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To Shoshίchi Kobayashi on his fortieth birthday

0. Introduction

Blair [1], . . . , [5], Eum [9], Ishihara [10], Ki [9], [11], [12], Ludden [1],
•. , [5], Okumura [13], [14], [15] and the present author- [2], , [5], [7],
• , [15] started the study of the structures induced on submanifolds of codi-
mension 2 of an almost Hermitian manifold or on hypersurfaces of an almost
contact metric manifold. Okumura and the present author called these struc-
tures (/, g, u, v, ^-structures, where / is a tensor field of type (1,1), g a
Riemannian metric, u and v 1-forms, and λ a function satisfying

f = - l + u<g)U + v®V ,

uof = χv, vof=-λu, fU = -λV , fV = λU ,

u(U) = 1 - λ2 , u(V) = 0 , v(V) = 1 - λ2 ,

g(fX,fY) = g(X, Y) - u(X)u(Y) - v(X)v(Y)

for arbitrary vector fields X and Y, where U and V are vector fields associat-
ed with 1-forms u and v respectively.

An (/, g,u,v, ^-structure is said to be normal if it satisfies 5 = 0 where S is
a tensor field of type (1,2) defined by

S(X, Y) = N(X, Y) + (du)(X, Y)U + (dv)(X, Y)V

for arbitrary vector fields X and Y, N being the Nijenhuis tensor formed with

/.
A typical example of a difϊerentiable manifold with a normal (/, g,u,v, X)-

structure is an even-dimensional sphere S2n. Ki [11], [12], Okumura [14] and
the present author [11], [12], [14] obtained some characterizations of an even-
dimensional sphere from this point of view.

The product Sn X Sn of two spheres of the same radius and the same di-
mension is also an example of a differentiable manifold with an (/, g, u, v, λ)-
structure, but the structure is not normal. Blair [3], [5], Ishihara [10], Ludden
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[3], [5] and the present author [3], [5], [10] obtained some characterizations
of Sn x Sn.

The main purpose of the present paper is to study the differential geometry
of 5 w ( l/\/T) x Sn(l/V~2) as a submanifold of codimension 2 of a (2/ι + 2)-
dimensional Euclidean space E2n+2 or as a hypersurface of a (2n + l)-dimen-
sional sphere S2n+1, to derive the properties of Sn(l/</Ύ) X S n ( l/\/T) as a
2π-dimensional differentiate manifold admitting an (/, g, u, v, ^-structure, and
to give some characterizations of Sn(\l*/~2) X Sn(l/VΎ).

1. 5 n ( l / V T ) X Sn(l/V~2) as a submanifold of codimension 2 of E2n+2

Let En+1 be an (« + l)-dimensional Euclidean space and O the origin of a
cartesian coordinate system in En+1, and denote by X the position vector of a
point P in £ π + 1 with respect to the origin O.

Consider a sphere Sn(l/vΓ2") with center at 0 and radius 1/Λ/ΊΓ, and sup-
pose that Sw(l/V"2) is covered by a system of coordinate neighborhoods
{U; xa}. Here and in the sequel the indices a, b, c, d, e,f run over the range
{1, , n}. Then the position vector X of a point P on Sn(l/VΎ) is a function
of xa satisfying XX = | where the dot denotes the inner product of two
vectors in a Euclidean space. Now we put

(1.1) Xb = dbX, M=-/JX, gcb = Xc Xb,

where db = d/dxb, and denote by Fc the operator of covariant differentiation
with respect to the Christoffel symbols {c

a

b} formed with the metric tensor gcb

of S n ( l /VT) . Since Xb is tangent to Sn(l/\ΓΣ) and M is the unit normal to
/ the equations of Gauss and Weingarten are respectively of the form

(1.2) FcXb = JΎgcbM , FCM = - / 2 X .

We next suppose that Sn(l / v 2 ) is covered by a system of coordinate neigh-
borhoods {V; xr). Here and in the sequel the indices r, s, t, u, v, w run over
the range {n + 1, ,2n}. Then the position vector Y of a point β on
Sn(l/\Γ2) is a function of xr satisfying Y Y = %. We now put

(1.3) YS = 3SY, N=-/τY, gta = YrY.,

where ds = d/dxs, and denote by Vt the operator of covariant differentiation
with respect to the Christoffel symbols {t

r

s} formed with the metric tensor gt

of Sn(l/VΎ). Since Ys is tangent to ^ ( l / V T ) and N is the unit normal to
Sn(l/\f12), the equations of Gauss and Weingarten are respectively of the form

(1.4) FtYs = V~2gtsN , FtN = -

s

We now consider Sn(l/^f2) x Sn(l/^) and regard it as a submanifold
of codimension 2 in an E 2 n + 2 . Denoting by Z the position vector of a point of
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S*(l/</T) x 5"(1/VD, we have

Here and in the sequel the indices h, i, /', k, I, m run over the range {1, ,
n ; n + 1, . . . , 2 π } . S i n c e Z Z = X X + Y Y = 1 i n E 2 n + Z , S n ( l / V Ύ )
X S n(l/VT) is a hypersurface of S2n+1(l) in E2n+2.

By putting

(1.6) Zi = diZ, Gjί = Zj Zi,

we see that

z = ft) z = (r°,)
(1.8) GJi = h b ° ) >

\ 0 QJ
gt

and hence

( aba Γ\ \

Ό A) '
G ί Λ, gδα and gsr being elements of the inverse matrices of (G^), (gcδ) and
(gts) respectively.

Because of (1.8) and (1.9), we shall denote Goi hereafter by g^. The
Christoffel symbols {fi} formed with gH are all zero except {c

α

δ} and {/,}. In
the sequel, we denote by Ft the operator of covariant differentiation with
respect to the Christoffel symbols {/*}.

