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TIGHT TOPOLOGICAL EMBEDDINGS OF
THE MOEBIUS BAND

NICOLAAS H. KUIPER

1. Introduction and examples

The main result of this paper is as follows. If a Moebius band topologically
embedded in a euclidean four-space E* does not lie in a hyperplane and is cut
by any hyperplane in at most two parts which are homotopy equivalent to a
point or a circle, then the band is the union of the triangles eiei+1eί+2 (i mod 5)
of a simplex ex e5 C E* a more technical formulation is given at the end of
this section.

Let /: M —* EN be an embedding of a topological space M into a euclidean
vector space EN. Any hyperplane of EN has an equation z = c, where z is a
linear function (covector) and ce R. The parts of M which embed on one side
of the hyperplane are (zf = z o f is the composition)

(z/)c- - {x e M: zf(x) < c} c M and (~zf)zc .

For later use we also define

(zf)c = {xeM:zf(x) <c](ZM .

Following T. Banchofϊ we say that / has the two-piece property (TPP) (or is
O-tight) in case

( 1) (z/)~ is connected or empty for all z, c .

Then every hyperplane cuts M into at most two pieces. If j(M) is convex, then
every nonempty (z/)~ is contractible for all z, c, and this property is sufficient
to make f(M) convex (Corollary 2a). As (zf)~ may be equal to /(M), then M
has to be contractible itself.

Tightness or having minimal total absolute curvature is a property which gen-
eralizes convexity. Given the topological space M embedded in EN, the parts
in which any hyperplane cuts M should not be more complicated than strictly
necessary. In the above notation this can be roughly defined by the claim that
for all z the homology of (zf)~ has for increasing c the minimal possible num-

Received June 28, 1971. The author acknowledges, with pleasure, the critical remarks
made by William Pohl on an early draft of the paper, which led to important improve-
ments in the exposition.



272 NICOLAAS H. KUIPER

ber of changes defined with suitable multiplicities. In the case of smooth closed
manifolds M we get for almost every z a nondegenerate function zf on M, which
should have the minimal possible number of critical points; see [1] for details.
For connected compact two-dimensional manifolds with non-void boundary
we give a simple definition of tight embedding. Such a manifold M has the
homotopy type of a wedge of (say) k circles, k > 0. The embedding /: M-^EN

is said to be tight in case (zf); is empty or homotopy equivalent to a wedge of
/ circles for some j < k all z, c. For the band Sι X [0,1] and the Moebius band
(our main interests in this paper) we have k = 1.

Some definitions and notations to be used are as follows: We call the smallest
convex set containing a subset X of euclidean space EN the convex hull Jf(X),
the linear variety which X spans the span a(X), and for compact X the bound-
ary of 3P{X) in a(X) the convex envelope dJ^(X). f: X -> EN is said to be
substantial (in EN) in case f(X) is not contained in any hyperplane of EN.

Examples of tight bands and Moebius bands in E2 and E3 are given in Figures
1,2,3.

a) In the plane only the tight band exists and it is always a difference F\D
where F and D are compact convex sets with interiors F and D and D c F.
(See Lemma 4.)

b) In E3 the substantial tight bands are all obtained as follows (Lemma 8).
Let Dλ and D2 be compact convex sets with nonempty interiors Dλ and D2 in
different planes a(D^) and a(D2) of E3. Suppose Dλ U ί>2 does not meet
a(Dx) Π a(D2). Next delete Dλ U D2 from d^(Dx U D2) to obtain
dJe\pλ U £>2)\(A U D2). If D1 Π D2 = 0, then it is a tight band in E3. Observe
that a tight band in E3 is a developable surface which can be smooth or piece-
wise linear or neither.

Examples a) and b) are substantial in E2 and E3 respectively.
c) Banchoff found the following tight Moebius band in EN, N = 3 or 4.

