
J . DIFFERENTIAL GEOMETRY
6 (1972) 561-576

AN ABSTRACT FORM OF THE NONLINEAR
CAUCHY-KOWALEWSKI THEOREM

L. NIRENBERG

Introduction

Consider the initial value problem for functions u(t, x):

( 1 ) d?u = f(t, x, u, d%d{u) , 3*1*1̂ 0 = φk(χ) k = 0, , m - 1.

Here i s f i c Rn, t e R\ and u may be vector valued u = (w1, , uN) / is a
nonlinear (JV-vector) function depending on t, x, u and all of its derivatives of
order <m of the form da

xd{u, \a\ + / < ra, j < m. If / is analytic in all its
arguments and if the φk are analytic, then the Cauchy-Kowalewski theorem
asserts the existence of a unique analytic solution in a neighborhood of any
initial point (xQ,0).

In the case of linear system of equations several people have observed inde-
pendently that it is not necessary to assume analyticity in t, i.e., if / is merely
continuous in t (with values as an analytic function of the other variables), there
exists a unique solution u(t, x) continuously differentiate in t with values in
analytic functions of x—in a neighborhood of (JC0, 0). This result has been put
into a general, abstract, framework by T. Yamanaka [8] and again by L. V.
Ovsjannikov [5] (see J. F. Treves [6] for an exposition and many applications).
This result and its proof are direct extensions of the corresponding result and
proof for equations with coefficients independent of t of Gelfand, Silov [2] it
is described below in Theorem A.

In [7] (see also [1]) Treves has presented a nonlinear form of the abstract
Cauchy-Kowalewski theorem it is not strong enough, however, to prove ex-
istence (and uniqueness) for (1) in the case that / is only continuous in t as an
analytic function of the other variables. In this paper we present a nonlinear
form of the abstract result which can be applied to this case. After completion
of this work we learned that, in fact, this case had been solved by M. Nagumo
[4] in 1941. Our result is stated in § 1 and proved in § 2; for completeness the
application to (1) is then presented in § 3. Our proof makes use of Newton's
iteration method and follows the ideas of J. Moser [3]. In § 4 we also present
an implicit function theorem which is essentially just an abstract setting of a
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method in [3]. Though we have given no other applications besides the deriva-
tion of Nagumo's result we hope the abstract theorem will find other uses.

Throughout the paper we shall operate within the following framework: Xs

is a one parameter family of Banach spaces, where the parameter s varies over
the half open unit interval 0 <s < 1 (in § 4 we have 0 < s < 1). For sim-
plicity it is assumed that all Xs for s > 0 are linear subspaces of XQ. It is as-
sumed that

XS^XS> forsf<s,

and the natural injection Xs —• Xs, has norm < 1.

|| ||β denotes the norm in Xs. (The space Xo is not required to be the union of
Xsίoτs>0.)

The variable t will be real or complex, and we shall consider difϊerentiable
functions of t in some open neighborhood of the origin with values in one (or
more) of the Banach spaces Xs. If t is a complex variable, "differentiable" will
mean holomorphic. We propose to study, under appropriate hypotheses, a
Cauchy problem of the form

( 3 ) du/dt = F(μ(t),t) , \t\<δ,

( 4 ) iι(0) = 0 .

We remark that our results may be easily extended to the case where w(0) = u0

is given—not necessarily zero.
We now describe (as in [6]) the abstract linear Cauchy-Kowalewski theorem

of [8], [5] in which

F(u9t)=A(t)u + f(t),

where A(t) is continuous in t for \t\ < η (holomorphic if t is complex)—as a
map of Xs to Xs, for every s', s in 0 < s' < s < 1, and satisfies

( 5 ) \\A(t)v\\t, < C \\v\\t/(s - JO for s* < s ,

f(t) is a continuous function of t, \t\<η (respectively holomorphic) in every Xs

for 0 < s < 1. Here C is a fixed constant.
Theorem A. Let A(t) and f(t) satisfy the above conditions, and set δ0 =

minO?, (Ce)'1). Then, for every s in 0 < s < 1, there is a C1 (respectively
holomorphic) function u(f) of t in \t\ < δQ(l — s), with values in Xs, satisfying

( 2 Y du/dt = A(t)u(t) + f(t) , iι(0) = 0 .