Now putting
(1.10)

we see that

(1.11) Z,.C = 0 , ZrD = 0, C C = 1 , C D = 0 , D D = 1 ,

and consequently that C and D are unit normals to Sn(l/V~2~) x
Denoting by Ait and kjt the components of the second fundamental tensors

respectively with respect to the unit normals C and D, we can write the equa-
tions of Gauss for S"(1/VT) x Sw(l/\/T) as

(1.12) FjZ^hjtC + kjiD.
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From (1.2), (1.4), (1.10) and (1.12) it follows that hH and kn are of the

form

(L13) h»-\o J' kjί~\o - J
and hence

respectively, where λ/ = A^g<fc and £ / = kόίg
ίh.

The first equation of (1.13) and the second equation of (1.14) imply im-
mediately that

(1.15) *;ι = S * ,

(1.16) * W

W = Ό , * / * * w * = «J .

Also taking account of the fact that kjh has the form given by the second
equation of (1.14) and the Christoffel symbols {/J- are all zero except {c

α

δ}
and {/,}, we find

(1.17) Fjkt

h = 0 .

On the other hand, denoting by lj the components of the third fundamental
tensor with respect to unit normals C and D, we can write the equations of
Weingarten as

(1.18) FjC = -h/Zi + IJD , FjD =. -&/Z, - IJC .

From (1.10), (1.14) and (1.18) it follows that

(1.19) Z, = 0 .

Thus the equations of Gauss and Weingarten of Sw(l/V~2~) x 5 n ( l / / T ) as a
submanifold of codimension 2 of ,E2w+2 are respectively

(1.20) FjZ

(1.21) F, C = -Zj , Γ,D - - * / Z o

from which we can easily derive

(1.22) KkJi* = δh

kgji - δh

jgki + kk

hkn - kό

hkki ,

which are the equations of Gauss, Kkji

h being the components of the curvature
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tensor of Sn(l/</~2) X S^l/yT), that is,

(1.23) κkji* = dk{ό\) - dj{k\} + {ΛHΛ1 - {ΛHΛ}.

From (1.17) and (1.22) it follows that

(1.24) FιKkJt

Λ = 09

and consequently Sn(l/V"2~) x Sn{\l*J~2) is a locally symmetric Riemannian
manifold. This can also be seen from the fact that the product of two locally
symmetric manifolds is locally symmetric.

By (1.16) and (1.22) we have

(1.25) Kjt = 2{n - l)gji ,

Kji being the Ricci tensor, that is, Kjt = Ktji

l. Thus Sn(l/V~2) x S»(1/VT)
is an Einstein manifold with scalar curvature 4n(n — 1). This can also be seen
from the fact that the product of two Einstein manifolds of the same dimension
with the same scalar curvature is also an Einstein manifold whose scalar cur-
vature is twice as that of each factor manifold.

2. Sn(l/VΎ) x S » ( l / y T ) as a hypersurface of S2n+1(l)

Consider an *S2n+1(l) in E2n+2 covered by a system of coordinate neighborhoods
{W; yκ}. Here and in the sequel the indices κ,λ,μ,v,ω run over the range
{1, . , In + 1}. Then the position vector Z of a point on 52 w + 1(l) in E2n+2 is
a function of yκ such that ZZ= 1. We put

(2.1) Zλ = dλZ, C=-Z, Gμλ = Zμ Zλ,

where dλ = d/dy\ and denote by Fλ the operator of covariant differentiation
with respect to the Christofϊel symbols {μ*λ} formed with Gμλ. Since Zλ is tan-
gent to 52 w + 1(l) and C is the unit normal to S2n+1(l), the equations of Gauss
and Weingarten are respectively of the form

(2.2) FμZλ = GμλC , VμC = -Zμ .

Since Sn{ll^/~2) x ( 5 W ( 1 / Λ / T ) is a hypersurface of S2n+1(l) and is covered
by a system of coordinate neighborhoods {U χV; xh}, its equations are of the
form yκ = yκ(xh). Denote by Dκ the components of the unit normal to
5 n ( l / V T ) X Sn(ί/V~2) as a hypersurface of S2n+1(l), and put D = D*ZK.
Then Zi = £/Z Λ , where B{ = dty% are In vectors tangent to 5n(l/Vr2")
X Sn(l I V~2), and C and D are mutually orthogonal unit normals to Sn(ί / *fϊ)
X 5w(l/>v/T). Thus from Zt = BfZ. we have
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which, together with the first equation of (2.2), implies

VjZi = (FjB^Z, + gjίC .

By this equation, (1.12) and D = DKZK, we have

hdiC + k^Zκ = (FjB^Z, + gjiC ,

from which it follows that

(2.3) ΓjBs = kHD* ,

which are the equations of Gauss of Sn(l/y/πΣ) X Sw(l/\/~2~) as ahypersurface
of S 2 w + 1(l). The equations of Weingarten are easily found to be

(2.4) PjD* = -k/Bf .

Since kt

ι = 0, we have the well known
Proposition 2.1. Sn(l/</2Γ) x Sw(l/\/~2~) is a minimal hypersurface of

52W+1(1).

3. (/,g,u,v,^-structure on Sn{\/V~2~) x Sn{\/V~2)

In E2n+2, there exists a natural Kahlerian structure

E being the unit square matrix of order n + 1. Of course, F satisfies

(3.2) F 2 = - l , FU FV=U V

for arbitrary vectors C/ and F in E?n+2, 1 denoting the identity transformation
in E2n+2.