Let e19 - , e5 be five points in a general position in EN. If the union of the
five plane triangles etei+1ei+2 with / cyclic modulo 5 is an embedded surface,
then one checks easily that it is a tight substantially embedded Moebius band.
For N = 4 it is of course always an embedding. For N = 3 see Fig. 2. The
example in Fig. 2(b) is generalized in Fig. 3(b) which is obtained as follows:

Take Dλ and D2 as in Example b), but suppose that Dλ and D2 meet
a(Dλ) Π #CD2) in one and the same point A, and moreover that dDx contains a
straight segment AB and 3D2 contains a straight segment AC such that the plane
a(ABC) of these two segements cuts the convex body J f (Dλ U D2) in two
parts. Let V be a piece (with interior) of the plane triangle ABC bounded by
AB, BC and a straight or curved segment from B to C along which V is con-
cave. Then (V U dJf(D\ U Z)2))\(i)1 U D2) is a tight embedding of the Moebius
band in E3.

The example in Fig. 2(c) is generalized in Fig. 3(c) and is obtained as fol-
lows:
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Fig. 1

Fig. 3

(c)

Take Dλ and D2 as in Example b), but suppose that D1 and D2 meet
a(Dλ) Π a(D2) in a line segment QR, and moreover that dDx and dD2 contain
straight line segments QP and RS respectively. First make the piece
d2tfφχ U D2)\(Dι U D2), which is the union of the line segment QR and an
embedded 2-disc. Next take a point T in the interior of J^({P, Q,R,S}) and
add the triangles TPQ, TQR and TRS to obtain the required tight Moebius
band. A further slight generalization seems to be obtainable by first taking Qr

in the interior of QT and R' in the interior of RT and then deleting suitable
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convex curved triangles PTQ', QTRf and R'TS from the above straight tri-
angles. In this manner all tight Moebius bands seem to be obtained. This may
be easy to prove but the author did not do it. At any rate it follows easily that
there is no smooth tight Moebius band in E3. The main, more interesting, result
of this paper is:

Theorem. // /: M —> E* is a topological tight substantial embedding of the
compact Moebius band in euclidean jour-space, then the image is the union of
the five 2-simplices etei+1ei+2, i modulo 5, of some 5-simplex e^e^e^ in E\

2. General lemmas on top-sets

F o r a compact connected set f : M -+EN a n d o r t h o g o n a l u n i t c o v e c t o r s z19z2,
• 9ZJV, we define:

a top-set or topι-set: Mfo) = {xeM: zj(x) = supv&MzJ(y)};

a top2-set: M(zι,z2) = {xeMfo): z2f(x) = supyeM(Zl)z2Ky)};

a topι-set: M(z19 , zt) = {x e M(zλ, , z ^ ) :

A top*-set is a topfc-set for some k > 0. M will sometimes be called a toρ°-set.
If the span of a top*-set is a A -dimensional euclidean space, then we call it an
Ek-top*-set.

Lemma 1. // the embedding f:M-+EN has the two-piece property
( = T P P ) , then every top*-set of M also has the TPP.

Proof. It is sufficient to prove the conclusion for top^sets, because we can
then apply the result to a top^set to obtain the conclusion for a top2-set, etc.

Suppose that / has TPP and that contrary to the conclusion,

Mfe) Π U n -

does have at least two components for some orthogonal unit covectors zγ and z2

and a real number c. Then there is d < c with cr near to c such that the

compact set M' — M(zx) Π (zj)c as well as the set Mr = M(zx) Π (z2/)c~ has at

least two components. Now take an open neighborhood U of M' in M such

that U = ϋλ U U2, Ux Π U2 = 0, and Uλ and U2 contain different parts of M'.

For our convenience we assume that d — 0 and also that zι takes the value 0

on Mte).
The function Z2\zx assumes on the compact set M\ U a positive maximal value

which we call 2/ε its values vary in [— oo, 2/ε] and are strictly bounded above
by 1/ε. We then find the inclusions:

M/ C [ ( - * ! + εZ2)f]o C [ ( - * ! + εZ2)f]0 C U ,
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and so [(—zx + εz2)f]o inherits the property of having at least two components
from Mr and U. But this contradicts TPP for M c EN.

