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SPHERICAL SPACE FORMS WITH NORMAL
CONTACT METRIC 3-STRUCTURE

SHIGEO SASAKI

Introduction

The theory of contact structure was initiated by S.S. Chern [2] in 1953
in studying pseudo-groups and was developed further by W. M. Boothby &
H. C. Wang [1]. G. Reeb [7] also gave an important contribution a little earlier
than them to the study of dynamical systems. The generalization to almost con-
tact structure was first studied by J. W. Gray [3] in 1959. The present author
[8], [10], [11] with Y. Hatakeyama introduced a new way to study these struc-
tures in 1960 by initiating the notions of (almost) contact structure, (almost)
contact metric structure, torsion tensor and normality of the structure. Since
then many papers on (almost) contact (metric) structures and related topics have
been published by many authors.

Recently, Y. Y. Kuo [6] studied Riemannian manifolds with a (almost) con-
tact 3-structure and gave some fundamental properties. Then, S. Tachibana and
W. N. Yu [12], S. Tanno [13] and T. Kashiwada [4] studied Riemannian mani-
folds with a normal contact 3-structure. The purpose of this paper is to study
spherical space forms which admit a normal contact metric 3-structure. For the
notations on contact structures we refer to the paper [9].

1. Quaternion structure in Eid

1.1. First, let us consider the 4-dimensional case. Let

(1.1) x = xQ + xj + x2j + x3k

be an element of the quaternion algebra Q where x09x19x29 x3 belong to the field
of real numbers. We identify x with the vector of components (x0, x19x29 x3) of
a Euclidean vector space E4 with respect to an orthonormal basis. Now consider
three linear mappings /, / , K of E* onto itself defined by

(1.2) Ix — —xi , Jx = — xj , Kx — —xk .

Then they are complex structures in E4 and satisfy the relations
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(1.3)
I2 = J2 = K2 = -1 ,

KI = -IK = J ,

JK = -KJ = / ,

IJ= -JI=K,

where 1 on the right hand side means the identity mapping. All of the complex

structures /, /, K are Hermitian with respect to the ordinary Euclidean metric

of E\ If we express the mappings /, / and K as linear transformations of com-

ponents of a vector, then they are represented by the following matrices:

(1.4)

K =

0
- 1

0

0

0

0

0

- 1

1
0

0

0

0

0

1

0

0
0

0

1

0

- 1

0

0

0 N

0

- 1

o ,

0

0

oJ

J =

1 0

0

- 1

0

0
0

0

- 1

1
0

0

0

0
1

0

0

In general, three complex structures F19 F2, F 3 in a vector space F 4 over the
real number field are said to define a quaternion structure if they satisfy the re-
lations

(1.5) = - 1 FλFμ= -FμFλ =

where (λ, μ, v) means any even permutation of 1, 2, 3. In this case, there exists a
Euclidean metric g0 in F 4 , with respect to which all the complex structures F19

F 2, F 3 are Hermitian, so that we may consider F 4 as E\ We take a unit vector
eλ and put

(1.6) e2 = - e3 = -

Then it is easy to verify that {e19 e2, e39 e4} is an orthonormal basis of V\ with
respect to which F19F29F39 gQ are represented by matrices in (1.4) and the unit
matrix. Hence there exists essentially only one quaternion structure for F 4 .

1.2. In the same way as above we can define a quaternion structure in a
vector space Vid (d > 0) over the real number field by three linear mappings
F19 F29 F3 of V4d onto itself, which satisfy (1.5). Then by taking an orthonormal
basis of V4d with respect to a Euclidean metric gQ which is Hermitian for all of
F19F29F39 we can express the complex structure F1 (resp. F29 F3) and the metric
gQ by the diagonal matrix of order d with the matrix / (resp. /, K) of order 4
and the unit matrix E of order 4 respectively as each entry on the principal
diagonal. Thus F19 F 2, F 3 and g0 are reduced to

(1.7)
Id = I X I X " - x I 9

Kd = K χ Kx . . . χK9

Jd = / x / x ... x / ,
gd = E x E X . . . X E ,

so that we obtain
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Lemma 1. In V*d, there exists essentially only one quaternion structure.

