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THE SPLITTING THEOREM FOR MANIFOLDS OF
NONNEGATIVE RICCI CURVATURE

JEFF CHEEGER & DETLEF GROMOLL

The purpose of this paper is to extend Toponogov's splitting theorem [4], [7]
for manifolds of nonnegative sectional curvature to manifolds of nonnegative
Ricci curvature. By use of the extension we are able to show that our results
on the structure of the fundamental group in the compact case and on locally
homogeneous spaces, proved in [4] for manifolds of nonnegative sectional
curvature, remain valid for manifolds of nonnegative Ricci curvature. In addi-
tion, we sharpen a result of Milnor on the rate of growth of the fundamental
group in the noncompact case. As a final application, we show under fairly
general circumstances (in particular, if M is locally irreducible) that the holo-
nomy group of an arbitrary compact riemannian manifold is compact. By way
of explanation, we remark that Berger has shown that the holonomy group of
M is compact if M is locally irreducible and the Ricci curvature of M does not
vanish identically. The case Ric^ = 0 is precisely the one we are able to handle.
The last application was suggested during a conversation between the authors
and L. Charlap.

Let M be a complete riemannian manifold. Recall that a ray (respectively a
line) in M is a geodesic γ: [0, oo) —> M (respectively γ: (— oo, oo) —• M) each
segment of which is minimal. With each ray γ in M we associate a function gr

as follows: Let gt(x) = x, γ(t) — t for t > 0 where the bar denotes metric dis-
tance. The function gt is continuous, but not differentiate on the cut locus of
γ(t). It follows easily from the triangle inequality that the family gt is uniformly
equicontinuous. For fixed x, the function t —> gt(x) is decreasing on [0, oo) and
bounded below by — x, γ(0). Hence, for t —» oo,gt converges uniformly on
compact sets to a continuous function gr.

Theorem 1. // M has nonnegative Ricci curvature, then for any ray γ in M
the junction gr is superharmonic.

Here superharmonic means that given any connected compact region D in M
with smooth boundary 3D, one has gr > hγ on D where hr is the continuous
function on D which is harmonic on int D with hr\3D = gr\dD. Since this is
true for all connected domains, a standard argument gives that if hr(y) = gr(y)
for y e int D, then gr = hγ on D. If, moreover, the sectional curvature of M is
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nonnegative, then gr is a convex function; see [4]. Before giving the proof of
Theorem 1 we will show how it implies our main result.

Theorem 2. Let M be a complete manifold of nonnegative Ricci curvature.
Then M is the isometric product M x Rk where M contains no lines and Rk

has its standard flat metric.
Proof. By induction, it suffices to show that if M contains a line, then M

splits isometrically as M ; X i?.
Let γ be a line in M. Consider the rays γ+ = γ\ [0, oo) and γ_ with γ_(t) —

γ(—t) and the corresponding superharmonic functions g+ = g r +, g_ = gγ_. Now
since γ is a line, for any t, s we have by the triangle inequality that

( 1 ) x,γ(t) - t + x,γ(-s) -s>0

with equality holding along γ[ — s, t\. Hence

( 2 ) S + + S - > 0

with equality holding along γ. Taking D as above to be an arbitrary connected
region containing y e γ(— oo, oo) in its interior we have

( 3 ) g+(y) + g-(y) = 0.

Let h+, h_ be the continuous functions on D which are harmonic on int D with
h+ 13D = g+ 13D and h_ \ 3D — g_ \ 3D. Since h+ + h_\ 3D is nonnegative, we
have also that h+(y) + h_(y) > 0 by the minimum principle for harmonic func-
tions. Now g+ > h+ and g_ > h_, so we must have g+(y) = h+(y) and g_(y)
— h_(y). Then on D, g+ = h+ and g_ = h_. Since D is arbitrary, we have
shown that g+, g_ are differentiate and harmonic on M.

We prove next that | |gradg+ | | = 1 and the integral curves of gradg+ are
geodesies. For fixed x, y we have

\gt(χ) - gt(y)\ = I r W , x - t - γ(t), y + t\
( 4 )

\(t) - γ(f)9y\ <x,y .

Letting ί-^ oo, we obtain \g+(x) — g+(y)\ < x, y. It follows that ||grad g+\\<l.
On the other hand, given x let βι denote a minimal geodesic from x to γ(j).
Let ij be a sequence such that σ^.(0) —> </(0). Then for all y on σ, we have
\g+(x) — g+(y)\ = x,y. It follows that | |gradg+ | | = 1 and that σ is the integral
curve of grad g+ through x.