Lemma 2. Suppose f: M —» EN has the property that (zf)~ is p-connected
for all z and c. Then for any Ej-top*-set Mf we have: if j < p + 1, then Mf

is convex; if j = p + 2, then dJtfΆί' C Mf.
Proof. For ; = 1 , and p > 0, the conclusion holds because the case p > 0

implies TPP, and Lemma 1 gives that M' c E1 is a connected set, so a segment,
and hence convex. We now consider an induction step and suppose the con-
clusions to be true for £'λ;-top*-sets in case k < j with 1 < / < p + 2. Let Mr

be an £^-toρ*-set. All top^sets of Mf in Ej are then convex sets inM / . Since
d^Mr is the union of these convex hulls of the top-sets of M', dtfM' C Mf.
If / = p + 2, then the proof is finished. If / < p + 1, then dz^M is a 0-1)-
sphere. If now 2/?M' = M\ then the proof is also finished. So suppose 34?M'
contains a point m not in Mr C M. As M is compact, there is a small ball
B(m, 2δ) in E^ with centre m and radius, say 23, which does not meet M.
d ^ M r cannot be contracted inside

T\B = ^ = { n F : distance O,a(M7)) < 3}\B(m, 2δ) .

Consequently, there is a neighborhood £/ of M r in M inside Γ, in which dJ/FM'
cannot be contracted either.

Now suppose M! — M(z19 , zt) and zx — = zL = 0 for points in M'.
Then

M7 = M(z,, , z^.i) Π (zj')o C £/ ,

and by the methods used in Lemma 1 we obtain ει > 0 such that

M/ C M(z15 ,Zj_2) Π [(-Zi_x + exZO/lo C C/ .

Repeating this process we first find

M/ C M(z19 ,^_ 1 ) Π [(-Z,_ 2 + ε^-z^x + ε^)/]o" C U ,

and after repetition finally: M' c (z/)0 C t/ for a suitable z. Then there is c > 0
such that Mf C (z/)~ C £/, and (z/)~ is not p-connected because dtfPM! does
not contract in (z/)~. This contradicts the assumptions.

Corollary 2a. Suppose the embedding f\M^EN for a compact M has the
property that (zf)~ is contractible for all z and c. Then M is convex.

Corollary 2b. Suppose the topological substantial embedding f: Sn —> EN

has (zf)~ {n — l)-connected for all z and c. Then N — n + 1, and f(Sn) is the
boundary of a convex (n + l)-body.

(Compare [1, Th. 4] and the theorem of Chern-Lashof in [2].)
Proof. By Lemma 2, all £Mop*-sets are convex for / < n. If there is an
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Ew+1-top*-set M', then d^M is an rc-sphere embedded (!) in Sn = f(Sn), and
therefore equal to that w-sphere; hence the proof is finished.

If all top^sets are E'-top*-sets for some / < n (hence convex), then f(Sn)
contains the (N — l)-sphere dJ^f(Sn) and this is impossible for N > n + 1.

If there is an EJ-top*-set with n + 1 < / < N, then this £Mop*-set has the
same relevant properties as f(Sn). By repeating this argument a finite number
of times we reach the conclusion of Corollary 2.

Our next lemma is of a different kind.
Lemma 3. Let f: M -> EN be a TPP embedding of a compact connected

n-manifold with nonvoίd boundary 3M and interior M. If for some z and c,
0 φ (zf)c a M or M(z) C M, then there are w and e such that some component
of (wf)~ has the homotopy type of the wedge M V Sn~ι.

By the definitions we have:
Corollary 3a. If f: M —> EN is a tight embedding of a band or a Moebius

band, then M(z) C M and (zf)c C M are impossible for every z and c.
Corollary 3b. // / is as in Corollary 3a, then (clearly) H2(M, (zf)~) = 0 and

hence i^ is injective in the exact sequence

HIM) = 0 > H2(M, (zf)~) = 0 • Hx(izfX) - X H0Λ) .

Proof of Lemma 3. If M(z) c M, then for some c, M ( z ) c ( —z/)c c M.
Hence we only have to consider the case 0 Φ (zf)c C M. In that case for
d — c > 0, but small, also (z/)c. C M. Almost every unit covector — w attains
on the Λf-dimensional convex set Jf((zf)c>) its minimal value — e at a unique
point y of (zf)c> and for — w near to z this point lies in the interior of (z/)c/ and
by TPP, then ( — wf)_e is that interior point y of M. Then (wf)~ = M\{y} is
homotopy equivalent to M V Sn~\ (To see this assume y "near" 3M.)

3. Bands and Moebius bands

From now on f: M —> EN is a tight embedding of a band or a Moebius band
M in EN.

