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A GENERALIZATION OF THE ISOPERIMETRIC
INEQUALITY

THOMAS F. BANCHOFF & WILLIAM F. POHL

1. For a simple closed plane curve of length L bounding an area A the
classical isoperimetric inequality asserts that

L — 474 > 0,

with equality holding only for a circle. We show here that this inequality re-
mains true for non-simple closed curves where in place of A we take the sum
of the areas into which the curve divides the plane, each weighted with the
square of the winding number, i.e.,

L2—47rfw2dA20,

E2

where, for p e E?, w(p) is the winding number of p with respect to the curve.
Equality holds if and only if the curve is a circle, or a circle traversed several
times or several coincident circles each traversed in the same direction any num-
ber of times. Note that this implies that

L — 4z flw[PdA >0
E?

for any 0 < p < 2 and that 2 is here the best possible power.

This may all be generalized to arbitrary dimension and codimension. For the
case of closed space curves let G denote the space of lines in E?® (parallel lines
are not identified) and let dG denote its invariant measure [1], [7]. Then

L2—4f22dG20,
G

where A() denotes the linking number of / ¢ G with the curve. Equality holds
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here only for one or several coincident circles, as before. For closed oriented
surfaces M in E* we obtain

f rdA,dA, — 12z fwde >0,
ES

MxM

where, for (x,y) e M X M, r is the length of the chord joining x and y, dA4, and
dA, denote the elements of area of M at x and y, respectively, and w(p), p € E®,
denotes the winding number of the surface with respect to p. Equality holds only
for one or several coincident spheres with coincident orientations. Note that
the left-hand integral is essentially the gravitational self-potential of M consid-
ered as a thin homogeneous shell. The right-hand integral is just the volume in
case M is connected and embedded.

The general result is as follows. Let M be a compact oriented manifold of
dimension m, and f: M — E™ be an immersion of class C*. For (x,y)e M x M
let r(x,y) denote the chord length from f(x) to f(y), and let dV,, dV, denote
the volume elements on M at x and y respectively. Let H,_,,_, , denote the
Grassmann manifold of (n — m — 1)-planes in E™ (parallel planes are not
identified), and let |dH,_,,_, | denote its invariant measure [1], [2], [6], [7].
For he H,_y_;, let +2 denote the linking number of A with f.
~ Theorem 1.

f r‘"‘“dVlde - (1 + m)Eme,n f 2 |dHn-7"--1,nl = 0 ’

MxM Hp-m-1,n

where X, denotes the surface volume of the unit m-sphere and K,, ,, is a con-

stant which depends only on m and n. Equality holds only for one or several

coincident spheres with coincident orientations, or (n = 1) one or several co-

incident circles all traversed in the same direction each a number of times.
Let us take the second integral in this inequality and write

AM) = K, . f Z|dH oyl -

Hp-m-1,n

Then /(M) may be thought of, in the case of a space curve, as the “area”
bounded by the curve, or in general as the “volume” bounded by a submani-
fold of higher codimension of a euclidean space. There are, of course, several
candidates for such a “volume”, e.g., the surface volume of the submanifold
of dimension m + 1 of least surface volume spanning f(M), or the volume of
the convex hull, or the surface volume of the convex envelope. &/ (M), how-
ever, has the following simple properties:

1) /(M) is just the volume bounded by f(M) if f is an embedding into a
linear space of dimension m 4 1;



ISOPERIMETRIC INEQUALITY 177

2) /(M) is stable under raising of the codimension, i.e., if M C E» C EV,
then .7 (M) in the sense of submanifolds of EV is the same as /(M) in the
sense of submanifolds of E”;

3) (M) is finite and is given by an integral over M X M (cf. Theorem 4
and the Remark following) ;

4) /(M) has the “reproductive” property in the sense of Chern [3], i.c.,
forqg >n—-m— 1, H,e H,,, we have

Iona f LM N Hy|dH, .| = 4M) ,

Hgyn

where I,, , , is a constant depending only on m, n and q (cf. Theorem 3);

5) /(M) satisfies an “isoperimetric”’ inequality (Theorem 1 above).

This paper is organized as follows. In § 2 we prove a theorem on the con-
vergence of certain sequences of integrals which we shall use in the sequel; in
§ 3 we establish properties 1)-4) above; the proof of Theorem 1 is given in § 4;
and in § 5 we prove some additional inequalities using the same methods. Some
of these seem to be new even for convex surfaces. §§ 3 and 4 are based on [6];
however, we give explicit references, so that the present paper may be read
without first reading [6], the reader looking up the references as needed. Theo-~
rem 3 was proved in a special case in [6, Formula 1]. Our proof here is con-
siderably simpler.