Furthermore, for any s in 0 < s < 1, there is at most one O solution u(t) in
\t\<.η with values in Xs.
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In our treatment of the nonlinear form, Theorem 1.1, we shall make use of
a slightly weaker version of Theorem A, Theorem 1.2, which is proved in § 1.

The author wishes to thank J. F. Treves for suggesting this problem.

1. The nonlinear abstract Cauchy-Kowalewski theorem

We consider the problem (3), (4) under the following conditions on F:

(1.1) For some numbers R > 0, η > 0, and every pair of numbers s, s' such

that 0 < s' < s < 1, (w, i) -^ F(u, i) is a continuous mapping of

(1.2) {ueXs; \\u\\, < R} X {*; \t\ < η} into Xs, .

When t is a complex variable, this must be strengthened as follows:

(1.3) // 0 < s' < s < 1, and u(t) is a holomorphic function of t, \t\ < η,

valued in Xs such that \\u(t)\\s < R for all t, \t\ < η, then F(u(t), t) is a

holomorphic function of t, \t\ < η, valued in Xs,.

In addition we assume, and here always 0 < s' < s < 1: For any positive
s< 1 and every ueXs with \\u\\s < R, and for any t, \t\ <η, there is a linear

operator Λu{t) mapping Xs into X's with

(1.4) \\Au{t)v\\9. < C \\v\\9l(s - s') for every s' < s ,

such that for \\v\\s < R,

(1.5) \\F(y, t) - F(u, i) - Au(t)(v - κ)||,, < C \\v - u\\l+δ/(s - s') .

This is to hold for every s' < s, and with fixed positive constants δ < 1 and C,
independent of t, u, v, s or s'.

Finally: F(0, t) is a continuous function of t, \t\ < η, (holomorphic when t
is complex) with values in Xs for every s < 1 and satisfying with a fixed con-
stant K,

(1.6) \F(0,t)\s<K/(l-s) , 0<s<l .

Theorem 1.1. Under the preceding hypotheses there is a positive number
a such that there exists a unique function u(t) which, for every positive s < 1
and \t\ < a(ί — s), is a continuously differentiate function of t with values in
Xs; \\u(t)\\s < R, and u(t) satisfies (1.2), (1.3).

When t is a complex variable "continuously differentiable" means holomor-
phic.

Before proving Theorem 1.1 we first treat the linear case, a slightly modified
form of Theorem A, in which
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(1.7) F(u,t)=A(t)u + f(t)

with A(t) and f(t) satisfying the conditions of Theorem A.
Theorem 1.2. Let F be as in (1.7) and assume (5) holds. Let a < 1/(8C)

be a fixed number and suppose that f satisfies for every s < 1

(1.8) k(a{\ - s)l\t\ - I)" 1 for \t\ < a(s -

Then there is a unique function u(t) which, for every positive s < 1 and
\t\ < a(\ — s), is a continuously differentiate function of t with values in Xs,
and which satisfies

(1.9) (du/dt)(t) = A(t)u(t) + fit) , "(0) = 0 .

Furthermore u(t) satisfies

(1.10) | | i ι (0 | | β < 2k(a(l - s)j\t\ - I ) " 1 for \t\ < a{\ - s) .

Remark. If \\f(t)\\s < k/a(l - s) for 0 < s < 1, then (1.8) holds.
Proof of Theorem 1.2. Our proof is a modification of the usual proofs of

Theorem A.

Let B be the space of functions u{t) which, for every nonnegative s < 1 and
|ί | < a(l — s), are continuous functions of t with values in Xs such that

(1.11) M[u] = sup \\u(t)Ua(l - s)/\t\ - 1 ) < cx> .

B is a Banach space with M[u] as norm. We shall find the solution u(t) as a
fixed point in B of the transformation

T(v)(t) = J\A(T)V(T) + f(τ))dτ;

i.e., we show that T maps B into B and is contracting. Hence T has a unique
fixed point u(t) in B which is then, clearly, a solution of (1.9).

