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COMPACT FLAT RIEMANNIAN MANIFOLDS

SHING TUNG YAU

Let M be a compact flat Riemannian manifold of dimension n, and π its
fundamental group. Then we have the following theorem of Bieberbach-
Auslander-Kuranishi [1], [2]:

Theorem 1. The group π is torsion free and satisfies the following exact
sequence

where A is a finitely generated maximal abelian subgroup of π, and Φ is a finite
group. Conversely, every group with the above property is the fundamental
group of a compact flat Riemannian manifold of dimension n. The group Φ is
the holonomy group of M.

In [3], E. Calabi announced that every compact flat Riemannian manifold
with nonzero first betti number can be given by a construction which we shall
call the Calabi construction. The purpose of § 1 of this paper is to generalize
Calabi's theorem to the case where M has positive semidefinite Ricci tensor and
to study the condition under which the Calabi construction is possible. We show
that if Φ is cyclic or if the dimension of M is odd and Φ is of odd order, then
the first betti number of M is not zero. This will follow from a fixed point
theorem.

In [9], A. T. Vasquez proved the following.
Theorem 2. There is associated with every finite group Φ a positive integer

n(Φ) such that: // M is a compact fiat Riemannian manifold with holonomy
group Φ, and dimM > n(Φ), then M is a fiat toral extension of another fiat
manifold of dimension <n(Φ).

The integer n(Φ) is not known except for the special case when Φ is a prime
order group for which n(Φ) = 1 and when Φ is Z2 X Z 2 for which n(Φ) < 6,
cf. [8]. In § 2 of this paper we prove that n{Φ) can be chosen to be less than or
equal to the sum of the indices of maximal cyclic subgroups of Φ. When Φ is of
prime order or is Z2 x Z2, we obtain the bound stated above. Theorem 2 is
reproved by using some elementary methods and hence avoiding results of I.
Reiner on integral representation of prime order groups and homology of groups.

The author wishes to thank Professor J. A. Wolf for valuable suggestions
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during the preparation of this paper for example, Lemma 2 is revised ac-
cording to his suggestion. The author also wishes to thank the referee for
comments on the original version of the paper.

1. We begin this section by indicating there is a way to unify the concept

of flat toral extension and the Calabi construction. We have the following

Definition. Let Mx — Rn/πι and M2 be two compact Riemannian manifolds.
Suppose πγ also acts as a group of isometries on M2. Then let πx act diagonally
on Rn x Λf2, i.e., g e πl9 mι e Rn, m2 € M2, g(m19 m2) = (gmλ, gm2). The space
of orbits is a compact Riemannian manifold with respect to the natural
Riemannian structure and will be called an M2 extension of Mx.

This definition appeared in [9]. When M2 is a flat torus, Vasquez called in
the flat toral extension of Mx. The following proposition is immediate from
Calabi's theorem.

Proposition 1. Let M be a compact fiat Riemannian manifold with non-
zero first betti number. Then M is an N extension of a flat torus Tr, where N
is a compact flat Riemannian manifold with zero first betti number, and r is the
first betti number of M.

We now generalize this proposition.

Theorem 3. Let M be a compact Riemannian manifold of positive semi-
definite Ricci tensor. Then M is an N extension of a flat torus Tr, where N is
a compact Riemannian manifold with positive semidefinite Ricci tensor, and r
is the first betti number of M.

Proof. Let M be the universal cover of M with the induced metric from M,
and X a nonzero harmonic vector field on M. It is well known that X is a
parallel vector field on M; cf. [6]. Lift X to a parallel vector field X on M.
By de Rham's theorem, M = Rx Mf such that X is tangent to the first factor.
Here R is the real line and the product is Riemannian.

We shall identify the fundamental group πλ(M) with the group of covering
transformations of M. Let g be an arbitrary element of π^M). We claim that
the projection of the action of g on R is a translation. In fact, if not, the pro-
jection will be a reflection on R and hence fix a point o in R. Let Xo be the
vector defined by J at o. Then Xo is mapped under the projection to — Xo.
Since X is invariant under g, this implies Xo = 0 and therefore X = 0 which
is a contradiction.

Now simple induction shows that M is a Riemannian product of Rr and a
manifold M" with positive semidefinite Ricci tensor such that the projection of
covering transformations on Rr are translations and the translation vectors span
Rr. Let G be the subgroup of πλ(M) which acts trivially on Rr. It remains to
prove that Mn'/G is compact. In fact, since the commutator subgroup [
πλ(M)] is contained in G, we have

rank (τr1(M)/G) < rank (^1(M)/[ττ1(M), π^M)]) = rank (Hγ(Mγ, Z)) = r ,
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which together with the fact that the translations span Rr concludes that
rank(τr1(M)/G) = r. It then follows that M = (Rr x (M/ //G))/(^1(M)/G) is
a fibre space over the torus R'/πάAQ/G with fibre M"\G. Thus M"\G is a
closed subset of a compact space and is hence compact.

