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HYPERSURFACES OF S2n+1(k) IN E2n+2

MASAFUMI OKUMURA

Introduction

The study of hypersurfaces of an odd-dimensional sphere regarded as a
Sasakian manifold was started by the present author [3] and then done by
Yamaguchi [5]. In these papers, we considered the case where the induced
structure / commutes with the linear transformation H defined by the second
fundamental tensor. Recently Blair, Ludden and Yano [1] jointly studied the
case where / and H anti-commute with each other, and obtained some results
under the condition that the scalar curvature of the hypersurface is constant.

In this paper the author considers the same case as that of Blair, Ludden
and Yano but under different conditions.

1. A structure on S2n+1 in E2n+2

Let E 2 n + 2 be a (2n + 2)-dimensional Euclidean space, and denote by X the
position vector representing a point of E2n+2. Since E2n+2 is even-dimensional,
£2n+2 c a n b e r e g a r c i e d as a flat Kaehlerian manifold with respect to a natural
Kaehlerian structure, and hence in E2n+2 there exists a tensor field / of type
(1.1) with constant components such that

(1.1) J * = - l ,

(1.2) (JX) (JΫ) = X Ύ

for any vectors X and F , where 1 denotes the identity transformation of the
tangent space of E2n+2, and a dot the inner product in the Euclidean space
£2n+2 s i n c e the structure is Kaehlerian, / satisfies

(1.3) FZJ = O,

where F j denotes the covariant differentiation with respect to the inner product
of E2n+2.

Let S2n+1(k) be a sphere of radius k defined by

(1.4) X X = k2, (£>0),
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and X', Y' be tangent vectors to S2n+1(k). Then

(1.5) N' = X/k

is a unit vector normal to S2n+1(k). Since the vectors X',N' are linearly
independent, their transforms JX', JN' by / can be expressed respectively as

(1.6) ΪXf = FX' + V(X')N' ,

(1.7) JN' = -ξ .

Then F,η,ξ define respectively a skew symmetric linear transformation on
TS2n+1(k), a 1-form and a vector field. As is well known they satisfy the follow-
ing properties:

(1.8)

(1.9)

(1.10)

(1.11)

(1.12) GίFZ', FYO = G(X', Y') -

where G denotes the induced Riemannian metric of S2n+1(k).
Differentiating (1.6) and (1.7) covariantly with respect to the induced metric

and comparing the tangential parts and normal parts, we have easily

(1.13) (F'r'fW) = η{X*)HΎ' - h\X\ Y')ξ ,

(1.14) V'γ,ξ = FHΎ ,

where h! and Ή! denote the second fundamental tensor of S2n+1(k) and the
linear transformation defined by h! respectively.

Since S2n+1(k) is a totally umbilical hypersurface of E2n+2 and the second
fundamental tensor of S2n+1(k) of E2n+2 has the form

(1.15) h'(X',Y') /

or

(1.150 R'X' = X'/k ,

we can rewrite (1.13) and (1.14) as follows:

(1.16) W'Y,F){X') = rj(X')Yf - G(X\ Y')ξ ,

(1.17) kV'γ,ξ = FYf.
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2. Hypersurfaces of S2n+1(k)

Let M be a hypersurface of S2w+1(/;), Z, Y, Z, tangent vectors to M, and
N the unit normal vector to M. Since S2n+1(k) has a linear transformation F,
we consider the transforms FX and FN of Z and iV by F. Put

(2.1) FBX = £/Z +

(2.2) FN:=

where B denotes the differential of the immersion i: M —• S2n+1(k). Then /, u, U
respectively define a (l.l)-tensor, a 1-form and a vector field on M.

On the other hand, ξ can be decomposed into its tangential parts and normal
parts to M, and so we put

(2.3) ξ = BV + λN .

Moreover, by defining a 1-form v on M by

(2.4) v{X) =

we obtain

(2.5)

where g denotes the induced Riemannian metric from G.
Since F is skew symmetric, we have also

(2.6) u(X) = G(FJ5Z, Λ0 = - G ( 5 Z , FN) = G(BX, BU) = g(Z, U) .

Applying the operator F to (2.1) and taking account of (2.1), (2.2), (2.3),

(2.5) and (1.8), we obtain

F2BX = FBfX + u(X)FN = BfX + u(fX)N - u(X)BU ,

from which follows

- β Z + v(X)BV + λv(X)N =

Thus

(2.7) f Z = - Z

(2.8) u(fX) =

Similarly, application of the operator F to (2.2) gives

(2.9) /I/ = -ΛF ,
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(2.10) u(U) = g(U, U) = 1 - λ2 .

On the other hand, (1.9) and (1.11) imply that

(2.11) fV = λU ,

(2.12) u(V) = g(U, V) = 0 ,

(2.13) v(V) = g(V,V) = 1 -λ2 .

Since F is skew-symmetric, we can find that / is also skew-symmetric, that is,

(2.14) g(fX,Y)= -g(X,fY) .

