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0. Introduction

Blair [1], - - -, [5], Eum [9], Ishihara [10], Ki [9], [11], [12], Ludden [1],
-+, [5], Okumura [13], [14], [15] and the present author [2], - - -, [5], [7],
-+ +,[15] started the study of the structures induced on submanifolds of codi-
mension 2 of an almost Hermitian manifold or on hypersurfaces of an almost
contact metric manifold. Okumura and the present author called these struc-
tures (f, g, u, v, 4)-structures, where f is a tensor field of type (1,1), g a
Riemannian metric, ¥ and v 1-forms, and 4 a function satisfying

ff=—1+u®U +2vQV,
Uof=Aw, vof=—Au, fU=—aV, V=2aU,
ulU)=1—-2, uW)=0, v(V)=1-22,
8(X,fY) = gX,Y) — uX)u(Y) — v(X)v(Y)

for arbitrary vector fields X and Y, where U and V are vector fields associat-
ed with 1-forms u and v respectively.

An (f, g, u, v, 2)-structure is said to be normal if it satisfies S = O where S is
a tensor field of type (1,2) defined by

SX,Y) = NX,Y) + ()X, Y)U + (dv)(X, V)V

for arbitrary vector fields X and Y, N being the Nijenhuis tensor formed with
f.
A typical example of a differentiable manifold with a normal (f, g, u, v, 2)-
structure is an even-dimensional sphere $?". Ki [11], [12], Okumura [14] and
the present author [11], [12], [14] obtained some characterizations of an even-
dimensional sphere from this point of view.
The product S* X S™ of two spheres of the same radius and the same di-
mension is also an example of a differentiable manifold with an (f, g, u, v, 2)-
structure, but the structure is not normal. Blair [3], [5], Ishihara [10], Ludden
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[31,[5] and the present author [3],[5],[10] obtained some characterizations
of §* X S".

The main purpose of the present paper is to study the differential geometry
of §7(1/4/2) x 8§*(1/4/2) as a submanifold of codimension 2 of a 2n + 2)-
dimensional Euclidean space E*** or as a hypersurface of a (2n + 1)-dimen-
sional sphere $?*+1, to derive the properties of S*(1/4/2) X S*(1/4/2) as a
2n-dimensional differentiable manifold admitting an (f, g, u, v, 1)-structure, and
to give some characterizations of S*(1/ v2) x s (1 /ﬁ ).

1. S*(1/4/2) x $*(1/4/2) as a submanifold of codimension 2 of E™**

Let E**! be an (n + 1)-dimensional Euclidean space and O the origin of a
cartesian coordinate system in E”*!, and denote by X the position vector of a
point P in E**! with respect to the origin O.

Consider a sphere §*(1/4/2) with center at O and radius 1/4/2, and sup-
pose that $*(1/4/2) is covered by a system of coordinate neighborhoods
{U; x2}. Here and in the sequel the indices a, b, c,d, e, f run over the range
{1, - - -, n}. Then the position vector X of a point P on S*(1 /ﬁ ) is a function
of x¢ satisfying X-X = 4 where the dot denotes the inner product of two
vectors in a Euclidean space. Now we put

(1.1 Xo=0,X, M= —y2X, g,=X.X,,

where 3, = d/0x?, and denote by I/, the operator of covariant differentiation
with respect to the Christoffel symbols {,%,} formed with the metric tensor g,,
of $”(1/4/2). Since X, is tangent to S*(1/4/2) and M is the unit normal to
$*(1/4/2), the equations of Gauss and Weingarten are respectively of the form

(1.2) VX, =+2g,M, FM=—4/2X,.

We next suppose that §”(1/4/2) is covered by a system of coordinate neigh-
borhoods {V'; x7}. Here and in the sequel the indices r,s, ¢, u, v, w Tun over
the range {n + 1, ...,2n}. Then the position vector ¥ of a point Q on
S*(1/4/2) is a function of x" satisfying Y-Y = }. We now put

(1.3) Y,=0Y, N=—4/2Y, g,=Y,Y,,

where 3, = 9/dx°, and denote by I, the operator of covariant differentiation
with respect to the Christoffel symbols {,",} formed with the metric tensor g;,
of $"(1/4/2). Since Y, is tangent to S*(1/4/2) and N is the unit normal to
$*(1/4/2), the equations of Gauss and Weingarten are respectively of the form

(1.4) V.Y, =+2g,N, PN=—y2Y,.

We now consider S"(1/4/2) X 8§*(1/4/2) and regard it as a submanifold
of codimension 2 in an E*"*2. Denoting by Z the position vector of a point of
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S$*(1/4/2) X S*(1/4/2), we have

1.5) Z(x") = (;f((’;;) .

Here and in the sequel the indices 4,1i,], k,I,m run over the range {1, -
nyn+1,...,2n}. Since Z.-Z=X-X+Y.-Y =1 in Em*? S"(I/J_)
X S"(l/\/—) is a hypersurface of $?*+1(1) in E**2,

By putting
(1.6) Zi - aiZ > Gji = Zj-Zi )
we see that
X 0

1.7 Z=(b>a Zsz( )’
1.7 » 0 Y,
(1.8) G, = (gcb 0) )

0 8is
and hence
(1.9) Git — (gba. 0) ,

0 gST

G, g"* and g*" being elements of the inverse matrices of (Gy;), (g.;) and
(8:,) respectively.

Because of (1.8) and (1.9), we shall denote G,; hereafter by g;;. The
Christoffel symbols {;";} formed with g;; are all zero except {,%,} and {,";}. In
the sequel, we denote by V; the operator of covariant differentiation with
respect to the Christoffel symbols {,*;}.