Applying F to Zu C and D in § 1 gives

(3.3) FZt = hhZh + UiC + ViD ,

(3.4) FC = -ulZt + λD ,

(3.5) FD = -vιZt - λC ,

where / / are the components of a tensor field of type (1,1), ut and vt are the
components of 1-forms, and λ is a function on Sn(l/\/~2) X 5"( l/v / T), w1

and t;4 being respectively given by M4 = Ujgji and v* = Vjg1*.
From (3.2), (3.3), (3.4) and (3.5), we find
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/ / / / = -&S + UόU
h + VjVh ,

(3.O;
UiU1 — ViV1 = 1 — λ2 , MiV* = 0 ,

ίjmίi8ml = ^ i ~ tyWi - V^i

A set of /, ̂ , w, v and ̂  satisfying these equations is called an (/, g, u, v, X)-
structure [8], [13], [14]. It is easily verified that j j t = f/gu is skew-symmetric
in / and /.

By putting / = b in (3.3), we obtain

(3.7) Ua = 0 , ub + vb = 0 ,

(3.8) Xb = UrYr - 2ubY .

Similarly, by putting / = s in (3.3), we find

(3.9) // = 0 , us = vs ,

(3.10) Ys= -f-Xa-2usX .

Thus fih, Ui,uh, Vi and vh are respectively of the form

(3.1D *>

(3.12) «, = («„«.), (
\ur

where ua = i/jg6", ur = usg
sr and

(3.13) vt = (-«», H,), (

From the second equations of (1.14) and (3.11) it follows that

(3.14) kM + fM = 0,

that is, kt

h and ίt

h anti-commute with each other. From the scond equations
of (1.14), (3.12) and (3.13); (3.4) or (3.5); the first equations of (3.6) and
(3.13) and the second equations of (3.6) and (3.13) we obtain, respectively,

(3.15) *«*«' = -vh , kfv* = -uh ,

(3.16) X = u*Yr-λY, Y=-u"Xa-λX,

(3.17) UτUa = -δt + 2ucu
a , UaUτ = -% + 2utW ,
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(3.18) Urfe

r = ~λUc , fv

aUr = λUa , Ujr

a = λur , f/Uc = -λur .

Moreover, from ŵw* = 1 — λ2 or I^Ί;* = 1 — λ2, u^1 = 0, and the last equa-
tions of (3.6) and (3.13), we have, respectively,

(3.19) 2uau*=l-λ2,

(3.20) uau
a = uru

r ,

(3.21) fc%
sgts = gcb - 2ucub , ft

ef*geb = gts - 2utus .

Now applying the operator Fj of covariant differentiation to (3.3), (3.4) and
(3.5) and taking account of FjF = 0, we find

(3 22) W = ~gjίUh + ^Uί ~ kjiVh + kjhVi

From the first and the second equations of (3.22) we obtain, respectively,

(3 23) def* + { c % } / s 6 = n°U* ' dti*a " { ί % } / r α = ~2gtsUa '

dub - {ab}u = - ^ δ ^ « = /

From the third equation of (3.22) we find the same equations as those in (3.24).
From the last equation of (3.22) we find

(3.25) Fbλ = 2ub , Fsλ = -2us .

From the first equation of (3.24), which can also be written as Fcub = —λgcb,
and the first equation of (3.25), it follows that

(3.26) FcFbλ = -2λgcb .

Similarly we have

(3.27) FtFsλ - -2λgts .

By putting

(3 28)

we obtain, in consequence of (3.14) and (3.22),

(3.29) V = -2(kj»fm

hvt - kr
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which becomes, due to the third equations of (3.22) written as VιVh = k^fj1

+ w,
(3.30) Sjth = 2vj(Viv

h - λδi) - 2Vi(FjVh - λδ1}) .

Taking account of (3.15), we have, from (3.22),

uψjfih = 0 vψjff = 2{uiv
h - v,uh) ,

(3.31) uΨjUi = 0 , vΨjUt = iλUi , uΨjVt = 0 , vΨjVt =

uψjλ = 0 , v f^ = -2(1 - λ2) .

Since the first equation of (3.22) can be written as

- kόίvh

by applying the operator Vk of the covariant differentiation to the second equa-
tion of (3.22) we find, by using (1.17) and the last equation of (3.22),

(3.32) PjcPjUi = -gkjut + gkίuj - kkjvt + kkiv
kivό

Differentiating covariantly the third equation of (3.22) written as
= -k/fu + λgji gives

(3.33) VkVjVi = —kkJUi - kkiuj - gkjVi - gkίvό - 2vkgόi .

To compute the sectional curvature K(γ) with respect to the section γ spann-
ed by uh and vh, assume that 1 — λ2 is not zero at the point under considera-
tion. Since the covariant components Kkjih of the curvature tensor and K(γ)
are given by

(3.34) Kkjίh = gkhgji — gjhgkί + kkhkji — kjhkki ,

K(γ) = -KwiuWuWliUjU'ViV1) ,

(3.35) K(γ) = 0.

To close this section, we sum up all the results obtained up to here on
Sn(l/V~2) X Sn(l//2") as a hypersurface of 52w+1(l) c E2n+2 admitting an
(/, g, u9 v, ̂ -structure.

