E: ΛVxV,(M) —• R satisfies Condition (C) // V or Vr is compact.
(2) E: ΛGU){M) -> R satisfies Condition (C) // M is compact.
By using Condition (C) (for its consequences see Palais [16]) we get imme-

diately :
Theorem 2.6. Let M be a complete Riemannίan manifold, and let V and

V be closed submanifolds of M with say V compact. Then in any homotopy
class of curves from V to Vf there exists a geodesic orthogonal to V and V
with length smaller than that of any other curve in that class. Furthermore,
there exists a geodesic orthogonal to V and V with length equal to d(V, V),
and there are at least cat (ΛVxV,(M)) geodesies joining V and V orthogonal.

Proof. Condition (C) implies that the energy integral on AVxV>(M) attains
its infimum on any component of AVxV,(M) and its lower bound (see Palais
[16, § 15]). The inf points are of course critical points of the energy. Now we
only have to apply Theorem 1.6, and note that an inf of the energy is an inf
of the length by using the proof of Lemma 2.1 and the fact that a change of
parameter does not affect the homotopy class of the curve. The cat ( ) state-
ment is a consequence of Lusternik-Schnirelmann theory.

By using Theorem 1.6 and Corollary 2.5 similar arguments prove the
Proposition 2.7. // M is a compact Riemannian manifold, and A: M —> M

an isometry without fixed points, then A has a nontrivial invariant geodesic.
Remark. Proposition 2.7 and part of Theorem 2.6 are also easy to prove

by geometrical arguments.
In § 3 we shall study the case where the fixed point set of A is nonempty.

3. Invariant geodesies

Throughout this section M will be a compact connected Riemannian mani-
fold, and A: M —> M an isometry on M. We ask the following question: under
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what conditions on M and A there is a nontrivial maximal geodesic on M,
which is mapped onto itself by Al One way to investigate this question as we
have seen from §§ 1, 2 is to study the space ΛGU)(M) introduced there (Theo-
rem 1.6) a main reason why this becomes successful is that the energy inte-
gral E: ΛGU)(M) -> R satisfies Condition (C) when M is compact (Corollary
2.5).

We have seen that if A has no fixed points it has a nontrivial invariant
geodesic. Let us therefore assume that the fixed point set of A is nonempty,
i.e., Fix (A) Φ 0.

First we give examples to show that not all isometries on a compact manifold
in general has nontrivial invariant geodesies.

Examples 3.1. Let M = T2 = S1 X S1 with flat metric.
(1) Let A: T2 -* T2 be induced from a rotation through 90° in R2:

2 1

Then A is an isometry on the flat torus with two fixed points and no non-
trivial invariant geodesies.

(2) Let A: T2 -* T2 be the map induced from a rotation through 180° in
R2:

n

2 4

Then A is an isometry with four fixed points and no nontrivial invariant
geodesies. If we did not require that A should preserve the direction of the
geodesic, A would have infinitely many "invariant" geodesies.

By Theorem 1.6 we see that the fixed points of A occur as critical points of
the energy integral on ΛG{A)(M) (trivial invariant geodesies) with Zs-value zero.
Thus in order to prove the existence of nontrivial invariant geodesies we shall
prove the existence of positive critical values. Let us therefore first study how
the fixed point set Fix 04) of A behaves by itself and inside of ΛGU)(M).
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Proposition 3.2. Let A: M —> M be an isometry on M. Then the set of
fixed points for A is a disjoint union of totally geodesic submanifolds each of
which is a nondegenerate submanifold of ΛGU)(M) with index 0.

Proof. Using e x p ^ o ^ ^ — A ©exp^ when A(x0) = xQ, it is easy to see
that Fix (A) = Ui-i Fi(A), where Ft(A) Π Fj(A) φ 0 => Ft(A) = Fj(A) and
Ft(A) is a totally geodesic submanifold of M (see also, e.g., Kobayashi
[11]). Furthermore, F^A) C ΛGU)(M) is a critical submanifold of ΛG{A)(M).
Thus we now have to prove that FJtA) is nondegenerate and of index 0 (see
Meyer [14]).

Since A: M —• M is an isometry, by a computation of the Hessian of E on
the manifold ΛG(A)(M), which is quite similar to that of H(E)σ in the space of
closed curves (see Flaschel [8]), we get

H(E)XXa,Ya) =

- f<R(X.(f),or(t))o'(t),Y.(f)>.<t)dt ,

when σ € Λ G M ) ( M ) is a critical point of E.
Now let σ € F^U). Then <j(ί) = σ(0) yt <= /, and therefore σ\t) = 0yteI.