Now putting

b e o-(31)

we see that
a1y z,.¢c=0, Z,,D=0, C.C=1, C.D=0, D-D=1,

and consequently that C and D are unit normals to S*(1/4/2) X S*(1/4/2).

Denoting by A;; and k;; the components of the second fundamental tensors
respectively with respect to the unit normals C and D, we can write the equa-
tions of Gauss for $*(1/4/2) X S*(1/4/2) as

(1.12) iji = hjiC + kjiD .
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From (1.2), (1.4), (1.10) and (1.12) it follows that h;; and kj; are of the
form

0 g 0
1.13 h, = (gcb ) L k= ( e )
) ) 7 0 8t 7 0 —8ts
and hence
5 0 se 0
1.14 hh:(c ) k"=(° )
(19 T \o g “={o —&

respectively, where h;* = h;;g** and k,* = k;g".
The first equation of (1.13) and the second equation of (1.14) imply im-
mediately that

(1.15) Ry = g1
(1.16) kn™ =10, k™" =d".

Also taking account of the fact that k;* has the form given by the second
equation of (1.14) and the Christoffel symbols {;*;} are all zero except {,%;}
and {,",}, we find

(1.17) V]kzh = 0 .

On the other hand, denoting by [/; the components of the third fundamental
tensor with respect to unit normals C and D, we can write the equations of
Weingarten as

(1.18) VjC - —h]’LZZ + l]D 5 VjD == —‘kJ’LZi _— le .
From (1.10), (1.14) and (1.18) it follows that
(1.19) I;,=0.

Thus the equations of Gauss and Weingarten of S*(1/4/2) X S"(1/4/2) as a
submanifold of codimension 2 of E***% are respectively

(1.20) V,Z, = g;C + k;D ,

(1.21) Vi =-2;, V,D = —ki‘Z; ,
from which we can easily derive

(1.22) Kiji" = 01851 — 078 + kikji — kj"ka

which are the equations of Gauss, K, ;;* being the components of the curvature



DIFFERENTIAL GEOMETRY OF S"XS" 185

tensor of S"(1/4/2) X 8*(1/+/2), that is,

(123) Kt = 000 — 04 + (00 — (e -
From (1.17) and (1.22) it follows that

(1.24) ViKei* =0,

and consequently S*(1/4/2) X $*(1/4/2) is a locally symmetric Riemannian
manifold. This can also be seen from the fact that the product of two locally
symmetric manifolds is locally symmetric.

By (1.16) and (1.22) we have

(1.25) K;; =2(n — gy,

K, being the Ricci tensor, that is, K;; = K,;;*. Thus §7(1/4/2) X S*(1/4/2)
is an Einstein manifold with scalar curvature 4n(n — 1). This can also be seen
from the fact that the product of two Finstein manifolds of the same dimension
with the same scalar curvature is also an Einstein manifold whose scalar cur-
vature is twice as that of each factor manifold.

2. S*(1/4/2) x S*(1/4/2) as a hypersurface of $>"+'(1)

Consider an $*#*!(1) in E*"*2 covered by a system of coordinate neighborhoods
{W; y}. Here and in the sequel the indices «, 4, g, v, ® run over the range
{1, ---,2n 4+ 1}. Then the position vector Z of a point on $?*+'(1) in E**? is
a function of y* such that Z.-Z = 1. We put

@2.1) Z,=0Z, C=—-2Z, G,=2,2,,

where 9, = d/dy’, and denote by F, the operator of covariant differentiation
with respect to the Christoffel symbols {,*;} formed with G,,. Since Z, is tan-
gent to $***!(1) and C is the unit normal to $*"*(1), the equations of Gauss
and Weingarten are respectively of the form

(2.2) V.z,=G,.C, VC=-2Z,.

Since $”(1/4/2) x (S"(1/4/2) is a hypersurface of $***!(1) and is covered
by a system of coordinate neighborhoods {U X V'; x"}, its equations are of the
form y* = y*(x*). Denote by D* the components of the unit normal to
S*(1/4/2) x S™(1/4/2) as a hypersurface of S***!(1), and put D = D*Z,.
Then Z, = B;#Z,, where B = d;y*, are 2n vectors tangent to S*(1/4/2)
X $*(1/4/2), and C and D are mutually orthogonal unit normals to S"(1/ V2)
X 8%(1/4/2). Thus from Z; = B;Z, we have

ij‘t = (VJB’Z‘)Z: + BjPBilV#Zl ’
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which, together with the first equation of (2.2), implies
V,Z,= V,B"Z, + g;C .
By this equation, (1.12) and D = D*Z,, we have
h;iC + kyuD*Z, = V,B"Z, + g;,C ,
from which it follows that
(2.3) VB = k;D*,

which are the equations of Gauss of §*(1/4/2) X $™(1/4/ 2) as a hypersurface
of §*7*+1(1). The equations of Weingarten are easily found to be

(2'4) VJD‘ == —qu'Bz‘ .

Since k;! = 0, we have the well known
Proposition 2.1. S"(1/4/2) X S™(1/+ 2) is a minimal hypersurface of
S27l+1(1).

3. (f,8, u,v, )-structure on S*(1/4/2) X S*(1/4/2)

In E*™+% there exists a natural Kdhlerian structure

3.1) F= @ —"é) ,

E being the unit square matrix of order n + 1. Of course, F satisfies
3.2) Fr= -1, FU.-FV =U-V
for arbitrary vectors U and V in E***2, 1 denoting the identity transformation

in E*+2,
Applying F to Z;,C and D in § 1 gives

(3.3) FZ,={"Z, + u,C + v.D ,
(3.4) FC = —u'Z, + D,
3.5) FD = —v!Z, — 1C ,

where f;* are the components of a tensor field of type (1, 1), u; and v, are the
components of 1-forms, and 2 is a function on S*(1/4/2) X $*(1/4/2), u?
and v? being respectively given by u?* = u,g’* and v¢ = v,g’%.