Corollary 1. Every compact four dimensional Riemannian manifold with
zero Ricci tensor and nonzero first betti number is flat.

This follows from the fact that every three dimensional Ricci flat Riemannian
manifold is flat.

The following corollary is due to Chern and Milnor, using the Gauss-Bonnet
theorem.

Corollary 2. Every compact four dimensional Riemannian manifold with
positive semidefinite Ricci tensor has nonnegative Euler number, and its Euler
number is zero iff its compact orientable covering manifold is an N extension
of the circle where N is a three dimensional compact manifold with nonnegative
Ricci tensor.

Proof of the Corollary. If the Euler number is nonpositive, then the
Poincare duality shows that the first betti number of the manifold is nontrivial.
The theorem then says that its compact orientable covering manifold is an N
extension of the circle where N is a three dimensional compact manifold with
nonnegative Ricci tensor. This in turn implies that the manifold has a nonzero
vector field and the Euler number of the manifold is zero, cf. [5] and [10].

This corollary shows that the classification of four dimensional manifolds
with positive semidefinite Ricci tensor and zero Euler number depends on the
classification of three dimensional ones. This was verified by Calabi when the
manifolds have zero curvature.

Remark. The referee points out to us that Theorem 3 is a special case of
a recent work of Cheeger and Gromoll.

Now let us assume M is flat. We first study the condition under which the
first betti number of M is not zero. To this end, we have to estimate the size

Of [7Γ15 7ΓJ.

It is well known that M is covered by Rn, the Euclidean space of dimension
n, and that π, considered as a group of covering transformations on Rn, is a
discrete subgroup of the group of Euclidean motions. Every element in π will
be represented in the form (A, a) where A is the orthogonal part and a is the
translation vector of the element. The group formed by the orthogonal part of
elements of π is exactly the holonomy group of M. Suppose A has order m.
Then it is easy to check that {A, a) acts freely on Rn iff the vector

Am-ιa + Am-2a + i i l + fl^o, (Note that (A, a) acts freely if {(A, a)} is torsion
free and discreate.)

Let (A, a), (£, b) be two arbitrary elements in π. Then by direct computa-
tion, we know

[(A9a),(B,b)] =
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where c = -ABA-ιB~ιb - ABA-1 + Ab + a.
We claim that the first betti number of M is not zero iff the group π has a

nonzero common fixed point. In fact, if x is a nonzero fixed point of Φ, then

<JC, -ABA-'B-'b - ABA-'a + Ab + a}

= -<x, b} - <*, a} + <JC, b) + <*, a} = 0 ,

where < , > is the dot product of Rn, and (A, a), (B, b) are two arbitrary ele-
ments in 7r. This implies that the lattice generated by the translation vectors of
[π, π] is of dimension less than or equal to n — 1. Hence π/[π, π] is of rank at
least one.

From the remark that every transformation in Φ has a nonzero fixed point,
we have immediately

Proposition 2. Suppose the holonomy group of a compact flat Riemannian
manifold is cyclic. Then the first betti number of the manifold is not zero.

We now prove
Theorem 4. // the holonomy group of an odd dimensional compact flat

Riemannian manifold is of odd order, then the first betti number of this mani-
fold is not zero.

Proof. From the remark above, we need only to prove
Lemma 1. Let Φ be an odd order group acting orthogonally on an odd

dimension Euclidean space. Then Φ has a nonzero simultaneous fixed point in
it.

Proof of the Lemma. The famous theorem of Feit-Thomson asserts that Φ
is solvable. Let

1 « Φx < Φ2 <••• < Φm = Φ

be the derived series of Φ, and A be an arbitrary element in Φλ. Then from the
fact that there exists no nonzero vector x such that Ax — —x, it follows that
the fixed point space of A is odd dimensional since A is of odd order and the
dimension of the Euclidean space is odd. Let B be another element in φλ. Then
B leaves invariant the fixed point space of A which is odd dimensional since
AB = BA. Hence A, B have a simultaneous fixed point. (Note that B is of odd
order and therefore is a rotation.) The simultaneous fixed point space of A and
B is still of odd dimension. Continuing in this way, we know that the simul-
taneous fixed point space Fλ of Φx is odd dimensional. Now let C be an arbi-
trary element in Φ2, and A an arbitrary element in Φx. Then AC = CA' for
some Af in Φx. For all x in Fl9 we have

ACx = CA'x = Cx ,

which means that C leaves Fx invariant. Let F2 be the fixed point space of C
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and Φx. F2 is also odd dimensional. Let D be another element in Φ2. Then
DC = CD A" for some A" in Φγ. Since

CDx = CDA"x = DCx = Dx

for all x in F 2, D leaves F 2 invariant. The fixed point space of C, D and Φt is
odd dimensional. Continuing in this way, we prove that the fixed point space
of Φ is odd dimensional and is therefore nonvoid.