The second fundamental tensor kjt appearing in the equations (1.12) and
(1.18) of Gauss and Weingarten and the curvature tensor Kkji

h satisfy (1.16),
(1.17), (1.22), (1.24), (1.25) and

(I) K = An(n - 1) .
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The (/, g, u, v, ^-structure induced on Sw(l//2~) X Sn(l/\Γΐ) satisfies (3.14),
(3.15), (3.22), (3.30), (3.31), (3.32), (3.33) and

(3.36) Fjλ = kjtu* - Vj ,

(Π) kjmU™ - ktjj« = 0 ,

(HI) Kkjihu
kvWvh = 0 ,

For an orientable 2w-dimensional difϊerentiable manifold M2n immersed in
S2n+1(l) as a hypersurface by the immersion i: M2n -> S2n+1(l) C E2n+2

9 we
choose the first unit normal C in the direction opposite to that of the radius
vector of S2n+1(l), and the second unit normal D in the direction normal to
M2n and tangent to S2w+1(l). Then we have (2.3) and (2.4) as the equations of
Gauss and Weingarten, and the first three equations of (3.22) and (3.36) as
the equations satisfied by the (/, g, u, v, /l)-structure induced on M2n.

4. Hypersurfaces λ = constant of 5 n (l/VT) X

In this section, we study the submanifold of SW(1/VT) X SW(1/VT) defin-
ed by

(4.1) λ = constant , λ2 < 1 .

Since vtv* — 1 — λ2 Φ 0 , we have

(4.2) Viλ = -2Vi Φ 0 ,

so that λ = constant (λ2 < 1) defines a hypersurface M2n~ι of S n(l//2") X
Sn(l/\^Σ). Thus we can cover M2n~ι by a system of coordinate neighborhoods
{W; ya}, and represent M2n~λ by

(4.3) xh = xh(ya) .

Here and throughout this section the indices a, b, c, d, e run over the range

{1, . . . , 2 # i — 1}. Put

(4.4) Bb

h = dbx
h (db = d/dyb) .

Then Bb

h are 2n — 1 linearly independent vectors tangent to M2n~ι and

(4.5) i A * = 0 .

The unit normal to M271'1 is represented by

(4.6) Nh = vh/^/T^~λ2 .

Since uh is orthogonal to vh and consequently tangent to M2n~ι, we can put
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(4.7) uh = uaBa

h .

Represent the transform ffBj of Bj by ft

h as a linear combination of Ba

h

and Nh:

(4.8) />£ δ* = U*Ba

h + fbN
h ,

where fb

a is a tensor field of type (1,1), and fb a 1-form in M271'1. Then the
transform ffN1 of Nι by /<Λ can be written as

(4.9) U*N* = -f"Ba

h ,

where /α is the vector field of M2n~ι associated with the 1-form fb with respect
to the induced metric gcb = g ^ β ^ o n M 2 " - 1 . From/<Λί;* = ^MΛ, (4.6), (4.7)
and (4.9) we obtain

(4.10) /« = _

where w6 = gδαw
α. Putting

(4.11) , = i ^

we have

(4.12) /α = _ _ λ η a ? /& = _λγ)b 9

(4.13) 9 β 9« = 1 .

Thus (4.8) and (4.9) can be written respectively as

(4.14) ft*Bb* = UaBa

h ~ λrjbΉ
h ,

(4.15) fi^Nί = λV

aBa

h .

If the transform /^iV of #δ* by /^ is tangent to the hypersurface, the hyper-
surface is said to be invariant. Thus we have

Theorem 4.1. The hypersurface λ = constant (λ2 < 1) of 5 n ( l/VT) X
Sn(\l<J~2) is invariant if and only if λ = 0.

Transvecting fh

k to (4.14) and taking account of the first equation of (3.6),
(4.14), (4.15) and ubu

a = (1 — λ2)ηbη
a, we can easily obtain

(4.16) fb

cfc«= - 3 £ + M * .

Transvecting uh to (4.14) we find λVtB,* = fb

aua, which implies

(4.17) haya = 0.

Transvecting Bc

kBb

h to f^f^gμ = gkh - ukuh - vkvh and taking account
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of (4.14) and ucub = (1 — λ2)ηcηb, we find

(4.18) fceh*8ed = 8cb - VcVb

From (4.13), (4.16), (4.17) and (4.18) we thus have
Theorem 4.2. The hypersurjace λ = constant (λ2 < 1) of Sn(ί/\[~2) X

Sw(l/V~2~) admits an almost contact metric structure.

Represent the transform kfB\ of Bj by kt

h as a linear combination of JSα

Λ

and Nh:

(4.19) kfBj = kb«Ba

h + kbN
h ,

where &6

α is a tensor field of type (1,1), and kb a 1-form in M2n~ι. As to the
transform kfN1 of N* by kt

h

9 by (3.15), (4.6), (4.7), (4.11) we obtain

(4.20) kt

hNl = -ψBa

h .

Transvecting uh to (4.19) and remembering uhk^ = —vu we find kb

aua =
0, which and (4.11) imply

(4.21) kfηa = 0 .

Transvecting vΛ to (4.19) and remembering vhkt

h = — wi5 we find —ub =
kbvhN

h, from which follows

(4.22) £ 6 = -ηb .

Thus (4.19) can be written as

(4.23) kfBS = Λft

βBβ

Λ - ^ 6 N Λ .

Transvecting kh

k to (4.23) and using kh

kkt

h = 3f and (4.23), we find

(4.24) kb

ckc

a = δa

b- VbV

a .

Now we write down the equations of Gauss and Weingarten, respectively,

(4.25) VcBb

h = hcbW ,

(4.26) FcN
h = -hc

aBa

h ,

where Fc denotes the operator of covariant differentiation along M2n~ι in the
sense of van der Waerden-Bortolotti, hcb is the second fundamental tensor of
M2n~\ and hc

a = hcbg
ba.