Lemma 4. Every E2-top*-set M' of f is a compact convex set F or a dif-
ference F\D obtained by deleting from F the interior of a compact convex set
D C F.

Remark. In the last case we call M' an essential top*-set because, as we
will see, it carries an essential 1-cycle of M.

Proof. Let F = J f(M'). By Lemma 2 (with p = 0) we know dF c M'. If
the whole convex set F is not in M', then d F ( c M 0 does not contract in Mf

and not even in some small open neighborhood U of Mf in M. Then as in
Lemma 2 one finds z and c such that the circle dF c (zf)~ does contract neither
in (zf)~ nor in M because i^ in (2) is injective. Therefore dF represents a non-
zero element of H^M). If the open plane set F\M/ has more than one com-
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ponent, then we would find analogously two independent elements of H^
and (zf)~ could not have the homotopy type of a point or circle. Hence F\M'
is connected. Next suppose it is not convex. Let zk+1 = 0 be the equation of a
line which contains the points p, q and r in this order, such that p and r are
in F\M and q is in M''. As p and r can be connected by an arc in F\Mf, it is
seen that not both parts zk+ι > 0 and zk+ι < 0 of Mf (which contain both q,
and each one "half" of dF) can be connected. Hence for example the part M"
with equation zk+ί < 0 of M' has at least two components. Then / is not TPP
by Lemma 1, and we have a contradiction. Consequently, F\M/ = D is convex
and Lemma 4 is proved.

Lemma 5. Every E3-top*-set Mf = M(z1? - ,zk) has exactly two essential
top-sets.

Proof. If no top-set of M' is essential, then all top-sets are convex and their
union is dJ^M\ a 2-sphere contained in M. This is impossible. Hence M' has
at least one essential top-set, say M" = M(zλ, , zk+ι) = F\D in the notation
of Lemma 4. Suppose M' has no other essential top-set. Then the other top-sets
of Mf are all convex, and fill dJf M'\F, an open disc in M! C M. Thus zk+1

takes a minimal value in an interior set in Mf C M, which must be the top-set
M( — zk+ι) C M. This contradicts Corollary 3a. Hence there are at least two
essential top-sets on Mr.

Now take two essential top-sets of Mf'.Mx = Fι\Dι and M2 — F2\D2. If the
embedded circle dFt does not represent a generator of M, then it must repre-
sent twice a generator and M must be a Moebius band. Thus dFt bounds a
Moebius band in M so that we can find some covector z which has constant
value on dFt and has a minimal value c such that ( z / ) c c M contrary to Corollary
3a. Therefore 3Fλ and dF2 carry a generator of Hλ(M), and we can fix a gen-
erator and use it to define an orientation in the circles dFx and 3F2 which are
embedded in different planes a{Fλ) and a(F2) in Ez = α(M0, If 9 ^ and 9F2

meet, then they meet in a connected part of the line of intersection of these Mf-
supporting planes. Therefore in M we find that dFλ U dF2 "bounds" either an
embedded annulus V or an embedded disc V. V lies in E3 because otherwise
some linear function z which vanishes on E3 would determine a compact set
(z/)c in the interior of V(dM) contradicting Corollary 3a.

Next connect dFλ and dF2 in Ez but outside MM! by a cylinder (handle) W
to obtain a closed embedded surface V U W in E3. This surface is embedded in
E3, and therefore is orientable. Since it cannot be a Klein bottle, it is a torus,
and it follows that dF1 and dF2 induce opposite orientations on the 2-sphere
dJf Mf via the top-set discs Fx and F2. Now, if there would be at least three
essential top-sets on M\ they would give rise to three mutually opposite orien-
tations on dJ^M', which is impossible. Hence Lemma 5 is proved.

Lemma 6. Let Mf be an E3-top*-set of M with essential top-sets FX\D and
F2\D2 in the notation of Lemma 4. Then
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λ U D2) = j f (ΛfO = J?(F1 U F2) ,

U D2) \ φ1 U A) C W .

Proof. By the other lemmas the second statement follows from the first.
Clearly

je(D1 U D2) = jf(D1 U dD2) c J f (M') .

If j f ( M 0 :£ tf (Dι U £>2)> t n e n there is a linear function z which takes its mini-
mal value c on a compact set in the interior of d^Mf\{Dλ U D2) c M. This
contradicts Corollary 3a.