Thus

The adjoint map h(E)σ is given by (<h(E)σXσ, Y σ » , = H(E)σ(Xσ, Yσ), from
which we see that ker h(E)σ = {Xσ 6 Γ ^ ^ C Λ O I Γ ^ = 0 almost every-
where}. Since VaXa as a curve in Γσ ( 0 )M is just Z^(0, Xσ(0 is constant in
Tσ ( 0 )M when Xσ € ker AflE),. Furthermore, since ^4^^0,(^(0)) = Z σ ( l ) , we
have that Xβ(t) e T^F^A), so that ker h(E)σ = T^F^A).

Using that A(.E)σ is self-adjoint it is now easy to show that h(E)σl: TβFι(A)L

—> TaFi(A)L is bijective, i.e., Ft(A) is a nondegenerate critical submanifold of
ΛGU)(M). From the fact that H(E)σ is semi-positive definite for any
a e Λ%U)(M) = E-\0), it follows that the index of F^A) is 0.

Remark. We note that if A : M —> M is an orientation-preserving isometry
on an oriented Riemannian manifold M, then codim (F^A)) is even (quite
similar to Kobayashi [11]) for each Ft (A) c Fix (A). Thus, if M is compact
and odd-dimensional, then any such isometry has of course a nontrivial in-
variant geodesic.

Proposition 3.2 has the important
Corollary 3.3. There exists an e > 0 such that Fix {A) is a strong defor-

mation retract of ΛGA){M) = E~ι ([0, e\).
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Proof. We first look at a fixed component Ft(A) c Fix (A) of the fixed
point set of A.

Let N(Fi(A)) denote the total space of the normal bundle vt = (N(FXA)),
π, Ft(A)) to Ft(A) in ΛG(A)(M). Then vt is a Hubert bundle with metric induced
from ΛGU)(M). Since M is compact and Fix 04) is closed, Fi(A) is compact,
so that there exists an r > 0 such that Nr(FXA)) = {Vσ£ N(F ) \ \\\ Vσ\\\σ < r} is
difϊeomorphic to an open neighborhood (a tubular neighborhood, Lang [13])
of Ft(A) in ΛG(A)(M), say ψi: Nr(FXA))_-> 9i{Nr{FXA))) = Ui9 a difϊeomor-
phism with φi (0-section) = Ft{A). Now E = E o φi: NU(F^ —> R has the 0-sec-
tion as nondegenerate critical submanifold. Since Ft(A) is compact, there exist
an e< > 0 (without loss of generality, e* < r<), a fiber-preserving 0-section-

preserving diffeomorphism ψ : N^F^A)) -> ψiN^F^A))) ( C i V , . ^ ^ ) ) with-
out loss of generality), and an orthogonal bundle-projection P^: ^/(F^) —• N(Fi)
such that

EoΨ i(F) = \\\Pu(vσ)\\\l - Illtfi - W^IIB

for all F σ e iVfi.(F{) (see Meyer [14]). But from index Ft(A) = 0 we conclude

that/^ — P* = 0, i.e.,

= | | | F | | | 2 for all V

By defining φ = (J< ^ a n d Ψ = U i Ψ<J w e obtain ^(ψCUi NXFi(A)))) =
^ M ) ( ^ f ) with e = min^ ε*.

1) φ(ψ(Nε)) C ^ ( i i ) is trivial by (*), so assume that

2) there exists a <τ0 6 (^(ΨW)) with £(<70) < e.
Having chosen e small enough we can assume that the only critical value less
than or equal to e is zero, otherwise we could pick a sequence of critical points
of E with decreasing /^-values. By Condition (C) this sequence would have a
convergent subsequence necessarily converging to a critical point with E-value
zero, i.e., to an element of Ft(A) c Fix04) say. Thus there would exists critical
points in NXF^A)) besides F*C4) contradicting (*).

A contradiction to 2) is now obtained as follows.
Since the energy is decreasing along integral lines for — gradE and any

integral curve has a critical point as limit point (by Condition (C) see Palais
[16, § 15]), i.e., a point of Fix (A) by our assumption on e, the integral
curve through σ0 starts from the outside of φ(ψ(Ne)) and eventually gets into
φiψiN,)), a contraction by (*) again. Since U^ {0-section of N(FXA))} is
a strong deformation retract of JV6(Fix 04)), this finishes the proof of the
corollary, q.e.d.