From (3.2), (3.3), (3.4) and (3.5), we find
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fiifd = =0} + uu* + v,
(3 6) uifji = Z'UJ N fihui = — " 5 ’Uifji = —Zuj N fih"vi = Aut N
' uut = vt =1— 22, uvt =0,

fi™fi'8mi = 85 — Usls — V;V; .

A set of f,g,u,v and 2 satisfying these equations is called an (f, g, u, v, 2)-
structure [8], [13], [14]. It is easily verified that f;; = f,'g;; is skew-symmetric
in j and i. ‘
By putting i = b in (3.3), we obtain
(3'7) fbazo, ub+vb=0,
(3.8) Xb = beY/r —_ ZubY .
Similarly, by putting i = s in (3.3), we find
(39) fsr =V, Us = 0,
(3.10) Y, = —feX, —2ulX .

Thus f;*, u;, u*, v, and v* are respectively of the form
P y

0 fo
(3.1 = )

(3.12) u; = (U, uy), ut = (Zj) ,
where u® = u,g%, u = u,g’" and

(3.13) v= (—upu), = (—u”) :

From the second equations of (1.14) and (3.11) it follows that
(3.14) kMt + fitk =0,

that is, k;* and f;* anti-commute with each other. From the scond equations
of (1.14), (3.12) and (3.13); (3.4) or (3.5); the first equations of (3.6) and
(3.13) and the second equations of (3.6) and (3.13) we obtain, respectively,

(3.15) klrut = —ot kMt = —ut
(3.16) X=wY,—2Y, Y=—uX,—2iX,

(317) fcrfra = _63' + 2ucua 5 ftafar = _'5: + 2utu7 )
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(3.18) ufer = —ue , f,°U =2, uf,*=2wu,, fru=—w.

Moreover, from u;u* = 1 — 22 or v;0* = 1 — 2%, u;v* = 0, and the last equa-
tions of (3.6) and (3.13), we have, respectively,

(3.19) uut =1 — 2%,
(3.20) U U = U U’ ,
(321) fctfbsgts = 8cv — 2ucub > ftcfsbgcb = &5 — 2unus .

Now applying the operator V' ; of covariant differentiation to (3.3), (3.4) and
(3.5) and taking account of I/ ;F = 0, we find

Vit = —guu® + Sjuy — ko™ + kit

(3.22)
Viug = fss — ks, Viyvy = —kufit + 285, Via= —2v;.

From the first and the second equations of (3.22) we obtain, respectively,

(3 23) acfsa + {cab}fsb = 25?”3 ’ atfsa - {trs}fra = _2gtsua >
0.f,7 — {cab}far = —2g,U" , 0.fs" + {trs}fbs = 267uy ,
Oclty — {%}Ua = —A8ct » acusz cs s
(3.24) » — {c%} 8eb f

Oy — {"sJu, = 4285 » Oy = frp -

From the third equation of (3.22) we find the same equations as those in (3.24).
From the last equation of (3.22) we find

(3.25) VA = 2uy , Vi = —2u, .

From the first equation of (3.24), which can also be written as V/ .u, = —48.;,
and the first equation of (3.25), it follows that

(3.26) PV = —228: -

Similarly we have

(3.27) rva= —2ag,.
By putting

qu;h = fijmfih - fimefjh' - (ijim - V'ifjm)fmh

(3.28)
+ (Vjuz - Viuj)uh + (Vj'vt —_ Vi’l)j)’vh’ ,

we obtain, in consequence of (3.14) and (3.22),

(3.29) Si" = —2(k;™n Vs — kfn"v;)
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which becomes, due to the third equations of (3.22) written as V0" = k;™f,,"
+ 9%,

(3.30) S = 2v;,(F " — 267) — 20,(F o™ — 25%) .
Taking account of (3.15), we have, from (3.22),

ujijih’ = O ; vjijih == 2(u.{un - ?)iu") 5
(3.31) ujVjui =0 , UjVjui = ZZui s uiVjvi =0 , vjVj'Ui = 22/01 5
Wra=0, vla=—21—2).

Since the first equation of (3.22) can be written as
Vifin = —8ssttn + 8nhs — kji¥s + kjnvs s

by applying the operator F, of the covariant differentiation to the second equa-
tion of (3.22) we find, by using (1.17) and the last equation of (3.22),

(3.32) Vil ju; = — gty + 8rithy — kisv; + kpv; + 2vik;

Differentiating covariantly the third equation of (3.22) written as F;v;
= —'kjlf“ + Zgjz giVeS

(3.33) Vil jv; = —kijuy — kit — 81V; — 81V — 2V18js -

To compute the sectional curvature K(y) with respect to the section y spann-
ed by u* and v"*, assume that 1 — 2* is not zero at the point under considera-

tion. Since the covariant components K ;;, of the curvature tensor and K(y)
are given by

(3.34) Kijin = 8xn8ji — 8in8ui + Kinkji — kjnkys »
K(y) = —Kyjpu*viuo™ [(uuivv) ,
(3.35 Kz =0.

To close this section, we sum up all the results obtained up to here on
S"(1/4/2) X 8"(1/4/2) as a hypersurface of $*+!(1) C E*»** admitting an
(f, g, u, v, )-structure.