Finally, set gradg+ = N and let Eλ, , En_19 N be an orthonormal frame
in a neighborhood of x which is parallel along σ. Then FNN = 0 and at x,
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Ric (N) = "ΣζRiEt, N)N, Ei>

/NN - FNFEtN - F[Bi,W]/V, Ety"Σ

"

= nΣN<N,FBiEty - \\FN\\2 = -N(άg+) - \\FNf = -\\FNtf .
i = l

Since Ric ( iV) > 0 it follows that Ric ( iV) = \\FN\\ = 0, which means that N is
parallel. Hence by the de Rham decomposition theorem, M splits off a line
locally isometrically. The splitting is easily seen to be global and is given by
the level surfaces and integral curves of g+. This completes the proof of Theo-
rem 2.

The proof of Theorem 1 requires some lemmas.
Lemma 1. // F: M —> R is any diβerentiable junction and p is not a critical

point, then the Laplacian ΔF{x) is given by —m(F) + N(N(F)) where m is the
mean curvature vector of the level surface through x and N = gradF/| |gradF| | .

Proof. Let E19 , En_19 iVbea frame field in a neighborhood of p. Then

( 6) ΔF(p) - Σ EiEt(F) - VEiElF) + N(N(F)) - FNN(F) .

Since {E? } and FNN are tangent to the level surfaces and Σ FEEt = m,

( 7 ) EtEiiF) = 0 ,

(8) - Σ F

( 9 )

and the lemma follows.

Lemma 2. Let M have nonnegative Ricci curvature. Then for p e M and x

not on the cut locus of p, we have Δpp(x) < (n — 1)/pp(x) where pp(x) = x, p.

Proof. Let σ: [0, /] —>M be the minimal geodesic of lenghth I = x,p from
p to x, and {/J be the unique Jacobi fields vanishing at σ(0) such that J^t) =
Ei(l) where E19 , En_19 N = σ' are a parallel frame field along σ. Then we
have

i J M x » [ ι
(10)
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By the fundamental inequality for the index form, (10) yields

n — \ Γι n~1

I ~ J ί=i N l ϊ N

0

J l n - 1

W=-ΓΣ>
J ί = i

(ID

Before going any further with the details we will try to give an intuitive ex-
planation of what is really going on. Lemma 2 certainly suggests that gr, which
is the limit of the functions gt = pnt) — t, should have nonpositive Laplacian
and hence be superharmonic. The difficulty is that the functions gt are not dif-
ferentiable on the cut locus of γ(f), and gγ may not be differentiable anywhere.
Even if gr were differentiate almost everywhere with Δgγ < 0, we might have
the situation depicted below.

y = f(x) = *2/3 ,

j " < 0 almost everywhere,
but / is not superharmonic.

This example also suggests the method for overcoming the above difficulty,
namely, to look at the local behavior of the gradient near the points of non-
differentiability see c') in the proof of Theorem 1.

Lemma 3. For gt as above and any compact set K c M, there exist a se-
quence of C°°-junctions g\ and a constant L such that on K,

. unif
a) g\ > gt,
b) \\dg\\\ < L for all U

and on any compact subset of K, on which dgt exists,

c) dg\ dgt.



SPLITTING THEOREM 123

Proof. Let U19 , UN be a coordinate covering of K, and {φ^ a partition
of unity subordinate to {C/J. By the triangle inequality, the functions ψigt sat-
isfy \ψigt(x) — ̂ i&O0| < •*> y> Then there exists a constant Lx such that on any
Ui, \(pίgt(x) — ψigt(y)\ < Lx \\x — y\\i where || ||4 denotes Euclidean distance on
Ui. The theorem now follows by applying standard approximation techniques
(convolution with an approximate identity) to the functions φtgt.

Proof of Theorem 1. Let D be a connected region with smooth boundary
3D, and fy(x) be the Greens function for Δ on D with singularity at y e int D
and /| 3D = 0. Then fy satisfies

or) for fixed y, Δfv(x) = 0 on int D — y,

β) lim J <grad/,,iV>A4 = 1,
sr(y)

where 5r(y) denotes the boundary of the metric ball Br(y) of radius r about y,
and iV the unit normal pointing into Br(y),

γ) V

sr(y)

3) f\intD -y>0.
For fixed t, gt is differentiable on D — Ct where Ct denotes the cut locus of
γ(t) which is known to be a closed set of measure zero. Using the Fubini
Theorem, one may easily construct sequences of smooth compact regions
Br>i>t C i n t D M C D such that lim d £ r > M = Sr(y), l im3D ί t ί = 3D, and the

(n — 1)-dimensional measures of Ct Π dBrΛtt and Ct Π dDίt are both equal to
zoro. For fixed t, i we may choose a sequence of regions Riijtt such that

a') n Rij,t = Ct dmtRiJtt,
3 = 1

bθ dRiJtt is smooth and transversal to dBr>ί>t and dDt t for all /,
c') for all /, grad gt points into Ritj,f

ar) and bθ are straightforward. cθ may be seen by noting that grad gt is the
image under the exponential map of the radial vector field in M r ( ί ) and hence
points inward towards Ct. Property cθ is a key point in the argument.