Lemma 7. Ev^rj ί/g/zί substantial embedding f:M-+EN,N>3, has at
least two essential E2-top*-sets.

Proof. First observe that every Z^'-top*-set Mf, with / > 3, does have a
nonconvex top-set Mh', because otherwise M' C M contains the (/ — l)-sρhere
d^Mf. If M" is such an Ew-top*-set, then m < j . If also m > 2, we replace
M' by M", and repeat the argument. Whence we can continue and find an
essential E2-toρ*-set M(z19 , zk+ι) = M r / = F \ 0 (as in Lemma 4), top-set
of some top*-set Mf = M(z19 , zk).

If M" is the only nonconvex top-set of Mf = M{zγ, , zk), then z fc+1 takes
a minimal value in the interior of the open disc d^Mf\F C M. This contradicts
Corollary 3a again, and hence Lemma 7 follows.

4. M-interior points on 3F, and tight bands

For tight /: M—>EN we know that no toρ*-set is in M. Consider an essential
E2-toρfc-set Mr = F\I>. The top-sets of 3F are top*-sets of /, which are either
points, hence on dM, or straight segments whose endpoints are top*-sets hence
on dM again. So, if a point y ed F is in M ("is M-interior"), then it must be in
the interior of a straight line segment on dF. Next let s C 3F be an open M-
interior segment on dF with closure s whose endpoints p and q are on dM. The
closure ^ cannot cut M into two parts, because otherwise we then find z and c
such that ( — zf)_c contains s but not much more of M, and (zf)~ is not con-
nected, contradicting TPP.

Assume now that M is a band and also that M = f{M) is not in a 2-plane.
Then s connects the two parts dxM and d2M of the boundary dM. Going back
and forth we see that there must be an even number of such M-interior seg-
ments s19 , s2p on the 1-sphere dF, whose union divides M into 2p parts.
At most one (and at least one) of these parts can have points outside the span
a(F) of F, again because otherwise we find some (z/)~ with at least two compo-
nents. Only the two segments st bounding that part (which we call V) can in
fact be on the boundary dF, because the others are interior points in a(F) Π M
= F\D, Consequently p < 1. Observe also that M\V c a(F). By considering
s1 and s2 on the band M, we see that one of the two parts of the boundary,
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say dλM CM\V d a(F), is completely contained in F in case p = 1 as well as
in case p = 0.

By Lemma 7 there are at least two E2-top*-sets, say F1\D1 and F2\D2, in
which we now find the two parts of 3M: dλM and 32M respectively. Then
M U Fγ U F2 is an embedded two-sphere, and has the two-piece property
because M is tight (compare Corollary 2a). Thus this set and therefore also M
are in a 3-dimensional space E3. With Lemma 4 we hence reach

Lemma 8. All tight bands in euclidean spaces are those described in the
examples of § 1 under a) and b).

5. Tight Moebius bands in £ 4

In this section /: M —» Z^ is a tight substantial embedding of the Moebius
band and N > 4.

Lemma 9. // F\Z) w an E2-top*-set of a tight Moebius band in EN, then
dF consists of one straight open arc s of M-interior points and one closed arc
t = dF\s in the boundary dM: dF = L = s U t, s Π t = 0. (See Fig. 4.)

Proof. If dF has no M-interior points, then dF = 3M, and some covector z,
which is constant on dF, attains its minimal value c < 0 on M on a set (z/)c C M
contradicting Corollary 3a. We now follow the above arguments for D to obtain
that the M-interior points of dF form a set of straight line segments s19 ,
s"2p-Γ> th e number of the segments now is odd. Moreover, the arguments of D
also give p = 1, which proves Lemma 9.

We next will study the various intersection possibilities between Lx = dFx and
L2 = dF2 concerning two different essential E2-top*-sets F1\D1 and F2\D2. The
embedded 1-sρheres Lλ and L2 carry the essential cycle of the Moebius band
and so they meet: Lι Π L2 ψ 0. In the notation of Lemma 9 let

Lι = s ι \ J t l 9 t, = int ?! ,

L2 = s2 U t2 , t2 = int ί2 .