Theorem 1 for the case of plane curves is much simpler to prove than the
general result and is suitable for presentation in an elementary course. To ex-
tract this simpler proof one uses Theorem 3 in the special case g = m =1,
n = 2, where it is quite easy to prove; Theorem 4 which is easy to prove in
this case, since in the plane dI is essentially the invariant measure for lines;
Proposition 5, which is given here a separate simple proof for curves; the local
analysis proceeding Proposition 5, which is also done separately for curves;
and, finally, the proof of Theorem 1 as it stands in § 4. § 2 is not needed, and
a simpler account of S(M) is given in [5].

Our proof of Theorem 1 generalizes one given for plane convex curves by
Arne Pleijel [4]. We wish to thank H.Guggenheimer for bringing the work of
Pleijel to our attention. We also wish to thank Mario Miranda for help with the
proof of Proposition 2.

2. In this section we establish convergence of certain limits of integrals in
case m > 1. Let M™ = M denote a compact differentiable manifold of dimen-
sion m, and let f,: M —E", k=1,2, - .., denote a sequence of C*' immersions
which converge uniformly to an immersion f such that the first derivatives of
fx converge uniformly to the first derivatives of f. Let dV, and dV denote the
volume elements of f; and f respectively. Let r,,7,: M X M — M denote the
projection mappings into the first and second factors, respectively, and let
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AV, = n*dVy, AV, = z*dV, i = 1,2, ry(x,y) = [fx() — fi(x)| and r(x,y)
= [f®) — fX)].

Proposition 2. Let {@,} denote a sequence of real-valued functions on
M X M such that |0, < 1 and

lim @, = @ a.e..
Then

lim [ Gur,mravave, = [ ormvavay,,

MxM MxXM

and all these integrals are absolutely convergent.

Proof. Let P, and P, be two m-planes in R", and define the angle § =
/ (P, P,) between them as follows. The metric in R™ induces a metric in A™R"
which with suitable normalization is given by the formula e, A\ - .- A e,-f; A
«o N fn =detle;-f;1. If e, - - -, e, is an orthonormal set of vectors spanning
P, and f,, - - -, f, an orthonormal set of vectors spanning P,, then we define §
by cos@ =|e, N\ -+ Ney-fi \--+ Nfn|and 0 < 6 < /2. We may interpret
this as follows. ¢, A .-+ A e, and f, A --- A f, have unit norm and hence
represent points on the unit sphere in A™R". If these points are joined with
the origin by lines, then @ is the lesser positive angle between these lines and
can be measured as a distance on the unit sphere in A™R™,

We assert that there is a real number ¢ > 0 such that for any pair of m-planes
P, and P, in E™ there exists an m-plane Q such that /(P,, Q) < n/2 — ¢ and
/(P,, Q) < /2 —e. To show this it suffices to consider only m-planes through
the origin, which form a compact Grassmann manifold G,, ,, since § is un-
changed by parallel translation of P, and P,. Suppose the assertion is false. Then
there exist sequences of m-planes {P,,}, {P,,} such that for any n-plane Q either
L(Py, Q) > /2 —1/n or £(P,,, Q) > /2 — 1/n. We may extract sub-
sequences from {P,,} and {P,,} which converge to P, and P, respectively, and
these have the property that for any m-plane Q, either /(P,..,Q) = n/2 or
£ (P,., Q) = /2. But this is impossible since G,, , is an irreducible algebraic
variety, and the assertion is proven.

For (x,2) e M XM let di(x,z), d(x,z) denote the distance between x and z
in the sense of the Riemannian metric induced on M by f; and f, respectively,
and T,,, T, the tangent m-planes at x to f; and f respectively. Since f is dif-
ferentiable of class C' and M is compact, we may find a § > O such that if
d(x,z) <4, then /(T,,T,) < /2. By the uniform convergence of the deriva-
tives we may find a positive integer K such that if £ > K then /(T ,;,T,) < /4
for all z, so that if d(x,z) < § then

Z(Tzk’ TJ:) S L(Tzlw Tz) ‘|' Z(TuTz) < 35/4 .
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On M x M let us take the metric D((x,, y,), (x;, ¥,)) = (d(x,, x,)* +d(y,, y,)H)"2.
Let us now take a partition of unity }; ¢, = 1 on M X M, whose supports are
contained in open sets Uy, - - -, Uy of diameter <§ is the metric D, and for
each i choose a point (x;,y;) € U; and an m-plane Q; such that

(T, 0) < 7/2—e and (T, 0) < /2 —«.
If (x,y) e U;, then
A(Q’L, Tylc) S L(Q,,’ T'yz) + L(Ty,;, Tyk) S 7[/2 - 6/4 .