Now consider the region DiιrJ>t = Dit — BrΛtt — Ritjtf Its boundary, except
for (n — 2)-dimensional sets, is the disjoint union of

A = dDί>t Π Dί>rJtt , B = dBr>ut Π Dί>rJtt , C = dRi)tJ Π Dί>r>j>t .

Let gk

t be a sequence of functions as in Lemma 3. Assuming that A,B,C are
oriented properly, by Stokes Theorem we have

*dfy+ \gϊ*dfy

(12) A /

= J dgΛ*dfv+ J gk

tAd*dfy,
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fy * d g t + \ f y * d g t + \fy * d g tJ J
(13)

= J djy A * dgt + J fy Λd*dgt .
Di,r,j,t Di,r,j,t

Since on functions *d*d = J, by a) the second term on the right hand side of
(12) vanishes. By Stokes Theorem the third term on the left hand side of (12)
may be rewritten as

jgΐ*dfy = J dgt A*dfy + gt A d*dfy

Γ 8ΐ*dfv- Γ gt*dfv.
•J %)

Then by a) and Lemma 3,

<L L' V(RίJ)t Π Ditt) + J \\8t*dfv\\dA

+ J \\g**dfv\\dA,

where L' = max || * dfy ||, and F( ) denotes volume. Letting & —> oo and then

/ -* oo yields

(16)

Then by letting j -+ oo, (12) becomes

(17) J gt*dfy+ J ^ * dfy = J < ,y

Now letting TV denote the outward normal to the boundary of D — Br(y) and
letting i —> oo, (17) implies

(18)

= J <dgt,df,yv.
D-Br{y)

Letting N denote the outward normal to the region DitJ.tJtt9 (13) may be re-
written as
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(19)

ff,<gcadgt,N>dA + ffy(gΐadgt,NydA + J//grad gt, N)dA
A B C

= J (dίv,dgtydV + J
Di,r,j,t Di,r,j,t

By c'), we see that the third term on the left hand side of (19) is positive.
Thus

Jfv(gmdgt,N}dA + ffy(gτadgt,N>dA

(20) λ

< j <,dfv,dgtydV + J U Δgr
Di,r,j,t Di,r,j,t

Since | |grad^ t | | = 1 wherever g r a d ^ is defined, the second term on the left

hand side of (20) is > — I fy dA. Now letting / —> oo, the first term on the
B

left hand side of (20) approaches 0 (fy 13D = 0) giving

(21) - jfydA< j ζdfy,dgt}dV+ J fy ΔgrdV .
Srlv) D-Br(y) D-Br(y)

Substituting (21) in (18) we have

(22) Sr(υ)

J ge<7V, grad fv} dA + fgt<N, grad fυ}dA
3D

>- J jydA- J jy.Δgt dV .
D-Br(y)

Letting t —> oo and using Lemma 2 we obtain

(23) f gr<N,padfy>dA + fgrζN,padfy>dA >- f fy dA .
SriV) 3D Sr(y)

Letting r —> 0 and using γ) yield

(24) *rG0 + Jgr{N,gmάfyydA > 0 .

Now for any harmonic function h, a simpler more standard version of the above
yields
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(25) h(y) + fh(N, grad fy)dA = 0 .
3D

In particular, if h = hγ has the same boundary values as gr, then (24), (25)
imply

(26) hr(y) < gr(y) ,

which completes the proof of Theorem 1.
As in the case of nonnegative sectional curvature, we now have the follow-

ing structure theorem for the fundamental group in the compact case.
Theorem 3. Let M be a compact manifold of nonnegative Ricci curvature.

Then πλ(M) contains a finite normal subgroup ψ such that πx(M)lψ is a finite
k

group extended by Z © 0 Z, and M, the universal covering of M, splits
isometrically as M X Rk where M is compact1.