Denote by Vx the operator of covariant differentiation with respect to the
Riemannian connection. Then the equations of Gauss and Weingarten are
given respectively by

(2.16) rVBXBΎ = BVXY + h(X, Y)N ,

(2.17) 'FXN= -BHX ,

where h(X, Y) is the second fundamental tensor of M in S2n+1(k), and H is the
linear transformation induced from h(X, Y) in such a way that

(2.18) g(HX,Y) = h(X,Y) .

It is easily seen that H is a symmetric transformation. The eigenvalues
î? " * >Kn of H are called the principal curvatures of M. The z'-th mean

curvature Hi9 i = 1, , 2n, are defined in terms of the elementary symmetric
functions as follows:

(2.19) ( 2 " W = Σ *i *i > i = 1, ,2n ,
\ z /

where ί . ] = (2n)! /[/! (2« — /)!]. If the first mean curvature vanishes every-

where, then the hypersurface is said to be minimal.
The structure equations of the hypersurface M of a sphere S2n+1(k) of radius

k are given by

(2 20)
( + h(Y, Z)HX - h(X, Z)HY ,

(2.21) (F^H)y - (FYH)X = 0 ,

where i?(Z, y)Z denotes the curvature tensor of M.
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Now applying the operator rFBY of covariant differentiation to (2.1) we find

(ΨBYF)BX + FBFYX + h(Y,X)FN

= BFγ(fX) + h(Y,fX)N + Fγ(u(X))N - u(X)HY ,

from which taking account of (1.13) we obtain

(2.22) (Fγf)X = [v(X)Y - g(X, Y)V]/k + u{X)HY - h{X, Y)U ,

(2.23) (Fγu)(X) = g(X, fHY) - λg(X, Y)/k .

Similarly, application of rFBY to (2.2) yields

(2.23/ FYU = fHY - λY/k ,

(2.24) h(Y, U) = u(HY) .

Applying 'FBY to (2.3) and taking account of (1.14), we have

(2.25) FYV = λHY + fY/k ,

(2.26) Fγλ = h(X, V) + u(X)/k .

3. The length of the second fundamental tensor

Suppose that in the hypersurface M the linear transformation / and H are
anti-commutative with each other, that is,

(3.1) fH + Hf = 0,

or equivalently,

(3.1)' g(HX,fY) = g(fX,HY) .

First of all we prove
Theorem 3.1. Let M be a hypersurface of S2n+ι(k) satisfying condition

(3.1), and the function λ be almost everywhere nonzero. Then M is a minimal
hypersurface.

Proof. From (3.1) it follows that

fHf + Hf = 0 ,

so that

tr(flf)= -tr (/»/)= -tr(Jϊf),

or
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tΓ (Hf) = 0 .

Thus for an orthonormal frame Eif

tr (Hf) = Σ g(HfEt, E,) = Σ gii'Ei, HE,)
i i

= Σ 8(-Ei + g(U,EJU + s(V,EJ
i

= -tτH + tfy,g{HU,Et)Ed + g(V,g(HV,Ei)Eί) ,

and hence

(3.2) tr H = h(Ό, U) + h(V, V) .

On the other hand, from (3.1) we get

g((Hf + fH)U, V) = -λg(HV, V) - λg(HU, U) ,

and therefore

(3.3) my, v) = -λh(u, u),

which, together with (3.2), gives

(3.4) t r # = O.

This completes the proof.

Lemma 3.2. Under the conditions of Theorem 3.1, we have

(3.5) HU = aϋ + βV ,

(3.6) HV = βU - aV ,

where a, β are suitable junctions.
Proof. From (3.1) we get

fHfX + H(-X + u(X)U + v(X)V) = 0 ,

that is

gifHfX, Y) - h(X, Y) + u(X)h(U, Y) + v(X)h(V, Y) = 0 ,

and therefore

g(fHfY,X) - h(Y,X) + u(Y)h(U,X) + v(Y)h(V,X) = 0 .

From the above two equations it follows that

(3.7) u(X)h(Y, U) - u(Y)h(X, U) + v(X)h(Y, V) - v{Y)h(X, V) = 0
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Substituting X for U in (3.7) we have

(3.8) (1 - λ2)h{Y, ϋ) = h(U, V)u(Y) + h(U, V)v(Y) .

Similarly, substitution of X for V in (3.7) gives

(3.9) (1 - ?MY, V) = h(U, V)u(Y) + KV, V)v(J) .

Taking account of (3.3) at any point where λ2 Φ 1, we thus obtain (3.5) and
(3.6), which also hold at a point where λ2 — 1 since U and V vanish there.

q.e.d.
From this lemma we have immediately

(3.10) H2U = (α2 + β2)U ,

(3.11) HΨ = {a2 + β2)V .

Lemma 3.3. Let M be a hypersurface of S2n+1(k), n > 1, satisfying (3.1),
and the function λ(λ2 — 1) be nonzero almost everywhere. Then

(3.12) a = 0 ,

(3.13) tr H2 = 2β2 - 2(n - ϊ)β/k .