Let E = sec (n/2 — ¢/4). It follows that we can represent f(z,(U,)) and
fo(7,(U,)) non-parametrically in E™ with Q, as base plane; i.e., if we take
Cartesian coordinates x,, - - -, x,, in E™ such that Q, is defined by x,,, = -

= x, = 0, then we may represent f,(x,(U,)) and f(z,(U,)) as

Xy = flo (X, 25 X) Xmy1 = f:’,i n(xy, X,

xnzfﬁ(xu"'axm), xn:f:(xla""xm)’

respectively, and similarly for f(rx,(U,)) and f(z,(U,)).

Let g,,9,: O; X Q; — Q; denote the projections into the first and second
factor, respectively, and let y; = x;0q,, 2, = x; 0 q,. Let p: E® — Q; denote
orthogonal projection and let

Cr=@ofrom) X Pofronm): Ui—Q; X Q; .
Let y; denote the characteristic function of C(U;), so that

13 peck(Ui) s
0, peQ; X Q; — Cy(Uy .

Let U, = U, C,(U,), and let y denote its characteristic function. We can choose
K’ so large that if £ > K’ then the Euclidean distance between f(x) and f,(x) is
less than §/2 for all x. We henceforth assume k& > K’. Then the diameter of U;
is less than 44, and

1:(p) = {

[oloulrmriavav,,
U;

- f 1elpy | B! im0 Cxt sec £ (Ty, @) sec / (T, 0y,
QiXQq
.. .dymdzl. -.dz, ,
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where T(p) = Ty, 9 = mC'(p), and T, (p) = T, s = m,C'(p). Now for p
a variable point in Q; X Q;

xxlos | D ri™ ] o Cit sec £ (T, Q) sec £ (T, Q)

m (-m+1)/2
<15 05— 2) :

b

) (-m+1)/2

f X(i (yj - zj)z Ezdyl' : 'dymdzl' : 'dzm S 2m—1(45)m+1E2 )
i=1

QixQi

where X, _, is the surface volume of the unit (m — 1)-sphere, as is shown by a
standard computation using polar coordinates. Thus by the Lebesgue bounded
convergence theorem

lim f 0Dy AV dV , = f o Dr-m AV dv, |
73 U;

and all these integrals are absolutely convergent. Hence

1!1.1}3 f Oir ™AV 1 dV 4, = %Lm” ; I¢id)krk—m+ldelde2
U;

MXM

=3 [pormravav,= [ or=vavav,,
3
U

MXM

which establishes Proposition 2.

3. Letf: M™ — E™ be an immersion of a compact oriented differentiable
manifold M™. Let H,_,,_, , denote the Grassmann manifold of all (unoriented)
(n — m — 1)-planes in E™ (it being understood that parallel planes are not
identified), and |dH,,_,,_,,,| the Euclidean invariant measure on H,_,,_, , (this
is worked out explicitly in [6]). Consider the quantity

2AM™) =K, f ar); M

Hp-m-1,n

where + A(h) = =+ A(h, M™) denotes the linking number of he H,_,,_, , With
Mm, Km.n = km,m+2km,m+3' N 'km,m and

rG—mjf2)

In particular K,, ,,,, = 1, so that &/(M™) generalizes the volume bounded by
a simple closed hypersurface. Furthermore, as is proved in [6, pp. 1341-1342]
o/ (M™) is stable under raising of the codimension, that is, if E" is regarded
as an n-plane in E¥ so that f(M™) C E® C E¥, then

km,j =T
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Kny [ FldHyoxl=Knn [ FldHo ol

Hy-m-1,N Hp—m-1,n

The proof given in [6] has a slight error, however, which affects the constant,
so we give a corrected version here.

Let H denote a family of (n — m)-planes in E**! and let h = H N E® C E™*!.
To each (n — m)-plane assign an orthonormal frame Xb,--.b,,, such that
Xeh, b, --,b, ,_,span h, b,_,, in H perpendicular to 4, and b,,_,, 5, - - -,
b,,, | hin E*. Let Xa,- - -a,,, be another family of frames such that a; = b;,
1<i<n—m-—1,a,=b,n—m+2<a<n+ 1, (we use these ranges
of i, « until further notice), a,_, is along the orthogonal projection of b,_,,
into E*, a,_r,,, is the unit normal to E* in E"*!, so that a,_,,,, iS constant.
We may write

by m=0c08SQa,_n + SINQaA,_pm 1,
byomer = —SINQay_p + COSQAy_p -

If we let dX.a; = n;, dX-b; = p;, da;-a; = my, db;-b; = p;y, then we have

Prn-mi1 = —SINQT,_p
On-m,a = COSQPTy_m 4 »
Oin-mer = —SMOT; 4 _m

On-m,n-ms1 — dg[) >

so that

|dHn—m,n+1|

= ‘Pn-m+1 VANEREIVAN On+1 AN n Pia AN l—[ On-m,a AN l_[ pi,n—m+1/\Pn—m,n—m+l
= |sin""" ¢ cos™ godgo A dzm AN dHn_m-l,nl s

where d2,, = []| 7u_m.. i the volume element of the unit m-sphere X,
perpendicular to £ in E*. Hence by Fubini’s theorem