We first verify the contraction property by showing that if

w(t) =
0

then

(1.12) M[w]

For \t\ < a(l — s) we have, supposing say t > 0,
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I Will. <
0

Γ\\Av\\s(τ)dτ < c Γ ' | y | l ^> dτ ,
J J s(τ) - s

for some choice of s(τ) < 1 — τ/a

(1.13) <cM[v] ('——-
dτ

(s(τ) - ί)(α(l - s(τ))/τ - 1

Choose s(τ), with τ < α(l — s(τ)) so as to maximize the denominator, in the
integral, i.e.,

s(τ) = i ( l + j - τ/α) .

With this choice, s(r) < 1 — r/α, and

s(τ) — 5 = ^(1 — s — τ/ά) ,

α(l - s(τ))/τ - 1 = \a{\ -s+ r/β)/r - 1 = £α(l - 5 - r/β)/r .

Therefore

J (s(τ) - ί)(α(l - ί(r))/τ - 1) α J (1 - s - τ\άf

< Aat [\a{\ -s)- τ)-2dτ = 4at\ 1 l-
J La(l - s ) - t a i l -

(1.14)
= 4 ? A t .

_ s)a -t] (1 - s)(a(l - s)/t -

since |/| < a{\ - s) .
- s)/t - 1)

Inserting this into (1.13) we find

M[w] < 4aCM[v] \

Next, to see that B is mapped into itself, we note that for u = Tv,

M[u\ < $M[v] + M Γf(τ)dτ < \M[v\ + k < oo .
0

Hence T has a unique fixed point u in B; from the preceding inequality it
follows that M[u] < Ik which is (1.10).

Our fixed point u(i) is a solution of (1.9). To prove uniqueness, suppose
v(t) is another solution with v(t) in Xs tor \t\ < a(l — s); then w — u — v
satisfies
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w(t) = CA{_τ)w{τ)dτ .
0

We cannot use (1.12) to prove w = 0 since we do not know that M[v] is finite.
To show that w(tQ) = 0 as an element in Xs, for fixed t0 in \to\ < a(l — s), let
s < s0 < 1 so that |ίo | < a(s0 — s). Then

M0[w] = sup | k W | | . ( f l ( j o , 7 J ) - l) < oo ,
lίKα(βo-s)

s<s0 ' '

and repeating the previous argument we find that

M0[w] < ±M0[w] .

Hence M0[w] = 0 and so w(t0) = 0—Theorem 1.2 is proved.

2. Proof of Theorem 1.1.

This uses the technique of Moser in § 3 of [3]. We seek a solution of

(2.1) u(f) = J F(κ(r), τ)dτ
0

with finite norm M[u] defined in (1.10)—but now a will be suitably small. Our
solution will be obtained as the limit of a sequence uk defined recursively by

(2.2) u0 = 0 , uk+1 = uk + v ,

where

(2.3) \\uk(t)\\s<R for | ί | < < i 4 ( l - J ) ,

and v is the solution of

(2.4) v(f) = ^ΛUk{τ){τ)v{τ)dτ + Gk(t)
0

with

(2.5) Gk(t) = J F(«t(r), r)Jr - Mt(ί) .
o

Here, for every s < 1, and | ί | < ak{\ — Λ ) , wfc and v(t) are continuous func-
tions of t with values in Xs for which Mfc[wfc] and Mk[v] are finite, where
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(2.6) Mk[v] = sup 1|y(011, ~ - 1 < oo .
\t\<aka-s) \ \t\ I

The numbers ak will be a decreasing sequence with a = limak. In fact, we
shall take

(2.7) afc+1 - ak(l -(k+ I)"2) , k = 0 ,1, ,

so that

(2.8) a = a0 fj d - (* + D'2) ,
0

and α0 will be chosen suitably—with a0 < 1 and α0 < 1/(8C).
Let us imagine that ut are determined for / < k with M [̂wJ < oo set

χk = Mk[Gk]. By virtue of (1.4) and Theorem 1.2 there is a function v(f)
satisfying (2.4) with

Hence

11̂ (011, < ?i* for \t\ < a»+1(l - 5) ,

and it follows that for \t\ < α s + 1 ( l — s)

ll«*+i(0ll. < 2^ ^ _ t + | | M 4 ( 0 | | , ,

and so, by recursion,

(2.10) ll«*+i(0||. < 2 Σ ^(βj/βj+i - I)"1

0

We will require that

(2.11) 2 Σ Ws/aj+i ~ I)"1 < R/2
0

Then for |; | < ak+1(l — s) we have ||w fc+1(0||s < R/2, and so F(uk+I(t),t) is
defined.