Differentiating ub — uβj covariantly along M2n~ι gives Vcub = (fji —
λkώBJBJ + UihcbN\ which implies

(4.27) Vcub •= fcb - λkcb ,
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OΓ

(4.28) FcVb = /c δ/VΓ^T2 - U c δ /VT^T 2 .

Next, differentiating (4.5) covariantly along M271'1 and using the third equa-
tion of (3.22), (4.6), (4.14), (4.19), (4.20) and (4.25) we can easily obtain

(4.29) -KJb

a - ληcηb + λgcb + Λ / Γ ^ T 2 Λ C 6 = 0 ,

which, together with fb

aηb = 0, implies

(4.30) hcbτf> = 0 .

Transvecting fd

b to (4.29) and using (4.16), (4.17), (4.21) we find kdc + λfdc

+ Vl - λ2hcbfd

b = 0, which implies

(4.31) 2λfcb = VT^

Differentiating (4.14) covariantly along M2n~ι and using the first equation of
(3.22), (4.25), (4.26) we find

-gcbu
aBa

h + Bc

hub - VΓ^J2kcbN
h + λhcbη

aBa

h

= (Fcha)Ba

h + heafb*Nh - λ(FcVb)Nh + λh

which, together with (4.11), implies

(A τy) U fa — —(VI — λ2Q , — λk ,)r)a

Now by putting

(4.33) cb Jc y

and using (4.28), (4.31) and (4.32), we can easily obtain

(4.34) cb V l - λ2 cbV

— λ(hb

efe

a — f b

e h e

a ) η c .

If Scb

a vanishes, the almost contact metric structure is said to be normal.
In this case, since fe

aηa = 0 and he

aηa = 0, from Scb

aηa = 0 it follows im-
mediately that λ = 0. Thus we have

Theorem 4 3. In order for the almost contact metric structure induced on
the hypersurface λ = constant (λ2 < 1) of 5 W ( 1 / Λ / T ) X 5W(1/VT) to be
normal, it is necessary and sufficient that λ = 0.

If λ = 0, then (4.28) and (4.32) become, respectively,
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(4.35) Fcηb = fcb ,

(4.36) FJb

a = -gcbV

a + δ? 9 f t .

Hence we have
Theorem 4.4. The almost contact metric structure induced on the hyper-

surface λ = 0 of Sn(l/\HΣ) X S ^ l / y T ) w Sasakian.
In the remainder of this paper, we study which of the conditions (1.16),

(1.17), (1.22), (1.24), (1.25), (3.14), (3.15), the fourth equation of (3.22),
(3.30), (3.31), (I), (II), (III) mentioned at the end of § 3 can characterize M2n

X

5. The case in which Fiλ = — 2vt

In this section, we prove
Theorem 5.1. Suppose that a complete orientable In-dimensional Rie-

mannian manifold M2n is immersed in S2n+1(l) as a hypersurface. If the
(/> g> u, v, X)-structure induced on M2n satisfies V\λ = —2vt in such a way that
λ(ί — λ2) is almost everywhere nonzero, then M2n is isometric to S n(l/\/T)

x s»(i/VT).
Let M2n be a complete orientable diflEerentiable manifold immersed in 5 2 n + 1(l)

as a hypersurface by the immersion /: M2n —> 52 w + 1(l) C E2n+2. Then the equa-
tions of Gauss and Godazzi are given respectively by

(5.1) KkJi» = δi8ji

(5.2) VkkH - Fjkki = 0 ,

and the second fundamental tensor kjt and the (/, g, u, v, /l)-structure satisfy

(5.3) Pjff = -gjiUh + b)ut - kjtv
h + kfVi ,

(5.4) Fjut = fάi - λkόi ,

(5.5) PjVi = -kjji™ + λgH ,

(5.6) Fjλ = kjtu* - Vj .

Assume that ^(1 — λ2) is almost everywhere nonzero and

(5.7) VJL = -2Vi .

Since FjVi is symmetric, from (5.5) we have

(5.8) kjJΓ - kίmfjm = 0 ,

which implies
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(5.9) kJU™ + jJhΓ = 0 ,

that is, km

h and fim anti-commute with each other. From (5.6) and (5.7), it
follows that

(5.10) kjiu
ί= -Vj .

Transvecting uι to (5.8) and using (3.6), (5.10) we obtain

(5.11) kόiv\= -uj.

Transvecting fh

j to (5.8) and taking account of (3.6), (5.10), (5.11) and
UiV* = 0, we find

(5.12) kkJU*fh' + kih + Uivh + uhVi = 0 .

Transvecting gίh to (5.12) and using fikfh

jgίh = gkj — ukuj — vkvj, we obtain

(5.13) km

m = 0 ,

so that the hypersurface i(M2n) is minimal in S2Λ+1(1).
Differentiating (5.11), written in the form kimvm = —uu covariantly and

taking account of (5.2), (5.4) and (5.5), we find

(5.14) fmik^ki1 + fJt = 0 ,

which, according to (5.8), can also be written as

(5.15) frajkrW + fJt = 0.

Transvecting fh

j to (5.15) and using the first equation of (3.6), we obtain

(5.16) * * ' * I * = AA,

or

(5.17) km

hkim = δi .

Now from (5.1), (5.13) and (5.17), by contraction we find

(5.18) Kjt = 2(n - l)gJt ,

so that M2n is an Einstein manifold. Thus we have

(5.19) F ι W = 0

by (5.18) and the second Bianchi identify
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W + F**/«Λ + W « Λ = 0 .

From (5.1), (5.2), (5.13), and (5.19) it follows immediately

0 = VtKkji

ι = * 4 ' ( W - kjψιkki) .

By this equation and (5.2), (5.16) we can easily obtain kk

l(Fikji) = 0, which

and (5.17) give

(5.20) FkkH = 0 .