12 |dHn—m,n+ll

Hp-—m,n+1

/2
:f [sin®~™ ¢ cos™ ¢| dp de'm f Z\dH,_p_y,0] -
0 Im

Hp-m-1,n

Now
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/2
f [sin”~™ ¢ cos™ ¢| dp dem
i Zm

1 TG+ DG —m+ 1) 2z
2 r'Go + 2) FGon £ 1) ~ Fmnn

This establishes the assertion for N = n 4+ 1, and the general result follows by
induction on N.

In considering «/(M™) the case m = 0 is special and requires an additional
assumption. A compact oriented O-manifold is nothing more than a finite set of
points, to each of which is assigned a multiplicity + 1. We shall require that
the sum of these multiplicities be zero. Thus the simplest case under consider-
ation is that of a pair of points with opposite multiplicities so that here o7 (M°®)
is essentially the measure of the hyperplanes that meet the line segment join-
ing the two points, which by the generalized Crofton-Cauchy formula is essen-
tially the distance between the two points.

More generally, suppose M’ consists of points x,, - - -, x, with multiplicities
iy, - -+, I, Orient E™ and choose an oriented hyperplane #,; then orient each
hyperplane so that it makes a positive acute angle with 4,. Of course, this
orientation is indeterminate for hyperplanes perpendicular to 4,, but these form
a set of measure zero and so we can neglect them. Each oriented hyperplane
divides E™ into two half-spaces, one of which is canonically designated the
left-hand half-space A*, and the other the right-hand half-space 4~. It is now
readily seen that

AhM) = > iy=— 3N i, 1<i<gq,

f(zi)en+t f(zi)€h—

so that

f(xj)en—

[ #lH == [ = i 3 hldH

Hp-1,n Hp-1,n

=—%ii; [ FyldH, ol
e Hn—l,n
where F;(h) = 1 if f(x,) e h* and f(x;) € h~, and F,;(h) = O otherwise. But by
the generalized Crofton-Cauchy formula,

(Fyi + Fip) |dH,_y,0| = dpir(x45 X5)
Hp-1,n
where d,_, = K}, equals the volume of the disc bounded by a unit sphere of
dimension n — 2, and r(x;, x;) is the distance between f(x;,) and f(x;). Conse-
quently,
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AM) =Ko [ F|dH, ol = —4 T o 2)id, -
i,J

Hp-1,n

Theorem 3. o/ is reproductive in the sense of Chern [3], i.e., if
g>n—m—1, then

Lo ma f SM™ 0 Hy |dH, .| = 2(M™)

Hg,n
where
l = Km,'n Zq-nwn' ) ‘Zozn—q—F ) '20 ,
o K(I—n+m,q Zn * '20
2pttnre X o .

and ¥; = ———___ is the surface volume of the unit j-sphere. In parti-

rGg+n/2)
cular,

SM™) = —Hpnnm Z .r(xi,xj)iii, |dH ,_p nl

Hp—-msn oy

where x,, X,, - - - are the points of intersection of M™ with a moving (n — m)-

plane H,_,,, r(x;, x;) is the Euclidean distance from x; to x;, and i, is the inter-
section number of H,_,, (with some orientation) and M™ at x;.

Proof. Let us observe first that if A, _,_, is a linear space of dimension
n — m — 1 and A, is a linear space of dimension g containing 4,,_,,_,, then

(31) Z(Mm9hn—m—1) = l(Mm N hqahn—m—l) s

where the first linking number is in the sense of submanifolds of E* and the
second in the sense of submanifolds of 4,.