For any compact subset Φ C ΛG(A)(M) the function m a x , ^ ^(^(σ)), where
ψt is the flow for — grad£, is continuous and decreasing. Putting C(Φ) —
l i m ^ maxσ(:φE(<pt(σ)) and using Condition (C) it is then easy to see that
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C(Φ) 6 R is a critical value of the energy integral. Furthermore, a proposition
analogous to that on pp. 77-78 in Klingerberg [10] holds. We could define the
critical values of homology classes of ΛGU)(M) mod Fix 04), study the sub-
ordinated homology classes, etc. However, we will not go into those topics and
turn our attention instead to our main

Lemma 3.4. Let M be a compact Riemannian manifold, and A: M —> M

an isometry with Fix (A) Φ 0. If A has no nontrivial invariant geodesies, the

inclusion i: Fix (A) —• AG(A)(A) is a homotopy equivalence.

In particular, if the number of components of Fix (A) is different from that
of ΛGiA)(M), then A has a nontrivial invariant geodesic. By Proposition 2.7,
it is also true if Fix (A) = 0.

Proof. Choose a base point in Fix 04), and let the corresponding constant
curve be the base point for AG(A)(M).

1) iq: TΓ^Fix 04)) -> πq(AG{A)(M)) is 1 — 1.
Let [/] <= ττα(Fix (A)) be represented by /: Sq -* Fix (A) such that iq[f] = 0

in πq(AG(A)(M)), t h u s iof: Sq —• AG(A)(M) is nu l l h o m o t o p i c in AGU)(M). L e t
H: Sq X / —> AG{A)(M) be a homotopy between iof and the zero-map (map
into the base point). Then H(Sq X /) C AGU)(M) is compact, and the assump-
tion gives that C(H(Sq X /)) = 0 (see above Lemma 3.4). Choose e as in
Corollary 3.3 and t0 <= R+ so that <pto(H(Sq X /)) C Ae

G(A)(M), where ψt is the
flow for — gradE. Let D:Ae

GU)(M) —» Fix 04) be a deformation retraction.
Then D o <pto o H is a homotopy between / o / and the constant map inside of
Fix 04), and hence [/] - 0.

2) iq: ττα(Fix 04)) -+ πq(AGU)(M)) is onto.
Let [F] e πq(AGiA)(M)) be represented by F: Sq -> AGU)(M). Proceed as under

1) and obtain thereby that DoφtQoF: Sq —» Fix 04) is homotopic to F. Thus
iq([DoφtooF]) = [F]. Since iq: πq(Fix(A)) ->πq(AβU)(M)) is an isomorphism
for all q in N U {0}, and the spaces Fix 04) and AG{A)(M) are ANR's, / is a
homotopy equivalence.

Before we go on with the study of isometries in general, let us apply Lemma
3.4 to prove the well-known

Theorem 3.5. Let M be a compact Riemannian manifold. Then there exists
a nontrivial closed geodesic on M.

Proof. With A = 1M, AGilM)(M) = A/M) = A(M) is the space of closed
curves on M, and critical points of E: A(M) -* R are closed geodesies (as we
have seen). Now Fix( l^) = M. When πx(M) Φ 0, by Theorem 1.3 we get
0 Φ πo(Ω(M)) ^ πQ(A(M)), where Ω(M) = C\S\M) are the free loops on M.
Thus the "particular part" of Lemma 3.4 applies.

When πx(M) = 0, assume that there are no nontrivial closed geodesies on
M. Then by Lemma 3.4, iq: πq(M) —> πq(A(M)) is an isomorphism for all q.
Since the fibration A(M) -> Δ = M with fiber APo(M) = A[Po}x[po}(M) has a sec-
tion, the exact homotopy sequence for APo(M) —• A(M) ̂  > M splits:
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(**) 0 > πq(ΛPo(M)) > πq(Λ(M)) ί = ± πq(M) • 0 Vq .
ίq

We start the induction with πo(M) = πx(M) = 0, and assume that πq(M) = 0.
Then πq(Λ(M)) = 0, and thus

0 = πq(ΛPo(M)) ^ πq(ΩP0(M)) s πq+1(M) = 0

by (**) and Theorem 1.3. Hence πq(M) = 0 Vq e N U {0}, which is a contra-
diction (Hurewicz). q.e.d.

It is obvious that it is rather restricted what we can say in general about the
space ΛGU)(M) and therefore about the existence of invariant geodesies, not
knowing much about the manifold and the isometry A. Let us first see what
we can say if A is homotopic to 1M.

Lemma 3.6. Let A.M->M and B\M-*M be homotopic. Then ΛGU)(M)
and ΛG{B)(M) have the same homotopy type.