Remark. Theorem 4 can be generalized in the following manner. Let Φ be
a solvable group. Then M has a cover M such that M is a compact flat
Riemannian manifold with nonzero betti number and that the group of covering
transformations is isomorphic to the group Φ/Φ2 where Φ2 is the group gen-
erated by the square of the elements of Φ and is of course the products of Z 2 's.

The proof depends on the fact that the square of an orthogonal transforma-
tion is a rotation in any invariant subspace. This generalization cannot be im-
proved in the sense that there are examples for which Φ is Z2 X Z2 and yet the
first betti number is not zero.

The referee points out to us that a proof of Lemma 1 avoiding the Feit-
Thompson theorem can be found by using a theorem of Burnside (see, e.g.,
W. Feit, Characters of finite groups, Benjamin, New York, 1967, p. 68).

2. Now let us proceed to find a bound for n(Φ).
Lemma 2. Suppose the holonomy group Φ of a compact flat manifold M

is cyclic, then M is a flat torus extension of a circle.
Proof. First let A be a generator of Φ. Let a be such that {A, a) is an ele-

ment in π. Let Vγ be the fixed point space of A, and V2 the orthogonal com-
plement of Vλ. Let Zn be the group of translations of π. Then for all z in Zn,
z = zx + z2 with Zi in Vγ and z2 in V2. (Here we identify the group of transla-
tions with their translation vectors.) Thus Az — z = (A — I)z2. Since Az — z
is a lattice point in F 2 , and A — I restricted to V2 is nonsingular and leaves the
lattice point invariant, z2 is a rational combination of the lattice points in F 2 .
By subtraction, zx is also a rational combination of the lattice points in Vx.
Actually, we know that there exists an integer m such that mzγ is a lattice point
for all z in Zn. Hence the set of all elements of the form z{ forms a lattice in
Vλ. Let z\, z\, , zf be a basis of this lattice.

Now let a = aγ + a2 with ax in Vί and a2 in V2. Since ax is fixed by A, we
h a v e A*-ιa + Ap~2a + ... + a = Av~ιa2 + Ap~2a2 + . . . + a2 + pa,. T h e
first sum Ap~1a2 + Ap~2a2 + + a2 lies in V2, and is fixed by A if p is the
order of A hence it must be zero. The fact that Av~ιa + Av~2a + + a is
not zero implies that aλ is not zero.

The last argument also shows that paλ is the first multiple of aλ which lies in
(Zn)γ. Let k be the largest integer such that pax = kzx for some z e Zn. Then

m

Zι = Σ eizί where the greatest common divisor of the e^s is one. By changing
ί l
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the basis {z\, , zf} if necessary, we may assume zx = z[. Now let G be the
group generated by (Zn)1 and aλ. Since p and k are relatively prime, by re-
placing A, if necessary, by another generator of Φ and by adding to the cor-
responding a, a vector of the form z e Zn, we may assume {a19 z\, zl, , z?}
forms a basis of G. Let FJ be the vector space generated by z2, z3, , zm, and
F " be the line in Vλ perpendicular to V[. The projection of a2 on V", called <z3,
is obviously nontrivial. Let T2 be the flat torus obtained by taking the quotient
of the sum V" © V2 with respect to the lattice points in it. Note that the quo-
tient is compact by the above construction. Let 7\ be the circle obtained by
taking the quotient of V" with respect to the action of a3. Then we claim that
M is a T2 extension of Tx. In fact, the action of a3 on T2 may be taken to be
the projected action of (A, a) on T2. The only thing we have to check is that
the group generated by (A, a) and the lattice points in the sum V" 0 V2 is the
group πx itself. This follows from the fact that {a19 z\, z\, , z™} forms a basis
of (Z»)x.

Corollary. Under the assumption of Lemma 2 the characteristic algebra
vanishes in dimension greater than 1.

Proof. This follows easily from Lemma 2.7 of [9].
Remark. When Φ is of prime order, Lemma 2 was proved in [1], but our

method is more elementary and constructive. Lemma 2 cannot be generalized
to the case where Φ is abelian; in fact, if Φ is Z2 x Z2, the first betti number
of M may not be zero and hence may not be a flat toral extension of any torus,
cf. [5].