Let us call this configuration (A, A,_p_1)s Ay_m_, C By, a banner. The total-
ity of banners forms a differentiable manifold B, and has a measure which is
invariant under the action of the group of rigid motions of E*. This measure
is constructed, according to the method of Chern [2], as follows. Let us assign
to each banner (locally) a frame Xe,.---e,sothat Xeh,_,_, e, -, €, n_,
are parallel to h,_,,_,, and e,_,, - - -, e, are parallel to h,. Let dX-e; = w;,
de;-e; = w;;. The measure is then given by

|dB| =|wgem A\ -+ No, N [ o AN I oul.
1<i<n-m-1 n-m<k<Lq
n-m<j<n g+1<i<n
To prove the theorem we integrate *(M™, h,,_,,_,) |dB| in two ways and equate
the results.
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Let us choose a fixed frame 0i,- - -7, in E*, and let G;_,,m ,1,m+1 denote the
Grassmann manifold of (g — n + m + 1)-spaces through O lying in the span
of i,_p,--,i,. To each (n — m — 1)-plane h,_,,_, in E™ assign locally a
frame Xa,--.a, such that Xeh,_,_,, and a,, ---,a,_,_, are parallel to
hy_m_,. For each h,_,_, let G(h,_,_,) denote the rigid motion which takes
0i,---i, to Xa,---a,. Define a map H: H,_p_,» X Gy_nimsr,ms1 — B by
H(hn—m-l’ gq-n+m+l) = (Span (Bnm_1s G(gq-n+m+1))’hn—m—1)- Takmg frames
Xe,- - -e, as before so that e, = a;, i < n — m — 1, we find that

Opm A\ oo N oy N\ ]—[ Wi = dHn—m—l,n
1<i<n-m-1
n-m<j<n

and [ g =dGq_nims1,m+i + terms involving the differentialson H,,_,_,, 4,
so that
H* 'dBI = |dHn—m-1,n AN dGq—n+'m.+l,7n+1 5

and, by Fubini’s theorem,
(.2 [FM by )|dBI = gung [ M By ) [dH o

B Hp-m-1,n
where g, ,,, is the total volume of Gy_,,m,1,m.1- 1O evaluate this we observe
that G,,, = 0,/0, X O,_,, where O; denotes the orthogonal group in j vari-

ables, and O,/0;_, = §’/', the unit sphere of dimension j — 1, so that the
volume 0; of O; is given by

@j == 2,}'—10]—1 = 21_121_2‘ . '20 )

(3.3) mmg = m 2 .
¢ Z'q-n+m' : 'Zozn-q—l' * '20

Now let us parametrize the banners in another way. To each A, C E” let us
associate a frame Yb,. - -b, so that Y e h,, and by, - - -, b, are parallel to A,.
Let H,_,,_,,, denote the Grassmann manifold of linear spaces of dimension
n — m — 1 contained in the linear space through O spanned by i;- - -i,, and
let J(h,) denote the rigid motion of E* which takes Oi- - -i, to Yb,-- -b,.
Definea map K: Hy , X Hy_py_1,q — B by K(hg, hyy_ 1) = (hgs J(he)(hy_m 1)),
and take frames Xe,- - -e, as before. Then

dHtI,n:w<1+1/\"'/\wn/\ l—[ @ij 5
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Onm N ANog A T oy

1<i<n—-m—1
n-m<j<q

=dH,_,_,,, + terms involving the differentials on H,,,.
Hence

K*|dB| = |dH,,n \ AHp_m 1,4 5

and by Fubini’s theorem and (3.1) we find that

f 2(M™ by ) |dB| = f ZM™ 01 hy, hy_p_) |dB]
B

— f K;om o (M™ () |dH, | ,

Hq,n

which, together with (3.2) and (3.3), proves the theorem.

Remark. By a similar argument, together with the generalized Crofton-
Cauchy formula, one may show that the m-dimensional surface volume V(M™)
of M™ is reproductive, i.e.,

(3.4) Prma f V(M™ 0 h9) |dH, .| = V(M) ,

Hg,n

mzr—lkm—l,mﬂ' t km—l,n
rzm—lkr—l,r+2' * 'kr—l,qgm—l,n,q
eralizes the generalized Crofton-Cauchy formula.

Our proof of the isoperimetric inequality depends on another formula for
L(M™). Let G C M™ x M™ denote the set of all (x,y) such that f(x) = (),
and note that M™ x M™ — G is a set of measure zero. Let I(x, y) denote the
line joining f(x) and f(y) oriented from x to y, so that I: G — H, ,, the Grass-
mann manifold of oriented lines in E”, and let ¢,(x, y) denote the unit vector
oriented along I(x,y). Let X(x,y) = f(x), o, = dX-e, and dI = dw,. It was
shown in [6] that dI comes from an invariant two-form on H, ,, and that

where py, n,q = and r =m — n 4 q. This gen-

3.5 dn™ = m!(—1)mm-b/2r=m cos ¢ sin g, sin g, dV, N\ dV, ,

where the dV; and r are as in § 2 above, and ¢;, = are certain angles which we
shall discuss below.
Theorem 4. o/ (M™) is finite and

(.6) A(Mmy = (D

s, r(dh™ .