Our aim is to have λs —> 0 as / -• oo. To estimate λk+1, we have from (2.4)
and (2.5),
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(τ),τ)dτ - uk+ι(t)

1(r), r) - F(H*(Γ), r) -

Thus for |f| < ak+ι(ί — s), we see from (1.5) that

jψdτ
(τ) - s

for some choice of s(τ) < 1 — \τ\/ak. Observing that s < 1 — \t\/ak+1 < 1 —
\t\/ak < 1 - \τ\/ak we may set

s(τ) = i(l - \τ\/ak + s) .

Then ak(l — s(τ))/τ — 1 = \{ak{\ — s) — τ)/τ, and we find with the aid of
(2.9), (assuming, say, t > 0)

)1+ Γ —
J 4(1 - r/flt -

dτ

1(1 - r/β» - J)(β»(l - J(Γ))/Γ - 1)1+

= 23+2SCλl+δak ΓV + ' (β*( l - ί ) - r ) - ( 2 + 5 ) d r
0

< 2 5C4+¥+ δ Γ f e ( l - s) - τY{2+δ)dτ .
o

Now

J ί 1

(a f c ( l — s) — τ)~{2+δ)dτ = [a fe(l — 51) — ί)~ ( 1 + δ ) — fed — s))~

< toί^l - s)-\ak(l -s)- / ) " ( 1 + δ ) .

Inserting this into the preceding estimate we obtain the inequality

11/7 (AW <? r)hC71+δ ?_
ak(l - s) (ak(l - s)/t - l ) 1 +

Consequently

— M \ C Ϊ Λ < 25Cl1+δ ςnn4 + i - ^ f e + i L ^ + iJ S ^ U f c SUp
i ak(l — s)(ak(l — s) t —

= 2δCλ\+δ sup fa+i/^ - t)t Tcχl+δ (ak+ι/ak

/ (1 ί)1 + ' ~ (1 ί)
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One easily finds that the supremum in the preceding is , and
(1 - ak+1/ak)

δ

hence

(2.12) λk+1 <
(1 - ak+ι/ak)

δ

We are now ready to choose aQ. Using (1.6) we observe first that

χo = Mo\ f V(0, τ)t

u
sip

UKαod-s) LI — S \\

We shall require that

(2.13) λj < aJC(j + I ) " 4 .

Assuming that this is true for λk we find, from (2.12) and (2.7),

a°K Γ25C(α/!θs ^k + 2 ) 1 < aK(k + 2)- 4 ,L

provided a0 < a' independent of k.
We have now to verify (2.11). From (2.7) and (2.13)

2 Σ *j(fljl<*j+i - I ) " 1 < 2 Σ λj(l - aj+1laj)-1

0 0

(2.14) = 2 Σ J// + I)2 < 2a0K Σ (/ + 1)
0 0

- 2

< 2α0ίC Σ (7 + I ) " 2 < R/2 provided α0 < a" .
0

If we now choose a0 < a', ao< a" we find that the functions uk are defind
for all k, with

(2.15) \\uk(t)\\s<RI2 for|/|

Furthermore we have from (2.9)

| |κ* + i (0 - uM\\s < 2λk(ak(l - s)/\ί\ - I ) " 1 for | ; | < ak{\ - s) .

Hence if |/| < a{\ — s) < ak{\ — s) with a = lim ak, then we find
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- s)/\ί\ - I ) " 1 ,

or

M[uk+1 - uk] < 2λk .

Since Σ λk < oo, it follows that uk converges to some u(t) in B. From (2.15)
it follows that ||w(f)||β < R/2 for \t\ < a(ί - s). We claim, finally, that u(t) is
a solution of (2.1).