Proof. Differentiating covariantly

fHX = -HfX ,

we have

(Vrf)HX + KFrH)X = -(FγH)fX - H{Vγf)X .

Substitution of (2.22) into the above equation gives

[g(HV, X)Y - g(HX, Y)V] Ik + g(HU, X)HY - g(H2X, Y)U + f{VγH)X

= -(FYH)fX - [g(X, V)HY - g(X, Y)HV]/k

- g{X, U)H2Y - g(HX, Y)HU .

Substituting (3.5), (3.6) into the last equation we get

[βu{X)Y - av{X)Y - g{HX, Y)V]/k + ag(U,X)HY

+ βg(V,X)HY - g(H2X, Y)U + WYH)X

= -(FγH)fX - [v(X)HY - βg(X, Y)U + ag(X, Y)V]/k

- g(U, X)H2Y - ah(X, Y)ϋ - βg{HX, Y)V .

Substituting X, Y for Et in the last equation and summing for i, we find
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[2a2 + 2β2 - 2(π - l)β/k - tr (H2)]U + 2(n - l)aV/k = 0 ,

because of (2.21), (3.4) and the fact that / is a skew-symmetric linear
transformation. Since U and V are linearly independent, (3.12) and (3.13)
follow, q.e.d.

By means of Lemmas 3.2 and 3.3, we have immediately

(3.14) HU = βV ,

(3.15) HV = βU .

4. The eigenvalues of the second fundamental tensor

First of all, by differentiating (3.15) covariantly we get

(FXH)V + λWX + HfX/k = (Fxβ)U + β(fHX - λX/k) ,

or

, V) + λg(H2X, Y) + g(HfX9 Y)/k

= (Fxβ)u(Y) + βgϋfHX, Y) - λβg(X, Y)/k ,

which, together with (2.21) and (3.1), implies that

(FxβMY) = (Fγβ)u(X) .

Substituting Y for U in the above equation, we get

(4.1) Fxβ = pu(X) ,

where p is a function.
Next, covariant differentiation of (3.14) yields

(FXH)U + HfHX - lHX\k = (Fxβ)V + βλHX + βfX/k ,

or

(Fxh)(Y, U) + g(HfHX, Y) - λg(HX, Y)/k

= (Fxβ)g(Y, V) + βλg(HX, Y) + βg(fX, Y)/k ,

which implies that

(4.2) 2g(HfHX, Y) = p(u(X)v(Y) - u(Y)v(X)) + 2βg(fX, Y)/k .

Lemma 4.1. Let W be an eigenvector of the second fundamental tensor H
perpendicular to the plane spanned by U and V. Then the eigenvalue corre-
sponding to W is V—β/k or —V—β/k. Consequently, β is nonpositive since
V—β/k is an eigenvalue of a symmetric linear transformation.
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Proof. First we prove that if W is an eigenvector of H corresponding to
γ, then fW is an eigenvector of H corresponding to —γ. From (3.1), we have

jHW = -HfW ,

so that

HfW = -fHW = -γfW .

Next, substituting X for W in (4.2) and making use of the above equation

and get

ffW = -βfw/k ,

from which it follows that

On the other hand, it is easily seen from (3.14) and (3.15) that the vectors
U + V and U — V are eigenvectors of H corresponding to β and —β
respectively, q.e.d.

Now let r be the multiplicities of the eigenvalue β. Then from Theorem 3.1
and Lemma 4.1 it follows that

(4.3) tr H2 = 2rβ2 - 2(n - r)β/k ,

which, together with (3.13), implies that

(4.4) ( r - Ό j S ^ + l ) = 0 .

When β = 0, the hypersurface is totally geodesic. When β = —1/Λ, (4.3)
is reduced to

(4.5) tτH2 = 2n/k2 ,

and thus the hypersurface is Sn X 5 n because of Chern-do Carmo-Kobayashi's
result [2]. Hence we have

Theorem 4.2. Let M be a hypersurface of S2n+\k) in E2n+2 such that con-
dition (3.1) is satisfied and λ(λ2 — 1) does not vanish almost everywhere. If
the multiplicities of the eigenvalue β of H, which corresponds to the eigenvector
U + V, is not 1, then M is a great sphere S2n or Sn X Sn.

We consider now the last mean curvature H2n of the hypersurface, which
by definition is of the form

(4.6) H2n = ( - l ) * " - 1 ^ 1 / * " - 1 .
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If \H2n\ < k~2n, then \β\<l/k, and consequently

(4.7) tτH2<2n/k2.

If M is compact, by the result of Simons [4], tr H2 can take only two values,

namely, 0 and 2n/k2. By combining this with Chern-do Carmo-Kobayashi's

result, we hence reach

Theorem 4.3. Let M be a compact hyper surf ace of S2n+1(k) such that two

linear transformations f and H are anti-commutative and the function λ(l — λ2)

does not vanish almost everywhere. If the last mean curvature H2n of M satisfies

the inequality

\n2n\ S; κ ?

then M is a great sphere or Sn x Sn.
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