MmxMm™
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Remark. The finiteness does not seem to have an altogether trivial proof.
For it is easy to construct a C~ closed immersed space curve which has arbi-
trarily high linking numbers with lines. However, it may be shown that any
C'-immersed hypersurface has bounded winding number with points and any
C*-immersed space curve with nowhere vanishing curvature has bounded link-
ing number with lines.

Proof. In case f is an embedding this follows from [6, (2.16)] but for the
determination of the constant. It remains for us here to show that the proof of
(2.16) of [6] is valid in the present more general case and to determine the
constant.

In [6, pp. 1329-1330] a certain subset G, C G,_,_; ,_, and a differential
form F*dH,,_,, , on (M™ X M™ — D) X G, are defined, where D is the diagonal.
(What we call M™ here is called P there and is there of dimension m + 1.) The
definition of F*dH,_., , is valid in the present case as long as we restrict our-
selves to GXG,. Now F*dH,_,, , is the sum of terms of the form

@, N\ oo N Oy A (@, N\ - N @y,) €OS 0 €08 0,dG 1015
2<k < - <kp<n,

where ¢, and ¢, are certain angles. (Read “}” for “[]” on lines 14 and 16 of
p. 1330 of [6].) Now following the argument used to establish (2.3) and (2.4)
of [6] we find that

\FF*dH,_,, | < (" - l)r""“dVlde|dGn_m_1,,L_1[ .
m

But this is integrable on G X G, by Fubini’s theorem and Proposition 2 above.
Hence the integrations over the fibre used to establish (2.16) of [6] are valid
and lead to finite quantities, and the rest is valid without change.

To determine the sign and constant in (3.6) we observe that both o/ (M™)

and [6, p. 1341] f r(dI)™ are stable under raising of the codimension. Hence

the sign and constant are stable and can be found by checking the formula for
a sphere S™ C E™*!. The sign is checked using (3.5) and the facts that cos ¢
= —1, and sin ¢; > O for the sphere. To evaluate the constant now, we use
the fact that + (m!)~'(d)™ is essentially the invariant measure for oriented lines
in E™*'; and for each oriented line L meeting S™ there is a unique ordered pair
of points (x,y) e S™ X S™ such that I(x,y) = L, so that the integration can be
made on H,,,,. To each oriented line in E™*' we associate a frame
Xe,- - -e,,, such that e, is directed along the line and X is a point on the line.
LetdX.e; = w;, de;-e; = w;y. Then (m!)'dD™ = £w, \ - - NOp i Aoy A\
«++ A @ym,.. If the direction of the line is held fixed, w, A\ -+ /\ @y, be-
comes the volume element on a perpendicular m-plane, so that
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rwz/\ “'/\(0m+1/\(012/\ AR /\wlm+1

LNSM+0

- f LEwg A - A Oymay = Snd (™) ,

which completes the proof of the theorem.

4. 1In this section we prove Theorem 1. Basic to the proof is an integral
formula obtained by integration over a certain ‘“secant space”. We begin by
defining this space.

Let M™ = M be a differentiable manifold of class C* and dimension m. Let
S(M) denote the two-fold cartesian product of M with the diagonal replaced by
its bundle of oriented normal directions. This space, which is fully explained
in [6], is a differentiable manifold, with boundary, of class C' and has the
universal property that if f: M™ — E™ is an embedding, then there is an induced
smooth map L,: S(M) — H,,, which assigns to each (x,y)eM X M, x + y,
the line directed from f(x) to f(¥), and to the boundary points of S(M) the
corresponding tangent lines of M. Let n: S(M) - M X M be the canonical
projection map, and n;: M X M — M be the projection into the i-th factor,
i=1,2.

Let us now assume that M is compact and oriented with 1 < m < n. For
z e S(M) let e,(z) denote the unit vector in E™ directed along L/(z). Let X(z) =
frw(z) and w, = dX - e,, which is a differential 1-form on S(M). Denote dw, by
dl, and the (absolute) euclidean distance from fr,7(z) to fr,z(z) by r(z). Con-
sider the differential form rw, A\ (d)™. The orientation of M induces an orienta-
tionon M X M and hence on S(M). By applying Stokes’ theorem we find that

f ro, A (dD)mt = f dr A o, A (dD™ + f rdn™ .

T(M) S(M) S (M)

Now the left-hand term is zero, since r = 0 on T(M). Also, S(M) and M X M
differ by sets of measure zero. Hence we may write

4.1) _ f dr A o, A dD)m=t = f Hdnm .