The second fundamental tensor k;; appearing in the equations (1.12) and

(1.18) of Gauss and Weingarten and the curvature tensor K, ;;* satisfy (1.16),
(1.17), (1.22), (1.24), (1.25) and

(4] K=4n(n —1).
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The (f, g, u, v, A)-structure induced on §*(1/4/2) X S*(1/4/2) satisfies (3.14),
(3.15), (3.22), (3.30), (3.31), (3.32), (3.33) and

(3.36) le = kjiui - ’Uj ’
(II) kjmfim - kimfjm =0 )
(III) Kkjihuk'l)jui’l)h = 0 .

For an orientable 2n-dimensional differentiable manifold M?* immersed in
S§*+1(1) as a hypersurface by the immersion i: M** — §*»+1(1) C E*™*?, we
choose the first unit normal C in the direction opposite to that of the radius
vector of §?7+!(1), and the second unit normal D in the direction normal to
M?™ and tangent to S***'(1). Then we have (2.3) and (2.4) as the equations of
Gauss and Weingarten, and the first three equations of (3.22) and (3.36) as
the equations satisfied by the (f, g, u, v, 2)-structure induced on M*".

4. Hypersurfaces 1 = constant of S*(1/4/2) X S*(1/4/2)

In this section, we study the submanifold of $*(1/4/2) X $*(1/+/2) defin-
ed by

4.1 A = constant , r2<1.
Since v;v* = 1 — 22 = 0, we have
(4'2) Vil = —27)1; $ 0 s

so that 1 = constant (2 < 1) defines a hypersurface M?*~! of S*(1/4/2) X
$7(1/4/2). Thus we can cover M?*~! by a system of coordinate neighborhoods
{W; y¢}, and represent M**~! by

4.3) xt = x*(y9) .

Here and throughout this section the indices a, b, ¢, d, e run over the range
{1,.-+,2n — 1}. Put

4.4 By* = §,x" @, = 9/y") .

Then B,* are 2n — 1 linearly independent vectors tangent to M*"~' and
4.5) v,By¢ =0 .

The unit normal to M**~! is represented by

(4.6) Nt = pr[s/T = 2.

Since u* is orthogonal to v* and consequently tangent to M**~!, we can put
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4.7 u* = u*B,"* .

Represent the transform f;,*B,* of B,® by f,* as a linear combination of B,"
and N*:

(4-8) fithi = foaBah + beh ’

where f,® is a tensor field of type (1, 1), and f, a 1-form in M*"~'. Then the
transform f;*N*® of N? by f;,* can be written as

4.9) f*N¢ = —fB," ,

where f¢ is the vector field of M?**~! associated with the 1-form f, with respect
to the induced metric g,, = g;;B.’B,* on M*"~'. From f,*v* = u*, (4.6), (4.7)
and (4.9) we obtain

(4.10) fo=—aus /1T =2, fo= —Auy V1 =77,
where u, = g,,u®. Putting

“.11) P =u/V1 =2, = U /V1I — 2,
we have

4.12) fe = —a2, fo= —2p,

(4.13) 7a0° = 1.

Thus (4.8) and (4.9) can be written respectively as
(4-14) fithi = fbaBah - lﬂbN’L s
(4.15) f"N* = 2p°B," .

If the transform f;*B,* of B, by f;* is tangent to the hypersurface, the hyper-
surface is said to be invariant. Thus we have

Theorem 4.1. The hypersurface 2 = constant (2 < 1) of S*(1/4/2) X
S*(1/4/ 2) is invariant if and only if 2 = 0.

Transvecting f,* to (4.14) and taking account of the first equation of (3.6),
(4.14), (4.15) and u,u* = (1 — )y,n°, we can easily obtain

(4.16) foffe® = =05 + nn”
Transvecting u, to (4.14) we find 2v,B,* = f,%u,, which implies
4.17) f2%0, =0 .

Transvecting B.*B," to f,%f,'8;: = 8kn — Uiln — ViV, and taking account
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of (4.14) and u.u, = (1 — ).y, we find
(4'18) fcefbdged = 8ev — Do -

From (4.13), (4.16), (4.17) and (4.18) we thus have

Theorem 4.2. The hypersurface 2 = constant (2 < 1) of S*(1/4/2) X
S*(1/ v/ 2) admits an almost contact metric structure.

Represent the transform k;"B¢ of B,® by k;* as a linear combination of B,"
and N”*:

4.19) k"Bt = ky*B," + k,N* ,

where k,° is a tensor field of type (1, 1), and &, a 1-form in M*"~'. As to the
transform k"N of N* by k;*, by (3.15), (4.6), (4.7), (4.11) we obtain

(4.20) kNt = —eB,* .

Transvecting u, to (4.19) and remembering u,k;,* = —v,, we find k,%u, =
0, which and (4.11) imply

4.21) ki, =0.

Transvecting v,, to (4.19) and remembering v,k* = —u;, we find —u, =
k,v,N"*, from which follows
4.22) ky = —np .

Thus (4.19) can be written as
(4.23) k"B, = k;°B,* — p,N* .

Transvecting k,* to (4.23) and using k,*k;* = 6% and (4.23), we find
4.24) kok" = 87 — nuy® .