We have namely for \t\ < a(l - s') < a{\ - s)

< j)\F(u(τ),τ) - F(uk{τ),τ)\\s,dτ + \\u(t) - uk(t)\\s,
0

+ λk(a(l - sY/t - I)- 1

s — s'

\\u(t) - uk(t)\\,> - sf)l\t\ - I)" 1

by (1.5). All the terms on the right go to zero as k —> oo, and it follows that
u(i) is a solution of (2.1). Clearly u(t) is also a solution of (3), (4).

To complete the proof of Theorem 1.1 we have to prove uniqueness of the
solution. Suppose v(t) is also a solution. Then w(t) = v(t) — u(f) satisfies

(w(τ),r) - F(v(τ),τ)]dτ .

For any fixed so<l, the functions u and v have finite Mo norm where

M0[u] = sup ||w(ί)||β (a(s0 - s)/\ί\ - 1) .
|ί|<α(*o-«)

Hence for \t\ < a(s0 — s) we find from (1.5)

IU,) dτ
— s

for some choice of s(τ) < sQ — \τ\/a. Arguing as in the proof of Theorem 1.2
we obtain the inequality
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Rs)
Φo - s)/\t\ - 1

so that M0[w] < 4flC(l + Rδ)M0[w].

Hence we conclude that MQ[w] — 0 provided 4aC(l + Rδ) < 1 which we
can always assume—by decreasing a it necessary. Thus \\w(t)\\s = 0 for
\t\ < 0θ o — s). Since this is true for every s0 we conclude that w = 0, and
Theorem 1.1 is proved.

Remark. It is clear from the proof that Theorem 1.1 holds if the condition
(1.6) is replaced by the weaker condition:

For some real positive number a', all nonnegative s< 1, and \t\ < α ' ( l — s),
F(0, i) is a continuous junction of t with values in Xs, satisfying for some con-
stant k

(1.6)' J V(0, τ)dτ < k(a'(ί - s)/\t\ - I)- 1 .

3. The nonlinear initial value problem

In this section we treat (1) assuming / to be continuous in t with values in
the space of holomorphic (TV-vector) functions of the other variables near the
origin. In case / is also analytic in t the same proof for a complex neighbor-
hood |ί | < η yields the classical Cauchy-Kowalewski theorem, and we shall not
say any more about that case. By subtraction of a suitable function we may
assume that the initial data, the φj9 all vanish.

The first step in the proof of local existence and uniqueness is the standard
one of reduction of the problem to an equivalent one for a system of first order
(see [6]). If we introduce

ut = du/dXi , i = 1, , n , un+ι = du/dt ,

we see that the problem (1) of existence and uniqueness for

d ? u = f ( t , x 9 u , - . ) , d ϊ u \ t = 0 = O , k = 0, . . . , m - 1

is equivalent to the problem for the system for (u, u19 , un+1):

drιu = d?~2un+1,

d?~% = dx.d?~2un+1 , i < n ,

dT'^n+i = f(t,x,u, - •) ,

with d\u = dk

tut = 0 at t = 0 for k < m - 1, i - 1, . ., n + 1. Here the der-
ivatives of u in the arguments of / are replaced by derivatives of order at most
m — 1 of u, u19 , un+1. This new problem is of order M — 1. Repeating
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this process we finally obtain a system of first order.
So let us consider (0.1) with m = 1:

(3.1) dtu = f(t, x, u, uXl, , uXn) , u(x, 0) = 0 .

Here f(t, x, u, p) is continuous in t with values in holomorphic functions of the
other arguments for \Xj\ < R, \u\ < R, \p\ < R; p = (p19 . >,pn) and each
Pi is an iV-vector.