(5.17) implies that

(5.21) m + kih) and * ( # - * « * )

are projection tensors defining two distributions of the same dimension n, and
(5.20) implies that they are integrable. Since the Riemannian manifold M2n is
complete, this shows that M2n is a product of two ^-dimensional manifolds
Mn and M'n. Thus we cover Mn by a system of coordinate neighborhoods
{U; xa} and M/n by {V; xr}, so that the components of the first fundamental
tensor gH and the second fundamental tensor kόi are of the forms

0 gts(*r)'

(5.23) kjt = (gc^χa) ° \ ,

which implies

(5.24) kf =

Thus from (5.15) we see

/cδ = 0 , ίts = 0 ,

that is, the tensor /^ has components of the form

(5.25) ,„ = (£ ' - ) ,

which implies

(5.26) // = (°r. ^ .
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Now from (5.5) and (5.6) we have

(5.27) rJriλ = 2(kJji»-λgJi)9:.

which, together with (5.23) and (5.26), implies

(5.28) FcFbλ = -2λgcb ,

(5.29) VJPJL = -2λgts .

Thus by a theorem of Obata [6], Mn and Mfn are both isometric to 5 n ( l/V2).
This completes the proof.

6. The case in which PtX = cvi

In this section, we assume that λ is not a constant, λ(ί — λ2) is almost every-
where nonzero, and

(6.1) FJ = cVi,

c being a constant. Since PjVt is symmetric, we have (5.8) and (5.9). Fur-
thermore, from (5.6) and (6.1) we have

(6.2) kjtu* = (c + l)vj .

Transvecting uι to (5.8) and taking account of (6.2), we find

(6.3) kjtv* = (c + l)uj ,

which can also be written as

(6.4) kί

mvm = (c + l)ut .

Differentiating (6.4) covariantly and taking account of (5.2), (5.4) and (5.5),
we can easily see that

(6.5) / w , W = ( c + Ό/,ι ,

or

(6.6) / m J W = (c + Vfn

because of (5.8). Transvecting uι to (6.5) and using (6.2), (6.3) and the third
equation of (3.6) we obtain

(6.7) c = - 1 or c = - 2 .

Transvecting fh

j to (6.6) and using the last and first equations of (3.6) we
find
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ktkih = - ( c + DftΛ + (c + D(c

If c = — 1, then &//:ίΛ, = 0 which implies

(6.8) *„ = 0 .

Thus from (5.5) and (5.6) we have

(6.9) Ffiλ = -λgH ,

which, by a theorem of Obata [6], shows that M2n is isometric to S2n(l). If
c = — 2, then by Theorem 5.1, M2n is isometric to S W ( 1 / Λ / T ) X SW(1/VT).

Hence we arrive at
Theorem 6.1. Suppose that a complete orientable In-dimensional differen-

tiable manifold M2n is immersed in S2n+ι(l) as a hypersurface. If (f, g, u, v, λ)-
structure induced on M2n satisfies V\λ = cvi9 c being a nonzero constant, in
such a way that λ Φ constant and λ(l — λ2) is almost everywhere nonzero,
then M2n is isometric to S2n+1(l) or Sn(l/VT) x Sn(\l<sJ~2).

As a direct consequence of Theorem 6.1, we have
Theorem 6.2. Suppose that a complete orientable 2n-dimensional differen-

tiable manifold M2n is immersed in S2n+1(l) as a hypersurface. If (/, g, u, v, λ)-
structure induced on M2n satisfies kfu1 = βvh, k/1 being the second fundamen-
tal tensor and β being a constant not equal to 1, in such a way that λ Φ constant
and λ{l — λ2) is almost everywhere nonzero, then M2n is isometric to S2n{\)
orSn(\j^Ί) X Sn(l/V~2).

For, (5.6) and kfu1 = βvh give Ftλ = (j8 — 1)^^, and the theorem follows
immediately from Theorem 6.1.

7. The case in which k^f^ + fm

hkim = 0

Blair, Ludden and the present author [3] proved
Theorem 7.1. // M2n is a complete orientable submanifold of S2n+1(l) of

constant scalar curvature satisfying km

hfim + f^k^1 = 0 and λ Φ constant,
where kH is the second fundamental tensor of M2n, and ft

h and λ are respec-
tively the tensor field of type (1,1) and a scalar field defining the (f,g,u,v, X)-
structure on M2n, λ(l — λ2) being almost everywhere nonzero, then M2n is a
natural sphere S2n{\) or M2n = Sn(l/VΎ) X Sn(l/VΎ).

The main purpose of the present section is to show that we can reduce this
theorem to Theorem 6.2.

Using Theorem 6.2, we first prove
Theorem 7.2. // M2n is a complete orientable submanifold of 52 n + 1(l) sat-

isfying km

hfim + f^ki™ = 0 and K(γ) = constant, where k3ί is the second
fundamental tensor of M2n, ff the tensor field of type (1, 1) defining the
(f,g,u,v,X)structure on M2n, λ(l — λ2) being almost everywhere nonzero,
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and K(γ) is the sectional curvature with respect to the section γ spanned by uh

and vh, then M2n is isometric to a natural sphere S2n(l) or SU(1/A/Ύ) X

T
Proof. Transvecting uι and vι to

(7.1) *Λ m + / Λ m = 0

gives respectively

(7.2) -λkm

hvm + fm

hkru* = 0 ,

(7.3) λkm

hu™ + im

hk^vl = 0 .

Transvecting vh and fh* to (7.2) and using (3.6), (7.3) we obtain, respectively,

(7.4) kjiUW + kjtvW = 0 ,

(1 _ χηkfu* = (kjiU'uW + (kjiuWv* .