2. Normal contact metric structure on S*d~ι

Let

be a unit hypersphere in a Euclidean vector space Eid. If we put

(2.1) £, = /**, ΛβS 4*- 1,

then £ defines a unit vector field on S4*"1. We denote by g the metric on S^'1

induced from the Euclidean metric gQ of Eid by the inclusion map of S4*"1 into
Eid, and by π the natural orthogonal projection of the tangent spaces

Tx(&d)-+Tx(S«-1), xeS"-1.

For η and Φ defined by

(2.2) η{X) = g(ξ,X) , ΦX = -πΊdX(= -IdX - η(X)x) ,

we have

(2.3) r](ξ) = 1 , Φ ΦZ = -X + η(X)ξ ,

(2.5) dη(X,Y) = g(X,ΦY) ,

(2.6) N(X, Y) = 0 (normality) ,

where Z, Y are arbitrary vector fields on S^'1 and

f, Y) = [Z, Y] + Φ[ΦΛΓ, Y] + Φ[X, ΦY]

- [ΦX, ΦY] - {X rtY) - Y η(X)}ξ .

In other words, (Φ, ξ, η, g) gives a normal contact metric structure on SAd~ι.
Conversely, a set of tensor fields (Φ, ξ, 27, g) over S4*"1, where g is the metric

induced from the Euclidean metric g0 in E4d, is said to be a normal contact
metric structure on S4*"1 if it satisfies (2.2)x and (2.3)-(2.6).

Lemma 2. L^ί (Φ,ξ,η,g) be a normal contact metric structure on S4d~ι.
Then there exists a complex structure F in Eid such that

(2.8) £ = Fx , * eS**-1 , ΦZ = -πFX(= -FX - η(X)x)

hold.
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Proof. Each point of Eid — {0} (0 being the center of S4d~ι) is represented
uniquely by its polar coordinates (x, r), X€S*d~\ r > 0. Define a linear map-
ping F of the space of vectors at (x, r) onto itself by

(2.9) FX = -ΦX - η(X)x , Fx = ξ ,

where X is an arbitrary vector orthogonal to x. Then we can easily verify that
F is an almost complex structure in Eid — {0}. Furthermore, (2.9) implies that
F is constant along each open ray through 0. We shall show that F is also
constant on S4*"1. To this end, we notice the derived equations of Gauss and
WeingartenforS4*"1:

(2.10) VXY = VXY - g(X, Y)x , Vxx = X ,

where X, Y are tangent vector fields to Su~ι in a coordinate neighborhood U
of 54d"S and F z , Γ x are covariant derivatives with respect to the standard
Riemannian metrics of E4d and S**'1 respectively. By virtue of the relations
(2.10) and

(2.11) (FXΦ)Y = g(X, Y)ξ - η(Y)X , (F^XY) = -S(Φ*, 10

(cf. [9], [11]), the left hand side of

Vχ(FY) - (FXF)Y + FVXY

is transformed to

-VX{ΦY + η(Y)x} - -ψx(ΦY) - g(X, ΦY)X) - Vx(η(Y))x - η(Y)X

= -{g(X, Y)ξ + ΦVXY + η(FxY)x) ,

and the right hand side to

(FXF)Y - {ΦVXY + η(FxY)x + g(X, Y)ξ} .

Thus

(2.12) (PxF)Y = 0 .

Similarly, by transforming both sides of

Px(Fx) = (PxF)x + FFxx

by virtue of (2.10) and

(2.13) Vxξ= -ΦX

(cf. [9], [11]), we get
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(2.14) (PxF)x = 0 ,

which together with (2.12) implies that V XF = 0, so that F is constant in U.
Therefore F is constant in U X (0, oo). Now, it is easy to see that F is constant
in Eid — {0} so that we can extend F to E4d differentiably. Hence F is a complex
structure inE4d.

3. Normal contact metric 3-structure on S4d~ι

3.1. Let F19 F2, F 3 be a quaternion structure in E4d, and for each λ, λ = 1,

2, 3, put

(3.1) ξ> = Fλx, xeS**-1,

(3.2) % ( * ) - g(ξλ,X) ,

Then (Φλ, ξλ, ηλ, g)'s define three normal contact metric structures on S 4 d - 1 with
the same Riemannian metric g. Since F^, for λ = 1,2, 3, define a quaternion
structure in E4 ί ί, we see that Φλ, ξλ, ηλ satisfy

3 ) Φ, = ~Φβμ + ξι®ημ = ΦA ~ £ , ® fc ,

fy = -Φχξμ = Φμξχ , V> = -rjχΦμ = ημΦχ ,

where (λ,μ,v) is an even permutation of (1, 2, 3). (3.3) implies

(3.4) Vι(gμ) = 0 if λ Φ μ .