The next (standard) step is to reduce this to an equivalent first order system
which is linear in the derivatives of the unknowns. Introduce

Pi = dXίu , / = 1, ,n ,

then existence and uniqueness for (3.1) is equivalent to the same problem for
the system for (u, p19 , pn)—in obvious notation—

3tu = f(t, x, u, p) ,

dtPi = fxi(t, x, u, p) + fu(t, x, u, p)ux. + fp(t, x, u, p)px. , i = 1, , n ,

with u(x, 0) = Pi(x, 0) = 0.
Thus it suffices to treat a quasilinear system of the form

(3.2) dtu = Σ aj(t> *> u)uχj + KU x, u) , u{x, 0) = 0

for an N-vector u; each aj is an N X N matrix, and b is an N-vector. The
components of aj and b are continuous in t, for \ί\ < η with values which are
holomorphic functions in a neighborhood of 0 {|̂ -1 < ^} X Πίl W Ί ^ ^} Here

3 i

Xj and the components uι are complex valued. We suppose that aj and b and
their first and second derivatives with respect to the xk and uι are bounded by
some constant c.

For 0 < s < 1 let Xs denote the space of vector functions u(x) which are
holomorphic and bounded in Ds = U{\χj\ < •*#}, and set

(3.3) \\u\\s = sup\u(x)\.

By the usual estimate for derivatives of holomorphic functions we have

(3.4) \\dXJu\\t, < R-H/is - y) , for 0 < s> < s .

If we denote the operator aj(ί, x, u)ux. + bit, x, u) (using summation con-
vention) by F(u(t),t), where u(t) = u(t,x), we see that F satisfies condition
(1.1). Also JF(O, t) = b(ί, x, 0) is bounded and so certainly satisfies (1.6). Next
we see with the aid of the mean value theorem that if | u(x) \ < R in the region
Ds, then, in D5,, s' < s
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\F(v, t) - F(iι, t) - a'(t, x, u)(vx. - uXJ)

— Σ (aLi(t, x, u)ux. + bui(t, x, u))(vι — MO

<Cλ\v — w| 2 ( |^ | + 1) for some fixed constant Cλ

< Cγ \\v - u\U{s - s')-1 + 1) by (3.4)

<2Cλ\\v- u\fs,j{s-sf)

< 2Cχ \\v - κ||;/(,s - sΓ) a fortiori .

Thus we see that (1.5) is satisfied with C = 2C19 δ = 1 and

Au(t)w = a*(t, x, u(x))wx. + (aii(t, x, ύ)ux. + bui(t, x, u))wι .

Furthermore, for ||w||s < R, we have with a suitable constant C2

\\Au(t)w\\s, < C2\\wx\\s, + C2R(\\ux\\s, + 1) ||w||β,

< C2R
ι \\w\\s/(s - sf) + (C2/(s - /) + C2R) \\w\\s,

<C\\w\\sl{s-s')

for a suitable constant C.
Thus all the conditions of Theorem 1.1 hold with a suitable constant C, and

the local existence and uniqueness of solutions of (3.2) which are analytic i n *
follows from Theorem 1.1.

4. An implicit function theorem

We present a form of the implicit function theorem following § 3 of [3] set
within the abstract framework of our Banach spaces Xs.

Consider two one-parameter families of Banach spaces Xs, Ys in the closed
unit interval: for 0 < s' < s < 1,

Y —̂  Y —̂  Y —^ Y V —^ V —^ V —^ V

Λ.Q -J ΛLS/ —J Λ.s _J Λj , l 0 _J I s/ -J I s _J Iλ ,

and with norms || \\s in Xs and | |β in Ys satisfying

||JC||,, < ||JC||, , \y\8, < \y\s

for x € X8, y € Ys and 0 < s* < s < 1.
With R a fixed positive number let F(u) be a mapping into Yo which is de-

fined for every u belonging to some Xs satisfying

(4.1) M l . < * ,

and is a continuous map of this ball in Xs into Ys, for every sf < s. Our aim
is to solve the equation
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(4.2) F(U) = 0

for u in some Xs—assuming | ,F(0) |x is sufficiently small. We make the follow-
ing hypotheses in which p, q, C > 0, 0 < δ < 1, are fixed:

(i) For every s in 0 < s < 1 and u, veXs with \\u\\s, \\v\\s < R there is a
linear operator Λu mapping Xσ into Xσ, for every σ' < σ < s satisfying

(4.3) \F(v) - F(u) - Au(v - u)\σ, < C \\v - u\\l+δ(σ - σTp .