Now we write down the equations of Gauss and Weingarten, respectively,
4.25) V.By* = h,N* ,
(4.26) V.N* = —hB,",

where V. denotes the operator of covariant differentiation along M?*~' in the
sense of van der Waerden-Bortolotti, 4., is the second fundamental tensor of
M‘m—l, and hca — hcbgba_

Differentiating u, = w;B,* covariantly along M?®*~' gives V., = (f;; —
Ak;)BB,t + u;h, N¢, which implies

(4-27) chb = fcb - 2kcb s



DIFFERENTIAL GEOMETRY OF S"XS" 193

or
(4.28) Vo = feo/| V1 — B — 2kop /| V1 — 22

Next, differentiating (4.5) covariantly along M*"~! and using the third equa-
tion of (3.22), (4.6), (4.14), (4.19), (4.20) and (4.25) we can easily obtain

(429) —kcafba - 27]c7]b + 28 + 1/1 -2 hcb =0 )
which, together with f,%;® = 0, implies
(4.30) hgp® =0.

Transvecting f;° to (4.29) and using (4.16), (4.17), (4.21) we find k4, + Af4.
++/1 = 2 h,f,® = 0, which implies

(4.31) 2oy = V1 — Z(heafs® — Pyl -

Differentiating (4.14) covariantly along M?**~! and using the first equation of
(3.22), (4.25), (4.26) we find

—8.u*B,* + Bluy — V1 — BkeyN* + 2hgy1°B,"
= (Vefs)Bo" + heafy®N® — AV pp)N™ + Ahc%9,B."
which, together with (4.11), implies
(4.32) Vefs® = —(WT = B8ep — 2tp)n® + (W1 = 2282 — 21,%)7, -
Now by putting

Scba = fceVefba - fbeVefca - (chbe - bece)fea
+ Tepo — Vinedn®

and using (4.28), (4.31) and (4.32), we can easily obtain

(4.33)

2
(4.34) S = T/%f a® + Ahefe — fotheM)n,

— z(hbefea - fbehea)ﬂc .

If S,,* vanishes, the almost contact metric structure is said to be normal.
In this case, since f,*p, = 0 and’ h,%), = 0, from S,,%, = O it follows im-
mediately that 2 = 0. Thus we have

Theorem 4.3. In order for the almost contact metric structure induced on
the hypersurface 2 = constant (2* < 1) of S*(1 /¥ 2) x 8(1/4/2) to be
normal, it is necessary and sufficient that 2 = 0.

If 2 = 0, then (4.28) and (4.32) become, respectively,
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(4035) 707717 = fcb )
(4.36) Vefo® = —8eon® + 857 -

Hence we have
Theorem 4.4. The almost contact metric structure induced on the hyper-

surface 2 = 0 of S*(1/4/2) x S*(1/+/2) is Sasakian.

In the remainder of this paper, we study which of the conditions (1.16),
(1.17), (1.22), (1.24), (1.25), (3.14), (3.15), the fourth equation of (3.22),
(3.30), (3.31), (), (1), (III) mentioned at the end of § 3 can characterize M*"
as S"(1/4/2) X §*(1/+/2).

5. The case in which ;2 = —2v;

In this section, we prove
Theorem 5.1. Suppose that a complete orientable 2n-dimensional Rie-
mannian manifold M* is immersed in S***'(1) as a hypersurface. If the

(f, 8, u, v, A)-structure induced on M** satisfies V;A = —2wv, in such a way that
A(1 — 2% is almost everywhere nonzero, then M** is isometric to S*(1/4/2)
X §*(1/4/2).

Let M*" be a complete orientable differentiable manifold immersed in $?+*(1)
as a hypersurface by the immersion i: M** — $?#*1(1) C E*+2, Then the equa-
tions of Gauss and Godazzi are given respectively by

S.1 K" = okgy — 08w + kikj — kitkys s

5.2) Vikjs — Viky; =0,

and the second fundamental tensor k;; and the (f, g, u, v, 2)-structure satisfy
(5.3) Vi = —gju* + dhu, — kjv* + kv,

5.4) Vi, =f; — 2ky; s

5.5 Vv, = —kimf™ + 285

(5.6) VA= kut—v;.

Assume that 2(1 — 2% is almost everywhere nonzero and
5.7 Vi = —2v,.
Since Vv, is symmetric, from (5.5) we have
(5.8) kimfi™ — kinf™ =0,

which implies



DIFFERENTIAL GEOMETRY OF S"XS" 195

(5.9) knf™ + fuk™ =0,

that is, k,,* and f,™ anti-commute with each other. From (5.6) and (5.7), it
follows that

(5.10) kﬁui - —'Uj .
Transvecting u? to (5.8) and using (3.6), (5.10) we obtain
(5.11) kﬂ’vi = _uj .

Transvecting f,’ to (5.8) and taking account of (3.6), (5.10), (5.11) and
uvt = 0, we find

(5.12) kisfi¥fn? + kin + uvs + uyv;, =0,
Transvecting g to (5.12) and using f;*f,’g** = g* — u*u! — v*v’, we obtain
(5.13) k,* =0,

so that the hypersurface i(M?*") is minimal in S$***!(1).
Differentiating (5.11), written in the form k;”v,, = —u;, covariantly and
taking account of (5.2), (5.4) and (5.5), we find

(5.14) fuiks™kt + £ =0,
which, according to (5.8), can also be written as
(5.15) fmiki™kst + f54 =10 .

Transvecting f,/ to (5.15) and using the first equation of (3.6), we obtain

(5.16) kitkin = 8in >
or
(5.17) kn"k;™ = o .

Now from (5.1), (5.13) and (5.17), by contraction we find
(5.18) K;;=2n — gy, ,
so that M** is an Einstein manifold. Thus we have
(5.19) VK =0
by (5.18) and the second Bianchi identify
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ViKysi* + ViKyui® + VK = 0.
From (5.1), (5.2), (5.13), and (5.19) it follows immediately
0= VlKkjil = kkl(Vlkji) - kjl(Vlkki) .