MxM MxM

Let us now give a local analysis of these differential forms. r(d)™ has been
analyzed in [6, pp. 1324-1326], and our analysis of the other follows the same
procedure and uses the same frames. It is more convenient to give a separate
analysis of the case m = 1. Let (x,y) e M X M be such that f(x) # f(y) and
that the tangent spaces to f at x and y are in general position with respect to
L,(x,y) and are not perpendicular to L(x,y). (All other points of S(M) form
a set of measure zero which we ignore.) We now drop the requirement that f
be an embedding.
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In case m =1, let a,, b, denote the unit tangent vectors to f at x and y respec-
tively such that e, makes positive acute angles g,, g, with either, and let X =
f(x), Y = f(y). Then dX = r,a,, dY = p,b,, and v, = dX - e, = cos g, 7,. Now
(Y — X) = re,, and dr = d(re,)-e,, so that

dr = cosg,p, — CcOS 0, T, , dr N\ w, = (cos g, cos a,)p, \ T, .

We set cosy = 1 if g, and b, are both positively directed or both negatively
directed tangent vectors to our oriented curve, and cos v = —1 if one of a,, b,
is positively directed and the other negatively directed. From this we get

4.2 dr N\ w, = —(cos v cos g, cos a,)ds, N ds, ,

where ds,, ds, denote the positively directed elements of arc at x and y respec-
tively. By [6] we can also write

(4.3) rdl = —(cos 7 sin g, sin g¢,)ds; N\ ds, ,

where cos 7 is the angle between the 2-planes spanned by e,a, and eb, with
orientations e,t, and e t,, where ¢, and ¢, are the positively directed unit tangent
vectors to f at x and y, respectively.

If m > 1, let T, denote the (oriented) tangent space to f at x, and S, the linear
space of dimension m + 1 spanned by T, and L/(x,y) with orientation e,T,.
Let O, be the 2-plane spanned by e, and its orthogonal projection on T,.
Choose frames Xa,---a, sothata, | T,in S}, a,in Q,, and a;, - - -, a,,,in T,
and by reversing a, or a, if necessary we arrange that g,- - -a,,,, agrees with the
orientation e,T,, and a,- - -a,,,, agrees with the orientation of T, and that e,
and a, make a positive acute angle g,. Let dX.a; = x;. Then

4.4) o, =dX.e, =cosa, 7, .

Let T, denote the oriented tangent space to f at y, S, the (m + 1)-plane spanned
by T, and L,(x, y) with orientation e,T,, and Q, the 2-plane containing L ,(x, ¥)
and its orthogonal projection on T,. Let us take another family of frames
Yb,---b,suchthat Y = f(y), b, | T,in S,, b, in Q,, and b,, - - -, b, ,, in T,
and by reversing b, or b, if necessary we arrange that b,- - - b,, ., agrees with
the orientation e,T,, and b,- - - b,, ., agrees with the orientation of T,, and that
e, and b, make a positive acute angle g,. Let dY -b; = p;. Then

dr = d(re)-e, = cos g, p, — COS 0, 0, ,
whence
4.5) dr N\ @, = —(cos g, CoS a)m, N\ p, .

Now from the computation in [6, pp. 1324-1326] it follows that
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(dl)m_l = (m _ 1) !(_1)(m—1)(m—2)/2r—m+1 COS v oy ANERE

4.6
“.6) N Omiar NTg /N oo N Ty mod p,, 7, ,

where cosy = a; A\ +++ A ap,-by A --- A by,,. From (4.5) and (4.6) we
obtain

4.7 dr \ o, N\ (dD)™!
@.7) = (m — 1) (=1)mm-b2p=m+l cog y cos g, cOs g, dV, N\ dV, ,

where dV,, dV, denote the elements of volume on M at x, y, respectively. Note
that (4.7) agrees with (4.2), so that we need not further distinguish the case
m = 1, except when we interpret v. Let us recall [6] that

(4.8) r(d)™ = m!(—1)mm-b/2p=m+1 cog ¢ sin g, sin 6,dV, A dV, ,

where z is the angle between the oriented planes S; and S,.
Proposition 5. Let f: M™ — E™ be an immersion of class C*. Then

— A (M™) = fr'm”COSTSiI‘lGlSiIla‘delde
MxM

1 -
- r-™*!cos y cos g, cos a,dV,dV, .

m
MxM
Proof. For m = 1 the proof is simple. On S(M) we consider the form
dX .- (Y — X). Where ¢, is defined, i.e., for (x,y) e M X M such that f(x) # f(),
dX-(Y — X) = rw,. Hence by (4.1) we obtain

— fdr/\wlz frdl.

S(M) S(HM)

The second equality follows from this, together with (4.7) and (4.8), while the
first follows from Theorem 4 and (4.8).