We can now improve the main theorem of [1].
Theorem 5. Let Φ be a finite group. Then there exists an integer n(Φ) such

that if M is any compact fiat Riemannian manifold with holonomy group iso-
morphic to Φ, then M is a fiat toral extension of some compact fiat Riemannian
manifold of dimension less than or equal to n(Φ). Furthermore, n(Φ) can be
chosen to be less than or equal to the sum of the indices of maximal cyclic
subgroups of Φ.

Proof. Let the n dimensional euclidean space Rn, be the universal covering
manifold of M, and Zn the group of translation in π. Let Aλ,A2, •• ,^4T Obea
set of elements in Φ such that they generate pairwise distinct maximal cyclic
subgroups of Φ. Let at be vectors such that (Ai9 at) is an element in π, and nt

be the order of At for each i. According to Lemma 2, one can make appro-
priate choices such that there exists an n — 1 dimensional subspace RM of Rn

such that the projected action of (At, at) on the orthogonal complement of RA.
is a translation and that the group Zn is the group generated by {Au a^711 and
the lattice points lying in RA.. Let Mλ be the intersection of all subspaces of the
form BRA., where B runs over the holonomy group of M, and / from 1 to m.
Let M2 be the orthogonal complement of Mx. It is clear that every element in
the holonomy group leaves Mί and M2 invariant.

We first note that if Rλ and R2 are two linear subspaces of Rn such that each
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one of them is spanned by the lattice points lying inside it, then Rλ Γ) R2 is also
so. This follows from the fact that the dimension of the intersection of two
sublattices is equal to that of Rλ Π R2 as seen by viewing the R^s as rational
vector spaces. From this remark, we know that Mλ is spanned by the lattice
points lying inside it. Call the group formed by these lattice points Gλ.

Now it is clear from the definitions that Gγ is a normal subgroup of π. Let
G2 = π/Gi. We claim that G2 acts freely and properly discontinuously on M2

by the projected action of π. In fact, let {A^ be a sequence of elements in π
and (x, y) be an arbitrary point on Rn with x e Mι and y e M2. Then At(x9 y) =
(A]x, A\y) where A], A\ are isometries of Mx and M2 respectively. Since Gλ

has a compact quotient on Ml9 there are elements {B^ in Gx such that
BiAt(x9y) = (A]x + bt,A\y) with {A\x + bt} lying in a compact set. Now if
{A\y} converges in M2, then BiA^x, y) converges in Mx 0 M2 by passing to a
subsequence if necessary. The fact that π acts properly discontinuously implies
that a subsequence of {BtA^ is constant eventually. Hence a subsequence of
A\ is constant eventually, and G2 acts properly discontinuously on M2. Now let
us prove that G2 acts freely on M2. In fact, let (A, a) be an arbitrary element
in π. Suppose A contains in the maximal cyclic group generated by At. Then
(A, a) can be written in the form (Ai9 a^)r -z where r is an integer and z is a
lattice point in RA.. If the projected action of such an element on the orthog-
onal complement of RA. is trivial, then r is zero by the definition of RA.. Similar
argument shows that if (A, a) acts trivially on M2, it is a lattice point in RA. for
all i, i.e., an element in Gλ. This means G2 acts freely on M2.

It is now clear that M is an M[ extension of M'2, where M[ is the flat torus
M1/G1 andM£ is the manifold M2/G2. It remains to compute the dimension of
Λf2. For each /, we may consider the holonomy group acting on the set of all
BRA.'s. Since the isotropy group contains the maximal cyclic group generated
by Ai9 the number of distinct BRAi's is less than or equal to the index of this
cyclic group. The theorem now follows from the fact that each RA. is of co-
dimension 1 and hence the codimension of the intersection of them is exactly
the number defined in the theorem.

Corollary. Let Φ be a finite group. If M is a compact fiat Riemannίan

manifold with holonomy group ίsomorphic to Φ, then the characteristic algebra

of M vanishes in dimension greater than the sum of the indices of the maximal

cyclic subgroups of Φ.

Remark. When Φ is cyclic, the bound in Theorem 5 is of course best pos-

sible. But the author does not know how sharp it is in the other cases. When

the group Φ is Z 2 x Z2, the bound is 6 which was also obtained by Vasquez

in this special case.

It would be interesting to know the condition under which a flat Riemannian

manifold is a flat manifold extension of another flat manifold. Lemma 2 shows

that the classification of n dimensional flat Riemannian manifolds with cyclic
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holonomy group depends only on the study of the isometric action of such a

cyclic group on R n \ which preserves the lattice points.
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