By this equation and (5.2), (5.16) we can easily obtain k,(V,k;;) = 0, which
and (5.17) give

(5.20) 4kaji = 0 .
(5.17) implies that
(5.21) 3@ + k») and 3(0F — k)

are projection tensors defining two distributions of the same dimension #, and
(5.20) implies that they are integrable. Since the Riemannian manifold M** is
complete, this shows that M*® is a product of two n-dimensional manifolds
M™ and M'". Thus we cover M™ by a system of coordinate neighborhoods
{U; x2} and M'" by {V'; x7}, so that the components of the first fundamental
tensor g;; and the second fundamental tensor k;; are of the forms

which implies

a0
5.24 k”=(" )
(5.24) =

Thus from (5.15) we see
fcb =0 5 fts =0 s

that is, the tensor f;; has components of the form

(5.25) = f?r fg) ,

which implies

(5.26) f = (O fs“) :
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Now from (5.5) and (5.6) we have

(5.27) Vilid = 2(kmnf™ — 2850 »
which, together with (5.23) and (5.26), implies
(5.28) PV = —2280 »
(5.29) PVa= —2ig, .

Thus by a theorem of Obata [6], M™ and M’ are both isometric to S”(1/4/2).
This completes the proof.

6. The case in which ;4 = cv,

In this section, we assume that 2 is not a constant, (1 — 42) is almost every-
where nonzero, and

6.1) Vid = cv;

¢ being a constant. Since V,;v; is symmetric, we have (5.8) and (5.9). Fur-
thermore, from (5.6) and (6.1) we have

(6.2) kjut = (c + Do, .
Transvecting u* to (5.8) and taking account of (6.2), we find
(6.3) k;vt = (c + Duy ,
which can also be written as
(6.4) k™, = (c + Du, .

Differentiating (6.4) covariantly and taking account of (5.2), (5.4) and (5.5),
we can easily see that

(6.5) fmlkjmkil =(c + Dfsy
or
(6.6) friki™kit = (¢ + Dfy

because of (5.8). Transvecting u¢ to (6.5) and using (6.2), (6.3) and the third
equation of (3.6) we obtain

6.7) c=—1 or ¢c=-2.

Transvecting f,’ to (6.6) and using the last and first equations of (3.6) we
find
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kitky, = —(c + Dgin + (¢ + D(c + D(uuy + v,0,) .
If ¢ = —1, then k;'k;, = 0 which implies
(6.8) k=0,
Thus from (5.5) and (5.6) we have
(6.9 ViVid = —28;: »

which, by a theorem of Obata [6], shows that M** is isometric to $**(1). If
¢ = —2, then by Theorem 5.1, M?" is isometric to S*(1/4/2) X S*(1/4/2).

Hence we arrive at

Theorem 6.1. Suppose that a complete orientable 2n-dimensional differen-
tiable manifold M** is immersed in S**'(1) as a hypersurface. If (f, g, u, v, 2)-
structure induced on M*™ satisfies V,2 = cv;, ¢ being a nonzero constant, in
such a way that 2 + constant and 2(1 — 2?) is almost everywhere nonzero,
then M*" is isometric to S***'(1) or $*(1//2) x S*(1/4/2).

As a direct consequence of Theorem 6.1, we have

Theorem 6.2. Suppose that a complete orientable 2n-dimensional differen-
tiable manifold M*" is immersed in S****(1) as a hypersurface. If (f, g, u, v, 2)-
structure induced on M™ satisfies k;"ut = pv*, k;* being the second fundamen-
tal tensor and f being a constant not equal to 1, in such a way that 2 + constant
and 2(1 — 2?) is almost everywhere nonzero, then M** is isometric to S**(1)
or S"(1/4/2) x S"(1/+/2).

For, (5.6) and k;*ut = gv* give ;2 = (8 — 1)v;, and the theorem follows
immediately from Theorem 6.1.

7. The case in which k,,"f,™ + f,,"k;™" = 0

Blair, Ludden and the present author [3] proved

Theorem 7.1. If M* is a complete orientable submanifold of S*'(1) of
constant scalar curvature satisfying k,*f;™ + f»"k;™ = 0 and A +# constant,
Wwhere k;; is the second fundamental tensor of M*, and f* and 2 are respec-
tively the tensor field of type (1,1) and a scalar field defining the (f, g, u, v, 2)-
structure on M*", J(1 — 2%) being almost everywhere nonzero, then M*" is a
natural sphere S(1) or M = S*(1/4/2) x §*(1/+/2).

The main purpose of the present section is to show that we can reduce this
theorem to Theorem 6.2.

Using Theorem 6.2, we first prove

Theorem 7.2. If M* is a complete orientable submanifold of $**+(1) sat-
isfying k,"f;™ + f."k;™ = 0 and K(y) = constant, where k;; is the second
fundamental tensor of M®*, f,* the tensor field of type (1,1) defining the
(f, g, u, v, D)-structure on M**, A(1 — 2*) being almost everywhere nonzero,
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and K(y) is the sectional curvature with respect to the section y spanned by u"*
and v", then M’ is isometric to a natural sphere S*(1) or S*(1/4/2) X
$°(1/4/ 2).

Proof. Transvecting u* and »* to
(7.1 knf™ + fuki™ =0
gives respectively
(7.2 — k"™ + fatk™ut =0,
(7.3) Ak u™ + k™0t =0 .
Transvecting v, and f,* to (7.2) and using (3.6), (7.3) we obtain, respectively,
(7.4) kjuiut + k;vivt =0,
1 — Okut = (kuudur + (kjuiv)o .
Similarly, we find
(1 — kMt = (kjuivyut + (kjvivd)ot .
Thus, at a point where 1 — 22 = 0, by (7.4) we can put
7.5 ki ut = au™ + po*,
(7.6) hMt = put — av® .