Clearly, sλ Γi t2 d M Γ\ dM = 0, and also ϊx Γl s2 = 0. Next we prove
Lemma 10. sλ Π s2 = 0.
Corollary 10'. Lx Π L2 = ίx Π ί2 ^ 0.
Proof. Suppose sλ Γ[ s2Φ 0. Suppose also, for some i > 0,

ί i U ί 2 C Λf(Zχ, , z<_i) and s1 c M(z1? , ẑ ) ,

and let z1? , zt take the value 0 on M(zlf , zt). Then z1? , Zi_x take
value 0 at all points of s2, and zt takes only values < 0 on M(z1? , zt_d but
the value O o n ^ Π s2.

Then Zι = 0 at all points of (the straight line segment) ,y2. Applying this for
/ = 0 (clearly true), etc., we find that s2 meets sλ in a line segment. As both have
their endpoints in M, s1 and s2 then coincide, i.e., ^ = j 2 , which leads to a
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contradiction as follows. Clearly tι\jt2 = 3M, and as the planes a(F^ and a(F2)
have sλ = s2 in common, they span an E\ This E3 contains 3M = tΛ U t2. As
N>4, M does not lie in that E\ and we find a covector z with constant values
on £ 3 and minimal value c on (z/)c c M, contradicting Corollary 3a. Hence
Lemma 10 is proved.

The union (j XJPM(Z) of the convex hulls of all top-sets is the convex enve-
lope dJf M c E^. The non-essential top-sets are equal to their convex hulls,
and are contained in M. The essential top-sets have convex hulls which are
convex parts of linear spaces EJ\ 2 < j < N — 1. These convex hulls together
with M have to fill homeomorphically d^FM of dimension N — 1 > 3. In case
all top-sets are ^-top-sets with / < 2, then M together with a finite number of
convex hulls of essential E2-toρ-sets is not enough to fill d^M. Hence there are
at least four different E2-top*-sets: F^φi and boundaries Lt = st U ti9 i =
1, ,4.

With Lemma 10 we find that on the Moebius band the arcs t19 , tA (in
dM\) cannot be completely disjoint. Hence we may assume tλ Π t2 Φ 0 in this
case.

Now suppose there does exist an EMop-set with / > 3. By the proof of
Lemma 7 it contains at least two essential E2-toρ*-sets Fi\Di and boundaries
Li=Si\J ti9 / = 1,2. Suppose tx Π t2 = 0. Then Lγ Π L2 = tx Π t2 is one point,
say T, and all the convex hulls of top-sets that contain T are certainly not
enough to fill dJf M. So there must be other essential E^-top-sets. If all of these
sets have / = 2, there must be many; if one has / > 3 it must carry two new
essential E2-top*-sets F*\ A with dFt = Lt = st U ^, i = 3, 4. So in all cases
we find Lίf i — 1, ,4, mutually different, and we may definitely assume

^ n / ^ 0.
We now study the case where the open set tλ Π t2 is nonempty. (See Fig. 5.)

Then tγ Π t2 is a segment which lies in the intersection of planes a(F^) Π tf^)
and hence on a line. At each end of the straight line segment tγ Π t2, at least
one of Lι and L2 continues inside M, and the other one of Lι and L2 continues
with tx or ί2 respectively since by Lemma 9 there is exactly one straight line
segment sγ available on Lx and one s2 available on L2 for that purpose. So we
have the situation on the Moebius band given in Fig. 5. M\(Lλ U L2) consists

Fig. 4
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of two components V and W with dW C Lλ\J L2 C E3. E3 is now the span E3

We next show
Lemma 11. W is completely contained in the 3-space a(P, Q,R,S) — E\

Proof. Suppose T e W, and T $ E3 c EN. Then some covector z, with con-

stant values in E3 and Γ, attains its minimal value c in the set (zf)c dW a M,

contradicting Corollary 3a.

Lemma 12. M Γ\ E3 is an E3-top*-set, and N = 4.
Proof. Suppose the covector z vanishes in E3 and W, and takes positive as

well as negative values on M, which is on V. The set of points in the closure
V, on which z takes its maximal (minimal) value on V, does not meet the
broken line PQRS, is not in the interior of M by Corollary 3a, and therefore
is not in the interior of V by tightness. Hence a positive value as well as a
negative value is taken on the remaining part of dV, a segment from P to S.
Suppose then that P, 7\, T2 and S are points in this order on that segment at
which z takes values say 0, —2, 2, 0 respectively (0, 2, —2, 0 can be taken
care of analogously). Thus z! near z and ε > 0 can be easily found such that:

On the straight line segment PQ: z! = e on the straight line segment RS:
z! = — e ; moreover z! < 0 in 7\; and z! > 0 in T2. See Fig. 7.