In general, three normal contact metric structures on S4d~ι satisfying (3.3)
are said to define a normal contact metric 3-structure on S4**"1. Lemma 2 and
the above argument show that this structure corresponds to a quaternion struc-
ture in Eid. As each quaternion structure is transformed to the standard qua-
ternion structure by § 1.2, we can identify Fl9F2, F 3 with Id,Jd, Kd without any
loss of generality.

3.2. Now let us consider the antipodal map T of S4^-1 onto itself. Then
from

(3.5) TFλ = FλT ,

it follows that

(3.6) ξi.τs = TξitX , ^ S 4 * - 1 ,

and that

Vλ(TX) = g(ξλ>τx, TX) = g(TξλfX, TX) = g(ξλ>x,X) ,
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(3.7) ηλ{TX) = Vλ(X)

for X e Γ ^ ' 1 ) . We have also

(3.8) φλTX = Γφ ;Z ,

because

Φ,TZ = - F 2 Γ Z - ηλ{TX)Tx = -TFλX - 7)λ(X)Tx = TΦλX .

Thus each of (Φx,ξλ, ηλ)'s is invariant under T, and, of course, g is invariant
under T too. Hence (Φλ, ξi9 η2, g), for λ = 1, 2, 3, define a normal contact metric
3-structure in the projective space P4d~ι with the natural Riemannian metric
induced from S4d~\

3.3. Taking account of the fact that SAd~ι and P4d'1 are spherical space
forms, it is natural to consider the problem of determining all spherical space
forms with a normal contact metric 3-structure.

Now each spherical space form of dimension Ad — 1 is isometric to a certain
space of orbits Sid~ιIΓ9 where Γ is a finite fixed point free subgroup of O(4d),
the isometry group of S4d~ι. So we may formulate our problem as follows:
Determine all distinct (i.e., nonisometric) spherical space forms S4d~ιIΓ such
that Γ leaves invariant each of the three normal contact metric structures (Φλ,

Since two distinct finite fixed point free subgroups Γ and Γf of O(4d) in gen-
eral do not give nonisometric space forms, the criterion that they give isometric
space forms is given as follows. Noticing that Γ (resp. Γf) can be regarded as
a direct sum of several fixed point free irreducible orthogonal representations
σ19 - - -,σp (resp. σ[, ,</q) of an abstract group G ( = Γ)(resp. Gr ( = Γ0),
we say that Γ and Γ' are equivalent if and only if (i) G = G', (ii) p — q and
(iii) there exist a permutation π of (1, , p) and an isomorphism a of G onto
Gf such that a'λ°a and σπ{λ) are conjugate. Then two spherical space forms
O(4d)/Γ and O(4d)/Γ' are isometric if and only if Γ and Γ' are equivalent
(cf. G. Vincent [14], J. A. Wolf [15]).

On the other hand, (3.6) for T € Γ implies (3.5), and (3.5) for T e Γ implies
(3.6)-(3.8). Thus the problem of finding all distinct spherical space forms with
a normal contact metric 3-structure reduces to the one of finding a representa-
tive from each equivalence class of finite fixed point free subgroups of O(4d),
which leave Id, Jd and Kd invariant. Any such representative Γ gives a required
spherical space form 54<z"1 /Γ.

4. Determination of all spherical space forms with a

normal contact metric 3-structure

4.1. First let us study the simplest case where d = 1, i.e., the case of S\
in which (3.5) can be written as
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(4.1) IT = TI , JT = TJ , KT = TK .