Proof. By Theorem 1.3 it is sufficient to prove that G°GU)(M) and C°G{B)(M)
have the same homotopy type. Let / / : M χ / — > M b e a homotopy with Ho = A
and H1 = B. Then

F,: C°GU)(M)-^ C°G(B)(M) ,

defined by

17(20
F2(f)(t) = ^ ( o ) , 2(1 - ί))

F - Γ°r2. <^c

if

if

if

if

HB)

0

i
0

i

- * c a u

< t <

< t <

< t <
<t<

* ,

1

are continuous. It is easy to check that F1oF2~lco {M) and F2 o F x — lco (J l f).

Theorem 3.7. y4nj isometry homotopic to the identity on a compact
Riemannian manifold has a nontrίvial invariant geodesic.

Proof. Let A — 1M be an isometry on M. By Lemma 3.6, ΛGU)(M) =
Λ(M), so that

πq(ΛG(A)(M)) ^ τrβU(Λί)) for aU « 6 TV U {0} .

If dim Fi(A) > 1 for some component FiiA) of Fix (A), then A obviously
has a nontrivial invariant geodesic (Proposition 3.2), so assume that A has only
isolated fixed points. Thus πq(Fix (A)) = 0 for q > 1, and from Lemma 3.4
it follows that if A has no invariant geodesies, then πq(ΛGU)(M)) ^ 7r^(Fix 04))
= 0 for q > 1, i.e., πq(Λ(M)) = 0 for q > 1. Using (**) we get that πq(M)
= 0 for q > 1 and hence for all q, a contradiction.

Corollary 3.8. Let M be a compact Riemannian manifold, and A.M-+M
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an isometry on M. Then there exists an n e N such that the nΊh power An =
A o . . . o A of A has a nontrivial invariant geodesic.

Proof. Since the isometry group ^ ( M ) of M is a compact Lie group
(Theorem 3.4, Chapter VI in Kobayashi and Nomizu [12]), the quontient
i Γ (M)/J Γ

0 (M) by the identity component ^JM) is a finite group. Thus some
power of A, say n, satisfies An e ^0(M), in particular, An ~ 1M, and hence
by Theorem 3.7 has a nontrivial invariant geodesic.

In the following we do not assume that A ~ \M, but instead we make rest-
rictions on the fixed point set of A together with the topology of M.

Proposition 3.9. Let M be a compact connected and simply connected
Riemannian manifold. Then any isometry A on M without or with at least two
fixed points has a nontrivial invariant geodesic.

Proof. When Fix {A) = 0, the proposition is proved by using Proposition
2.7. Since # Fix 04) = oo means that dim ^ 0 4 ) > 1 for some component
Fi(A) of Fix 04), as in the proof of Theorem 3.7 we only need to consider
the case where Fix (A) is a finite set of points.

By Lemma 3.4, A has a nontrivial invariant geodesic if # πQ(ΛGU)(M)) Φ
% Fix (A), so the statement of Proposition 3.9 follows from πo(ΛG(A)(M)) = 0.
Since the fibration ΛGU)(M) —> G(A) = M has fiber ΛPo(M) where A(p0) = p0

is the base point in M, the homotopy sequence

- * π0(ΛPo(M))

\\l \\X

πo(ΩPQ(M)) πQ(M)

0

0

gives immediately that πo(ΛG(A)(M)) = 0.
Corollary 3.10. Let M be a compact Riemannian manifold with finite

fundamental group π^M), and let A: M —> M be an isometry.
(1) // A has prime power order m = pe with p odd or A has order two,

then A has a nontrivial invariant geodesic.
(2) // the universal covering space M of M is homeomorphic to an n-

sphere Sn, then A has a nontrivial invariant geodesic.
Proof. (1) Let M be the universal covering space of M. Then M is com-

pact and πx{M) = 0. Assume further without loss of generality that Fix 04) Φ 0
is finite. From the properties of the universal covering space, A can be covered
by an isometry A: M —> M with Fix (̂ 4) Φ 0 and order (̂ 4) = order (A).
Now Theorem 7.1 in Atiyah and Bott [1] gives that A has more than one fixed
point and hence, by Proposition 3.9, has a nontrivial invariant geodesic which
then projects to a closed nontrivial invariant geodesic for A on M since Am =
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1M. If A is an involution, it cannot have exactly an odd number of fixpoints
(see, e.g., Conner and Floyd [2, p. 66]).

(2) follows from a consequence of Brouwer's fixed point theorem that any
isometry on a manifold homeomorphic to Sn has at least two fixed points.