Applying V; to (7.5) written in the form k;,™u, = au; + pv;, using (3.22),
and in the resulting equation taking the skew-symmetric part with respect to j
and i and taking account of (5.2), we obtain

(7.7 au; — aty + 2afs + Bive — pv; =0,
because of
(7.8) kjmfim - kimfjm =0

obtained from (7.1), where «; = V; « and §; = V8.
Transvecting u/v?, ut and v* to (7.7), we find, respectively,

(7.9) ai’vi —_ ﬁiui + 20 =0 5
(7.10) (1 — lz)aj = (aiui)uj + ((Xi’l)i)’l)j s
(7.11) (I — MB; = @B u; + (BvHv; .

Thus multiplying (7.7) by 1 — 2* and substituting (7.10) and (7.11) into the
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resulting equation give
(7.12) 20(1 — 2y = (@pv™ — Bru™(uw; — uw;) .
Since the rank of f;; is greater than or equal to 2n — 2, we have, if n > 1,
(7.13) a=0, But=0.
Transvecting v* to (7.7) and using (3.6), (7.13) yield
(7.14) 1 — ®B; = B, .

Applying V; to k,™v,, = Bu,, obtained from (7.6) and (7.13), using (3.22)
and taking the skew-symmetric part with respect to j and i, we have

(7.15) 2f ik ™kt = Bju; — Biuy + 28f;; -

Transvecting u? to (7.15) and taking account of (7.13) and (7.14), we find
(7.16) 228 4+ 228 + Bvt =0,

which shows that if 3 is a constant, then § =0 or § = —1.

Since the covariant components of the curvature tensor of the M** is given
by

(7.17) Kijin = 81185 — 8in8xi + kunkss — kjnkys »

at a point at which 1 — 2% &= 0 the sectional curvature K(y) with respect to the
section spanned by u* and v”* is given by

(7.18) K@) = —Kpjputviuiot [[(wu))wo)] =1 — g,

which shows that if K(7) is constant, then g is constantand 8 = Oor g = —1.
Thus applying Theorem 6.2 we have Theorem 7.2.
Now, transvecting f/* to (7.8), and using k;u® = pv;, k;v¢ = pu;, we find

(7.19) k87t =0.
Multiplying (7.15) by 1 — 4? and using (7.5), (7.14) give

2(1 — Of ik "k = —Bpo™wv; — uwy) + 2p(1 — Dfj; -
By transvecting f,’ to the above equation and using (3.6) we obtain
(7.200 (A — Dkitki = BB + Dwuy + v:0,) — (1 — 28 »
which implies

(7.21) kytk,” = 2B8[(B + 1) — n] .
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Thus from (7.17), (7.19) and (7.21) we find

K=2n(2n—1) —28[+ 1 —n],
which shows that if the scalar curvature K is constant, then 3 is constant. This
proves Theorem 7.1.

8. A lemma

We prove

Lemma 8.1. Let M** be a complete 2n-dimensional differentiable mani-
fold admitting an (f, g, u, v, 2)-structure, and assume that there exists in M**
a tensor field k;; satisfying

(8.1) kn™ =0,

(8.2) Kjmki™ = 85: »

(8.3) Vikji=0,

8.4 kimfi™ — kinfi™ =0,
(8.5) VA= 2kufi™ — 2285 .

Then M is globally isometric to S*(1/+/2) X S*(1/+4/2).

Proof. Assumptions (8.1), (8.2) and (8.3) show that M*" is a product
M™ x M'™ of M™ and M’" both of which are of the same dimension n. Thus
we cover M” by a system of coordinate neighborhoods {U; x2}, M'* by a
system of coordinate neighborhoods {V'; x'} and consequently M™ x M’" by
{U X V; x"}. Then the metric tensor g;; and the tensor k;* have components
of the form:

a 0
(8.6) g= (5000 0,
! 0 g,
g 0
8.7 ki = ( v ) .
®.7) 0 — 07
Thus from (8.4), f;* has components of the form
0 fe°
8.8) =0 "),
for 0

and from (8.5) we have
8.9 PV,A= —228 ,
(8.10) VPVaA= —22g;, .
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Since the submanifolds M™ and M’" are both complete, by a theorem of Obata
[6], (8.9) and (8.10) show that M" is isometric to S*(1/4/2) and M’" is also
isometric to $*(1/42). Hence M?*" is isometric to S*(1/4/2) X S*(1/4/ 2).

9. Intrinsic geometry of S” X S

In this section, we first prove

Theorem 9.1. Assume that a complete 2n-dimensional differentiable mani-
fold M*™ admits an (f, g, u, v, A)-structure such that 2(1 — 2% is almost every-
where nonzero, and

9.1) Vi, —Vu; =2f;,

9.2) Vi = —2v, .

At a point where A # 0, we define a tensor field k;; of type (0, 2) by
9.3) Vi, + Viuy; = —22k;,; ,

and assume that u; satisfies

9.4) Vil ju; = —gujut; + 8ritty — kijvi + kiv; + 204k, .

Then M™ is isometric to S*(1/4/2) X $™(1/4/2).
Proof. We find, from (9.1) and (9.3),

9.5) Vi, = f; — 2ky; .

and, from (9.2), (9.3) and (9.4),

9.6) Vikj; =0 .