Similarly, we find

Thus, at a point where 1 — λ2 Φ 0, by (7.4) we can put

(7.5) kfu1 = auh + βvh ,

(7.6) hfv* = βuh - avh .

Applying Fj to (7.5) written in the form kt

mum = aut + βvi9 using (3.22),
and in the resulting equation taking the skew-symmetric part with respect to /
and / and taking account of (5.2), we obtain

(7.7) aw - aw, + 2afH + βjVt - βtvό = 0 ,

because of

(7.8) kjJS* - kίmfj™ = 0

obtained from (7.1), where OCJ = V5 a and βj = Vφ.
Transvecting ujv\ uι and vι to (7.7), we find, respectively,

(7.

(7.

(7.

9)

10)

11)

(1

(1

atυ* - β

- **)<*, =

- ?)β} =

tit1 + 21a •

(«,«')«, +

= 0,

(βiV^Vj .

Thus multiplying (7.7) by 1 — λ2 and substituting (7.10) and (7.11) into the
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resulting equation give

(7.12) 2 α ( l - λ2)fH = (amv™ - j8 m κ w

Since the rank of fSi is greater than or equal to 2n — 2, we have, if n > 1,

(7.13) α = 0 , 18*11* = 0 .

Transvecting vι to (7.7) and using (3.6), (7.13) yield

(7.14) (1 - λ*)βj =

Applying Fd to kt

mvm = βui9 obtained from (7.6) and (7.13), using (3.22)
and taking the skew-symmetric part with respect to / and i, we have

(7.15) 2fmlkj^ki

l = BjUί - βiUj + 2βfH .

Transvecting uι to (7.15) and taking account of (7.13) and (7.14), we find

(7.16) 2 ^

which shows that if β is a constant, then β — 0 oτ β — — 1 .
Since the covariant components of the curvature tensor of the M2n is given

by

(7.17) Kkjih = gkhgH - gJhgkt + kkhkH - kjhkki ,

at a point at which 1 — λ2 Φ 0 the sectional curvature K(γ) with respect to the
section spanned by uh and vh is given by

(7.18) K(γ) = -KwuWuW/KujuWvtV*)] = 1 - β2 ,

which shows that if K(γ) is constant, then β is constant and β = 0 or β = — 1 .
Thus applying Theorem 6.2 we have Theorem 7.2.

Now, transvecting /'* to (7.8), and using kHul — βvj9 k^v1 — βuj9 we find

(7.19)

Multiplying (7.15) by 1 — λ2 and using (7.5), (7.14) give

2(1 - λ^jkrki1 = -βnV^UjVi - utvj) + 2/3(1 - λ%t

By transvecting fh

j to the above equation and using (3.6) we obtain

(7.20) (1 - λ*)kiιklh = β(β + l){UiUh + vtvh) - β(l - λ2)gih ,

which implies

(7.21) kh%
h = 2 [̂(/3 + 1) - /i] .
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Thus from (7.17), (7.19) and (7.21) we find

K = 2n(2n - 1) - 2β[(β + 1) - n] ,

which shows that if the scalar curvature K is constant, then β is constant. This
proves Theorem 7.1.

8. A lemma

We prove
Lemma 8.1. Let M2n be a complete 2n-dimensional differentiable mani-

fold admitting an (/, g, u, v, λ)-structure, and assume that there exists in M2n

a tensor field kjt satisfying

(8.1) km™ = 0,

/Q O\ Lr Lr Til ci

(8.3) Fukjt = 0 ,

(8.4) kjjr ~ kimfjm = 0 ,

(8.5) FjFiλ = 2kjmfi

m - 2λgji .

Then M2n is globally isometric to Sn(l/^/Ύ) X 5n(l/VT).
Proof. Assumptions (8.1), (8.2) and (8.3) show that M2n is a product

Mn x M/n of Mn and M/n both of which are of the same dimension n. Thus
we cover Mn by a system of coordinate neighborhoods {U; xa}, M'n by a
system of coordinate neighborhoods {V; xr) and consequently Mn x Mfn by
{U X V; xh}. Then the metric tensor gH and the tensor kt

h have components
of the form:

(8 β — . „

<8 7> vo _,.
Thus from (8.4), ft

h has components of the form

/ 0 ί a\
(8-8) U - [ u Q ) ,

and from (8.5) we have

(8.9) FcFbλ = -2λgcb ,

(8.10) FtFsλ = -2λgts .
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Since the submanifolds Mn and M'n are both complete, by a theorem of Obata
[6], (8.9) and (8.10) show that Mn is isometric to Sw(l//2~) and M'n is also
isometric to S W (1/Λ/T). Hence M2n is isometric to S^l/vT) x S W (1/Λ/T).

9. Intrinsic geometry of Sn X Sn

In this section, we first prove
Theorem 9.1. Assume that a complete 2n-dimensional diβerentiable mani-

fold M2n admits an (/, g,u,v, λ)-structure such that λ(l — λ2) is almost every-
where nonzero, and

(9.1) Fjui-Fiuj = 2fji,

(9.2) V,λ = -2vt .

At a point where λ Φ 0, we define a tensor field kH of type (0, 2) by

(9.3) FjUi + FtUj = -2λkjt ,

αnrf assume that ut satisfies

(9.4) FkFjUt = -fo^Wί + ^ ^ - kkjVi + kkίVj + 2vkkji .