(ii) For s in 0 < s < 1, any ueXs with \\u\\s < R, and any f in Yσ, a <s,
there is a solution w, belonging to Xa, for every σf < σ, of the equation

(4.4) Auw = f,

and satisfying

(4.5) ||w||,, < C I/I, ( σ - e x ' ) " * .

Theorem 4.1. Under the above conditions (i), (ii) for any nonnegatίve
s < 1 there is a number εQ{s) such that if |F(0)|! < εo(^) there is a solution u
in Xs of F(u) = 0.

CX)

Proof. Set p = (1 — s) Σ k~2. Associated with the decreasing sequence

sk (k = 0,1, •••) defined by

(4.6) ^ = 1 . •**-! - Sk = pk~2 , k > 0, s0 = 1 ,

we define by recursion a sequence uk e XSJc, k = 0, 1, , starting with u0 — 0
and

(4.7) uk+1 = uk + v ,

where v is a solution in Xs, for all s/ < sk of

(4.8) AUkv = -F(uk)

furnished by condition (ii).

In order to ensure that the uk are well defined, there are several things to be
verified. Suppose that u0, , uk have been so defined, satisfying

(4.9)

Set

(4.10) u = st - ip(i + I)"2 i = 0,1,

so that
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(4 11) U-1 ~TίZ= i / 0°"2 + ° + 1}"2) - Pί~2 '
z" = 1, 2, , for a suitable constant p,

and set

(4.12) k = \F(Ui)\H, / = 0, . - , * + 1 .

For (7 < Γjk we have

(4.13) H I , < CJ 4(τ t - *)-«

From (4.3) and (4.7), (4.8) we may infer that for τk+1 < σ < τk,

< C2+%+δ(σ - τ t + 1)-'(r f c - σ ) " ( 1 + ^ by (4.13).

If we now set

+ ( r b — τ )σ = + ( i b fc+i) ,
p + 2(1 + 3)

(this choice maximizes the denominator in (4.14)) we obtain from (4.14)

7 <? C Ϊ1 + δ(<r

where Cλ is a fixed constant independent of k. Consequently, from (4.11) we
find, for some constant C2 independent of k,

(4.15) λk+1 < C2(Λ + l)2^+«+«*^i+* .

Suppose now that we have obtained ui9 i = 0, , k, satisfying (4.9), and,
in addition, for some constant ε,

(4.16) λ, < ε(i + l)~r , r = 1 + 2(p + q + qδ)/δ , / - 0, , k .

Then we find from (4.15)

λk+ι < C2ε
ι+δ 1 < C3ε

1+δ(fc + 2)~r

~~ (k+ \y + δ + 2(p + q + qδ)/δ ~ 3

with a constant C3 independent of k and ε. Consequently if (4.16) holds with

ε = I/̂ (O)|χ so small that C 3 ε δ <l, then we see by recursion that

We still have to verify that (4.9) holds for / = k + 1. To this end observe

that we have from (4.13) and (4.16)
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ll«»+i - «»ιι.*+I < cλk(τk - sk+1y = c[2(k
(4.17) C4ε

where C4 is a constant independent of k and e. Thus, since «„ = 0,

ll«*+illn+, < *ΣU«i - "i-ilU < Qe Σ(k+ l)-

for ε sufficiently small.

We have verified that for ε = |F(0)|i sufficiently small, the uk e ZSλ. are well

defined by recursion and satisfy (4.9) and (4.17). The sequence sk is decreasing

with s as limit. From (4.17) it follows that the sequence uk converges in Xs to

an element u satisfying ||w||β < R/2. Since F is a continuous map of the ball

| | * | | , < R in Xs into Y8, for every s' < s and since F(uk) -> 0 in Xs, it follows

that F(u) = 0.

Added in proof. Recently Ovsjannikov has published a different abstract

from of the nonlinear Cauchy problem: L.V. Ovsjannikov, A nonlinear Cauchy

problem in a scale of Banach spaces, Dokl. Akad. Nauk SSSR 200 (1971) 789-

792; Soviet Math. Dokl. 12 (1971) 1497-1502.
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