For general m the first equality follows also from Theorem 4 and (4.8); the
second from (4.1), (4.7) and (4.8) provided that f is an embedding. If f is not
an embedding, we consider E™ as contained in E¥, where N > 2n 4 2. By the
Thom transversality theorem we can find a sequence of embeddings f;: M — E¥
which converge to f uniformly, and whose first derivatives also converge uni-
formly to those of f. Since the second equality holds for f, it holds for f by
Proposition 2.

We come now to the proof of Theorem 1. From the elementary identity

2 sin’® }(¢;, — a,) = 1 — cos g, cos g, — sin g, sin o,
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and Proposition 5, the convergence of the integrals being guaranteed by Propo-
sition 2, we obtain v

rm12 sin? (o, — a)dV,dV,

MxM

+ f r-m+1(1 + cos 7) sin g, sin a,dV,dV,

MxM

+ r~™*(1 — cos v) cos g, cos ¢, dV ,dV,

MxM

4.9)
= [ rmvav,av, + f r~™*! cos 7 sin g, sin o, dV,dV,

MxM MXM

— f r~™*!cos y cos g, cos a,dV,dV,
MxM

- f rmdv, AV, — (1 + m)S o (M) |

MXM

Now the expression (4.9) is nonnegative, since ¢, and ¢, are acute and positive
almost everywhere. Hence we have

f rmAV AV, — (1 + m) 3, (M) > 0 .

MxM

Equality holds if and only if ¢, = ¢,, = #, and v = 0. This holds for a sphere,
and in fact for several coincident spheres with coincident orientations or, in
case m = 1, for one or several coincident circles each gone around in the same
direction any number of times. Suppose it holds for f: M — E™. Then let pe M
and let T, denote the tangent m-plane to f at p. Consider all m-spheres in E*
tangent to T', at f(p). Through any point of E* — T, there passes a unique such
sphere and hence their tangent spaces form a field of m-planes on E* — T,
The conditions ¢, = a,, 7 = &, v = 0 imply that f(M) N E* — T, is an integral
submanifold of this field of m-planes. Now no component of M can be mapped
into T, by f, for then this component would not be immersed. Hence each
component of M has a point which is mapped into E* — T',,. By the uniqueness
of integral submanifolds, then, each component of M is mapped onto a sphere
through f(p) tangent to T, at p. But p € M is arbitrary. Hence f(M) is a single
sphere. The condition r = = implies that the orientations of coincident branches
coincide, and the theorem is proven.

5. In this section we use the methods of the preceeding section to prove
some additional similar inequalities.

Replacing rw, A\ (d)™* by riw, N\ (dD™*, g > 1, in the proof of Proposition
5, we obtain
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—q(m — 1)! f r~™*2 cos vy cos g, cos a,dV.,dV,
MxM

=m! f r~™*¢ cos ¢ sin g, sin g,dV ,dV,
MxM
— (___1)m(m+1)/2 J‘rq(dl)m .
MxM

Hence

2r-™*esin? }(o, — a,)dV,dV,

MxM

+ f r~™*¢(1 4 cos ) sin g, sin ¢,dV ,dV,

MXM

+ f r~-™*4(1 — cos v) cos g, cos a,dV dV,
MxM
= f r-mrady.dv, + f r~™*4 cos 7 sin g, sin ¢,dV ,dV,
MxM MxM

— f r~™*2 cos y cos g, €08 g, dV,dV, ,
MxM

so that

[ rmavay, + (—pmeeor A4 [ pane >0,
m!q

MxM MXM

with equality holding for one or several coincident spheres with coincident
orientations, or (m = 1) for one or several coincident circles each traversed a
number of times in the same direction. For convex hypersurfaces, i.e., for
n = m + 1, the last integral is a familiar object. In fact forn =m + 1

1‘ 1 f r'I(tfu) ‘ f Z rﬂ(xi’ xj)iiijdHl,m+1 ,
m!
MXM

Hi,m+1

where for each line /e H, ,,,, X; are the points of intersection of I and f(M),
and i, is the intersection number of [ with f(M) at x;. For convex hypersurfaces
we have

=2 f rqul,m+1 s

Hi,m+1

L frar

and therefore
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f r-mrady.dv, — M f r'dd, ., > 0.
q

MxM Hi,m+1

Form = 2, g = 2 we get

AT — 4 frdem >0,

Hy,g

where A is the area of the surface. By a formula of Herglotz [1, vol. 2, p. 77]
we have

v — % f rdH, ,

Hy,3

and therefore, for m = 2, g = 4,

f rdA,dA, — 18V > 0,

MXM

where V' denotes the volume bounded by the surface. Thesejare just samples of
the various inequalities which can be obtained by these methods, and of course
the last three formulas may be generalized to higher dimensions.
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