Thus by (9.4), (9.5) and (9.6) we have

9.7 Vifio = —8rji + 8rildy — KijVs + kiivy .

On the other hand, transvecting u’/ to (9.1) and using wu’ = 1 — 2* and
(9.2), (3.6) we obtain

(9.8) ujVjui == 0 .
Thus from (9.3) it follows
(9.9) kjiui = '—'vj .

Differentiating (9.9) covariantly and taking account of (9.5), we obtain

(9.10) Vivi = —kjmf™ + Akjnks™ ,
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which implies
9.11) Kinfi™ — Kinf;™ =0 .
Transvecting u* to (9.11) and using (9.9), we find
9.12) kjvt= —uy .
Transvecting f/¢ to (9.11) and using (3.6), (9.9) and (9.12), we find
9.13) kp,™=0.

By differentiating (9.11) covariantly and taking accountkof 9.6), (9.7), (9.9)
and (9.12), we obtain

(9.14) Kinki™ = 8j; »

and consequently (9.10) becomes

9.15) Vivi= —kinfi™ + 2851 »
or
(9.16) ViVia = 2k;uf™ — 228 .

Thus using Lemma 8.1 we have Theorem 9.1.

Blair, Ludden and the present author have proved [5]

Theorem 9.2. Suppose that a complete 2n-dimensional Riemannian mani-
fold M** admits a vector field u" satisfying

. ) 4 _
uut=1— 22, wlu* =0,

where A is a nonconstant function such that A(1 — 2% is almost everywhere
nonzero. Let tensor fields f;;, k;; and a covector field v; be defined by, res-
pectively,

Viug — Viuy =250, Viug + Viuy = —22ky;, Vid = —2v;.
If the vectors u* and v* satisfy
Vivi= —kjnfi™ + 285 »
Vilun = —8jty + 8ijnlhs — ki + kjn¥; + 205k

then M** is globally isometric to S"(1/+/2) X S*(1/4/2).

To conclude this paper we establish

Theorem 9.3. Suppose that a complete 2n-dimensional Riemannian mani-
fold M*™ with metric tensor g;; admits a vector field u" satisfying
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9.17) uut =1-—2%,
(9.18) u'Vu, =0,
9.19) VIV u; = 22u;

where 1 is a nonconstant function such that A(1 — 2%) is almost everywhere
nonzero, and v, is defined by

(9.20) Via=—2v,.
Let tensors f;; and k;; be defined by
9.21) Vs — Vouy = 2f;;
9.22) Viug + Viuy = —22k;;
respectively, and assume that u; satisfies
(9.23) ViV = —8juthn + 8ynthi — kji¥n + kjnvi + 205k;,
Then f., g;;, u*,v* and 2 define an (f, g, u, v, A)-structure on S*(1/4/2) x
S*(1/4/2). .

Proof. Firstof all, we prove that f;*, g;;, u*, v* and 1 define an (f, g, u, v, 2)-
structure. From (9.17) and (9.20) it follows that
9.24) W juut = 220, .
Transvecting u’ and v/ to (9.24) and using (9.18), (9.19) we obtain, respectively,
(9.25) up! =0,
(9.26) vl =1— 2.

Transvecting u? to (9.21) and using (9.18), (9.24) give
9.27) fiut = Av; .
From (9.21) and (9.22) it follows that
(9.28) Vi, =f; — Ak .
Transvecting u? to (9.28) and using (9.24) and (9.27) we thus find
(9.29) kjut= —wv; .

Now we have, from (9.21) and (9.23),
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(9.30) Vifin = —8jilhn + 8jnlhi — kjiVn + kjni s
and, from (9.20), (9.22) and (9.23),
9.31) Viky, =0.

Transvecting »? to (9.22) and using (9.19), and substituting (9.28) in the
resulting equation we obtain

9.32) f10% + Ak 0t = —22uy .
Differentiating (9.29) covariantly and taking account of (9.31) yield
(9.33) Vivi= —kinfi™ + 2kjmk™ ,
which implies, due to the symmetry of V' ;v;,
9.39) kinfi™ — kinf;™ = 0.
Transvecting u? to (9.34) and using (9.27) and (9.29), we find

(9.35) fﬁ’vi - ijﬂ)i - 0 .
Thus from (9.32) and (9.35) follow

(9.36) fjﬂ)i = —luj 5
(9.37) ka?)z - —Uj .

By differentiating (9.34) covariantly, taking account of (3.22), (9.30), (9.31),

(9.29) and (9.37), and transvecting v’ to the resulting equation, we easily
obtain

(9.38) kjmki™ = 8ji
so that (9.33) becomes
(9.39) Vivi = —kjmf™ + 85; -
Now differentiating (9.18) covariantly gives
(9.40) W u™W qu) + u™ Y u, =0 .
On the other hand due to (9.23), (9.40) becomes
9.41) W ju™W qu) = —(1 — gy + uu; + v,0; .
Since from (9.28),
;™ =Vu™ + k™, fmi = Vatts + Akps s
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by using (9.14), (9.28), (9.29), (9.31), (9.39) we can easily obtain
[i™mi = W ™)V y) — 2°8js »

which becomes, in consequence of (9.41),

9.42) fi™me = —8j + Uju; + vv; ,

showing that

9.43) fi"fn" = —0% + uu” + v",

(9.44) 8mif it = 85 — Uzuy — V30,

(9.17), (9.25), (9.26), (9.27), (9.36), (9.43) and (9.44) show that f;*, g;;,
u”, v* and 2 define an (f, g, u, v, A)-structure, and hence from Theorem 9.1 it
follows that M*® is globablly isometric to S*(1/+/2) X S*(1/+/2).
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