Then M2n is isometric to Sn(l/vT) X 5w

Proof. We find, from (9.1) and (9.3),

(9.5) Fjut = fji - λ

and, from (9.2), (9.3) and (9.4),

(9.6) Fkkόί = 0

Thus by (9.4), (9.5) and (9.6) we have

(9.7) Fkfjt = -gkjUi + gkίuj -

On the other hand, transvecting uj to (9.1) and using UjUj — 1 — λ2 and
(9.2), (3.6) we obtain

(9.8) uΨjUt = 0 .

Thus from (9.3) it follows

(9.9) kjtu* = -vj .

Differentiating (9.9) covariantly and taking account of (9.5), we obtain

(9.10) Fjv, = -kjjr + λkjmk^ ,
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which implies

(9.11) kj Jt

m - kimfjm = 0 .

Transvecting uι to (9.11) and using (9.9), we find

(9.12) kJiv
i= -uj .

Transvecting /'* to (9.11) and using (3.6), (9.9) and (9.12), we find

(9.13) km™ = 0.

By differentiating (9.11) covariantly and taking account of (9.6), (9.7), (9.9)
and (9.12), we obtain

(9.14) k j m k i ™ = g j ί ,

and consequently (9.10) becomes

(9.15) Fjvt= -kjjr

or

(9.16) F j F i λ = 2kjmfi™j

Thus using Lemma 8.1 we have Theorem 9.1.

Blair, Ludden and the present author have proved [5]
Theorem 9.2. Suppose that a complete 2n-dimensional Riemannian mani-

fold M2n admits a vector field uh satisfying

Uiu
l = 1 - λ2 , uψjuh = 0 ,

where λ is a nonconstant function such that λ(l — λ2) is almost everywhere
nonzero. Let tensor fields fjU kjt and a covector field vt be defined by, res-
pectively,

Fjut - FiUj = 2fji , FjU, + FiUj = -2λkn , Fxλ = -

// the vectors uh and vh satisfy

ψ.Vi = -kjJί™ + λgji ,

then M2n is globally isometric to SW(1/VT) X S W ( 1 / Λ / T ) .
To conclude this paper we establish
Theorem 9.3. Suppose that a complete 2n-dimensional Riemannian mani-

fold M2n with metric tensor gjt admits a vector field uh satisfying
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(9.17) uiu
ί= 1 -λ\

(9.18)

(9.19)

where λ is a nonconstanί junction such that λ(l — λ2) is almost everywhere
nonzero, and vt is defined by

(9.20) FJ = -2Vi .

Let tensors fjt and koi be defined by

(9.21) Fjui-Fίuj = 2fjί,

(9.22) FjUi + FtUj = -2λkJt

respectively, and assume that ut satisfies

(9.23) FjFiUh = -gjiUh + gjhUi - kjiVh + k^hvi + 2vόkih .

Then fih,gji,uh,vh and λ define an (f,g,u,v9X)-structure on Sn(l/VΎ) x

/. First of all, we prove that /Λ gJi9 uh, vh and λ define an (/, g,u,v9 X)-
structure. From (9.17) and (9.20) it follows that

(9.24) (Fjuju* = 2λvj .

Transvecting uj and vj to (9.24) and using (9.18), (9.19) we obtain, respectively,

(9.25) ujvj = 0 ,

(9.26) vjv' = 1 - λ2 .

Transvecting uι to (9.21) and using (9.18), (9.24) give

(9.27) fjX = λvj .

From (9.21) and (9.22) it follows that

(9.28) FjUt = fji - λkH .

Transvecting uι to (9.28) and using (9.24) and (9.27) we thus find

(9.29) kjiu
ί= -Vj .

Now we have, from (9.21) and (9.23),
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(9.30) Fjfίh = —gjiUh + gjhUi - kHvh + kjhVi ,

and, from (9.20), (9.22) and (9.23),

(9.31) Fjkih = 0 .

Transvecting vι to (9.22) and using (9.19), and substituting (9.28) in the

resulting equation we obtain

(9.32) fjtv* + λk^v1 = -2λuj .

Differentiating (9.29) covariantly and taking account of (9.31) yield

(9.33) Pjvt = -kίmfjm + λkjmk^ ,

which implies, due to the symmetry of Vόvu

(9.34) kjmfr - kimfjm = 0 .

Transvecting uι to (9.34) and using (9.27) and (9.29), we find

(9.35) ίHvι - λkjtv* = 0 .

Thus from (9.32) and (9.35) follow

(9.36) fjtv* = -λuj ,

(9.37) kjiV* = -uj .

By differentiating (9.34) covariantly, taking account of (3.22), (9.30), (9.31),
(9.29) and (9.37), and transvecting vj to the resulting equation, we easily
obtain

(9.38) kjΛkt* = gJt ,

so that (9.33) becomes

(9-39) Vsvt = -kjjr + λgJt .

Now differentiating (9.18) covariantly gives

(9.40) (y,u*Wmut) + umFjFmUi = 0 .

On the other hand due to (9.23), (9.40) becomes

(9.41) <F,urWmuύ = - ( 1 - X)glt + ujUi + VjVt .

Since from (9.28),

fjm = Fjum + λkjm , fmi = FmUi + λkmi ,
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by using (9.14), (9.28), (9.29), (9.31), (9.39) we can easily obtain

which becomes, in consequence of (9.41),

(9.42) fjmfmί = - g j i + u^ + V

showing that

(9.43) fj™fm

h = -δhj +

(9.44) 8mJjmftι = gji -

(9.17), (9.25), (9.26), (9.27), (9.36), (9.43) and (9.44) show that /«*,**,
uh, vh and λ define an (/, g, u, v, ^-structure, and hence from Theorem 9.1 it
follows that M2n is globablly isometric to 5W(1/VT) x S»(1/VT).
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