Let us now examine what we can say in the nonsimply connected case.
Sublemma 3.11. Let A: M —> M be an isometry on M with A(p) = p for

some p € M. / / σ € AGU)(M) with σ(0) = p is in the same component as
p € AG{A){M) defined by pit) = p for all tel, then there exists a loop
p e AG{A)(M) in p such that

[σ] = [p] - in π,(M) ,

where A%e Iso (πt(M)) is the map induced from A.
Proof. Let c: / —> AG(A)(M) be a path connecting a and p, i.e., c(0) = σ

and c(l) = p. By evaluation c induces a map c: I x /—>M. Putting ô = c( , 0)
we get A op = c( , 1) both being loops at /?, i.e.,

[σ] = [p] + [p] + [-Aop]

= [p] - AJLp\ in πλ{M)

Po

0

Proposition 3.12. Let M be a compact Riemannian manifold with πλ(M)
Φ 0, and let A: M —> M be an isometry with exactly one fixed point. If the
map

πx(M) πλ{M) X π, x πx{M)

is not onto, then A has a nontrivial invariant geodesic.
Proof. By Lemma 3.4 we only need to prove that πo(ΛGiA)(M))

the assumption we have
0. From

: [σ] Φ [p] - AJp] v[p] € πx(M) .

Sublemma 3.11 shows that σ e ΛG{A){M) (without loss of generality) is not in

the same component as σ(0) = p € AβU)(Λf); as remarked this finishes the

proof of Proposition 3.12.

Corollary 3.13. // M is a compact Riemannian manifold such that
Hλ(M Z) has an odd number of Z-components or a single Z2.q term for some
qeN, then any isometry on M with exactly one fixed point has an invariant
geodesic.
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Proof. An isometry with one fixed point induces an isomorphism of πx{M),
so from Proposition 3.12 we see that if the map πλ(M) —> πλ(M) defined by
x ι-> x — 2l(X) is not onto for SI e Iso (πx(M)), any isometry with exactly one
fixed point has a nontrivial invariant geodesic. However, if the lower map
in the commutative diagram

is not onto, the upper one is not onto either. Since Hλ{M, Z) ^ ^(M)/[nu πj,
the statement of the corollary follows.

Remark. Example 3.1 shows that our result in Proposition 3.12 in some
way is best possible. The general case where A has more than one but finitely
many fixed points is more difficult to handle. It is, however, easy to see from
Lemma 3.4 that if there exist a path a: / - ^ M o n M with A(a(0)) = a(0) and
A(a(l)) — α(l) such that a is homotopic to A oa rerative to the end points,
then A has a nontrivial invariant geodesic. Also, if there exists a component
of ΛGU){M) without fixed points, then A has a nontrivial invariant geodesic;
in terms of curves on M this means that there exists a path β: / —• M on M
such that any loop determined by paths γ: I —• M, β and —Aoγ with ^4(^(0))
= f(0) and γ(l) = β(0) is not null-homotopic relative to f(0).

Combining Proposition 2.7, Proposition 3.2, Theorem 3.7, Proposition 3.9,
and Corollary 3.13, we get

Theorem 3.14. Let M be a compact connected Riemannian manifold.
(1) Any isometry homotopic to the identity map \M of M has a nontrivial

invariant geodesic.
(2) Any isometry with not exactly one fixed point has a nontrivial invariant

geodesic if the fundamental group π^M) is zero.
(3) // M is not simply connected but H^M Z) has a single Z2q torsion

term for some q e N or an odd number of Z-summands, then any isometry with
exactly one fixed point has a nontrivial invariant geodesic.

(4) Any isometry without or with infinitely many fixed points has a non-
trivial invariant geodesic.

Remark. Given a difϊeomorphism on a compact manifold we can deduce
the existence of invariant 1-dimensional immersed submanifolds under condi-
tions like those in Theorem 3.14 if the difϊeomorphism is an element in a com-
pact subgroup of the difϊeomorphism group Difϊ (M) of M.

There might be other ways to get existence theorems for geodesies invariant
under an isometry, e.g., by theory of dynamical systems used on the geodesic
spray:
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If A : M —• M is an isometry on a complete Riemannian manifold M, then

the differential A*: TM —» ΓM of A induces a map on the sphere bundle

A*: STM —» STM which commutes with the action of the real line on STM

(the flow for the geodesic spray restricted to the sphere bundle of the tangent

bundle), and therefore we get a continuous map A*: STM/R —• STM/R. The

space STM/R is in 1—1 correspondence with the set of oriented maximal

geodesies on M, and the fixed points for A* are in 1—1 correspondence with

nontrivial A -invariant geodesies on M, so the question is: Under what con-

ditions on (M, <(•, •>) and A, does A* have fixed points?
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