The linear mapping J is expressed as a linear transformation of compo-
nents of a vector by a matrix (taβ), a, β = 1, , 4. Noticing that /, / and J£
are given by matrices in (1.4), we therefore see that (4.1)! and (4.1)2 reduce
to

hi — hi 9 hi = = *21 J *3

hi = M2 ) M

and

^11 ^ ^33 9 til — hi ? ^12 r = ^34 > ^21 = = ^43 J

1̂3 = = hi 9 hi — hi 9 hi = hi 9 hz = hi

respectively. (We do not write out similar equations corresponding to (4.1)3,
since (4.1)3 is a consequence of (4.1)! and (4.1)2 together with K = IJ.) From
these relations it follows that T has the form

(4.2)

a0 —aγ —a2

a, aQ -a3

a, —a,

— nΛ

-a,

a0

As T e O(4), a\ + a\ + a\ + a\ — 1. If we express a point x of S2 by a quaternion
as

x = x0 + xxi + x2j + x2k , \\x\\ = 1 ,

and consider also the quaternion

(4.3) a = α0 + ^/ + α j + a3k , \\a\\ = 1 ,

then we can easily verify that

(4.4) Tx = ax .

Thus the mapping T of 0(4) leaves the complex structures /, / invariant, and
K is a left translation of the multiplicative group Q of the unit quaternions.

The mapping of S3 (resp. P3) onto itself induced by such T of 0(4) is called
a Clifford translation of the second kind of S3 (resp. F3) (cf. F. Klein [5]), and
we may easily see that it is fixed point free. So in the case of S3 our problem
reduces to the following one: Determine a representative from each equivalence
class of the finite subgroups of the group of Clifford translations. (We omit the
adjective "of the second kind" for brevity, as by Lemma 1 it is not necessary to



314 SHIGEO SASAKI

consider Clifford translations of the first kind corresponding to the right transla-
tions xf = xa.)

4.2. The answer to the problem is well known. To explain it we need the
definitions of some groups. Define the homomorphism τ: Q! —> SO(4) by

(4.5) τ(a)(x) = axa~ι , aeQ', x<εQ ,

and consider the groups

D*.= τ-KDJ, ϊ1* = τ-1(Γ), O* = τ'XO) , I* = TΛD ,

where Dm is the dihedral group (i.e., the group of rotations in E3 of a regular
ra-sided polygon in a plane), and T, O and / are respectively the tetrahedral,
octahedral and icosahedral groups (i.e., the groups of rotations of a regular
tetrahedron, regular octahedron and regular icosahedron). They are respectively
called the binary dihedral, binary tetrahedral, binary octahedral and binary
icosahedral groups.

4.3. All finite subgroups of Clifford translations on S3 are then equivalent
to either one of

(i) Γ = {1} (1 being the identity mapping),
(ϋ) Γ = {±1},

(iii) Γ is the cyclic group of order q > 2 generated by

(4.5) T =

c -s 0 0 \
s c 0 0
0 0 c -s
0 0 s c

where we have put c = cos 2π/q, s = sin 2π/q,
(iv) Γ is the group of Clifford translations which corresponds to a binary

dihedral group or one of the binary polyhedral group 71*, O* and /*.
Hence we obtain
Theorem 1. All 3-dimensional spherical space forms with a normal contact

metric 3-structure are given as S3/Γ, where Γ is any one of the subgroups of
Clifford translations given by (i), (ii), (iii) and (iv).

Remark. Γ = {1} and {+1} give S3 and P3. S3/Γ for Γ of type (iii) is the
so-called lens space whose fundamental group π is isomorphic to Γ.

By a theorem of J. A. Wolf [15], we have, as a corollary,
Theorem 2. A necessary and sufficient condition that a 3-dimensional

spherical space form admits a normal contact metric 3-structure is that it be a
homogeneous Riemannian manifold.

4.4. In the general case where d > 1, the complex structures Id, Jd, Kd have
the form (1.7) so that the linear mapping Td of Eid leaving all of these
structures invariant is given by a matrix of order d whose entries are matrices
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of the form (4.2). As Γ s O(4d), this means that T is an element of the real
representation of the symplectic group Sp(d). Thus our problem reduces to
the following one: Determine a representative from each equivalence class
of the finite fixed point free subgroups of Sp(d). We do not treat this algebraic
problem in this paper. However, examples are given by Γd = ΓxΓx - xΓ
(d factors), where Γ is any one of the groups given in (i)-(iv) of § 4.3. They
give Sid~\ the projective space Pid~\ the lens space Ud~ι and so on as spheri-
cal space forms with a normal contact metric 3-structure.
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