Moreover, it cannot be true that the part z! < 0 as well as the part z! > 0
of M are connected. Thus / is not tight, and we can conclude that the function
z takes on V only values < 0 (or > 0 ) . Therefore z — 0 is the equation of a
supporting hyperplane.

If N > 5, then substantiality implies that we can find two points in M, which
together with E3 do not lie in a hyperplane, and we can find a z as above for
which z — 0 separates these two points and therefore does not support a con-
tradiction. Consequently N < 4, and for N = 4, z = 0 is the equation of the
top-set M ί l P . Hence the Lemma is proved in view of our assumption N>4.

In the top set M Π E3 we have the convex sets JF\ and F2: F1 with boundary
dF1 = Lx = J1! U ?i consisting of straight line segments ^ = P β , t1 Πt2 = QR
and a possibly curved part RP F2 with boundary 3F2 = L2 = s2\Jt2 consisting
of straight line segments s2 — SR, tι Π t2 = i?β and a possibly curved part QS.
(See Fig. 8.)
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Fig. 8

By Lemmas 6 and 11, we obtain an open topological disc

d W i U F 2)\(F 1 U F2) C M ,

which has the same boundary as W and hence equals W C £ 3 . The set of all
convex hulls of all top sets of M, which contain the point S, together with M
is not enough to fill the 3-sphere dJf M homeomorphically. Therefore there
must be some essential top*-set not containing S and not contained in a(P, Q,
R,S). If this is an £3-top*-set, it will contain two essential E2-top*-sets, and
at least one of them is not in the 3-ρlane a(P, Q,R,S).

Hence we obtain in any case an essential E2-toρ*-set not containing S and
not lying in a(P, Q,R,S). Call this one F3\D3, and let dF3 = L3 = s3Ut3. Then
S $ t3, t3 ςzί t1 U t2. As t3 Π tλ Φ 0, we find on the boundary dM that t3 Π tx must
contain the whole segment PR of tl9 which lies in the intersection of the two
different 2-ρlanes aiFJ and a(F2) and hence is a straight line segment. (See
Fig. 6.) With tγ and t3 we now find a broken line QPRT analogous to the
broken line PQRS with respect to tγ and t2, and in a(Q, P, R, T) we find an E3-
top-set analogous to the one in a(PQRS). The convex hulls of all top sets,
which contain P, together with M are not enough to fill the 3-sphere d^M.
Hence there must be some essential top set not containing P. If this is an E3-
top-set, it contains two essential E2-top-sets one of which is different from
F3\D3. If there are only Zs2-top*-sets, there must be many to fill d^FM and we
again choose one different from F3\D3.

Call the new £2-toρ*-set F4\D4 with 3F4 = L4 = s4 U t,. Then as above we
conclude that t4 must contain the segment SQ of t2 and therefore also that the
segment is straight. Moreover, Lx and L2 are triangle boundaries, and W is the
union of the plane 2-simplices QPS and PSR. From the intersection properties
between ti and tό for /, / = 1, , 4 and the fact that if they would overlap too
much they would lie in the same 2-plane, we now have the mutual situation on
dM, which is divided in 5 segments, as in Fig. 9. The symbol tt stands in the
middle of the double segment tt which covers 2/5 of the circle for / = 1, ,
4. Finally we consider all convex hulls of top sets which contain R and alone
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do not fill d^M sufficiently. So there must be either some other E3-toρ-set
which contains two essential E2-toρ*-sets one of which is not F4\Z)4 and could
be called Fδ\ί>δ, or some new £2-top*-set to be called Fδ\Dδ. In either case
we find the missing link t5 covering the interval PTS of dM.

By symmetry each of the five ^-top-sets now obtained is of the kind describ-
ed in a(P, Q,R,S). Besides the 2-simplices QPS and PSR which we had
already, we first have the new 2-simρlices PQT and QTR, and finally have the
2-simρlex RTS to complete the Moebius band. Hence our theorem is proved.

R
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