Proof. By Theorem 2, we may write the universal covering space M iso-
metrically as M X Rk where M contains no line. The covering transformations
π ~ πx(M) are of the form (/, g)(x,y) = (f(x),g(y)) where f.M-^M and
g: Rk —> Rk are isometric. Let p be the projection of M on the first factor in
M x Rk, and K be a compact fundamental domain for π which exists by com-
pactness of M. Then the orbit ρ(K) under ρ(π) is all of M. We claim M must
be compact, otherwise there exist a ray γ and a sequence gn e p(π) such that
g~\γ(n)) € p(K). By compactness we find a subsequence gn. such that
dgήlbrΌii)) -* v> a tangent vector at /?€ p(K). If σ: (— oo, oo) -> M is the
geodesic with ^(O) = v, then σ is easily seen to be a line. The rest of the ar-
gument follows word for word from the proof of Theorems 9.1 and 9.2 of [4].

Theorem 3 generalizes classical results of Bochner [2] and Myers [6] as well
as a recent result of Milnor [5] in the compact case. Although the noncompact
case is still open, we have the following sharpening of Milnor's theorem.

Theorem 4. Let M be complete and Ric^ > 0. Then every finitely gen-
erated subgroup of πx(M) has polynomial growth of degree < n, and there exists
a subgroup for which equality holds if and only if M is compact and flat.

Proof. M — M x Rk 3 (m, 0) where M does not contain a line. Let Cd9

d > 0, denote the closed set of points x in M with the property that for every
geodesic γ: [0, oo) —» Msuch that ^(0) = m, Cd 3 x = γ(t) implies either t < d
or γ I [0, s] is not minimal for s > t + d. We claim there exists d such that

(27) π(m, 0) C Cd X Rk ,

which implies for all r

1 For more detailed results which also remain valid in case Ric f̂ > 0, see [4].
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π(m,0) Π Br(fή,O) C τr(m,0) Π [B2r(m) x B2r(0)]
(2o)

C π(m,0) Π [(B2r(m) Π Cd) X B2r(0)]

In addition,

(29) V([B2r(m) Π C J X £2 r(0)) < Kr^ .

In fact, B2r (Ί C d is easily seen to be the image under exp^ of the union of
a piece of an annular region and a ball whose volume in Mπ is
<Kι{d'i2rYίτΆM-1 + dάimΊ*) w h e r e ^ is the volume of the unit sphere in
Euclidean space of dimension dim M. Then (29) follows from the fact that the
exponential map does not increase volume for manifolds of nonnegative Ricci
curvature. To see (27), note that as in Theorem 3, any element of π can be
written as (/, g). Now, if there exists a sequence (Jt, g^ such that /*(m) lies on
a segment yi with γ^ti) — fi(m) such that γt \ \ti — ί, tt + /] is minimal, then
fϊ1 °ϊί\l — h ί\ is minimal with 07 1 O ^)(0) = ra. Taking an accumulation point
of the tangent directions of these segments would produce a line in M and hence
a contradiction. Given (28) and (29), the proof now follows as in [5].

We now treat the structure of locally homogeneous spaces.
Theorem 5. Let M be complete and locally homogeneous with Ric^ > 0.

Then M is isometric to a flat vector bundle over a compact locally homogeneous
space S. S and hence M admit locally homogeneous metrics of nonnegative
sectional curvature.

Proof. M has a transitive group of isometries I{M). From the argument of
Theorem 3 it follows that M = M x Rk where M is compact homogeneous.
Then I(M) — l(M) X I(Rk), and the compact group I(M) preserves a normal
homogeneous metric of nonnegative sectional curvature. Since π C I(M) x I(Rk),
M also admits a locally homogeneous metric of nonnegative sectional curva-
ture, and therefore, by [4], M is isometrically a flat vector bundle over a local-
ly homogeneous space S whose inverse image in M is of the from M x R\ I < k.
Hence M is also a flat vector bundle over S with respect to the original metric.

The following application arose during a conversation with L. Charlap.
Theorem 6. Let M be compact and suppose M = M x Rι isometrically.

If either M is compact or / < 1, then the holonomy group Φ of M is compact.
Proof. Write M isometrically as Mx x x Mk x MR x RL where M19

• , Mk are irreducible, MR is maximal non-Euclidean Ricci-flat, and Rι is
maximal Euclidean. Identify πλ(M,m) with the group of isometric covering
transformations. Then the projection of π on MR is a group of isometries which
is transitive modulo compact sets, and by the argument of the proof of Theo-
rem 3 we conclude that MR is compact. Now the identity component Φ° of the
holonomy group at m may be naturally identified with the holonomy group of
M at meπ~ι(m). Φ° acts reducibly on the direct sum decomposition
Tl®''^Tk®TR®Tl of Λ/~ corresponding to the product decomposition
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and irreducibly on each factor. Since there are only finitely many factors, it
follows that Φ contains a normal subgroup Φ of finite index which preserves
the decomposition of M~.

Since Φ/Φ° is contained in the product of the component groups of the rest-
rictions ptΦ to the various factors, it suffices to prove that these are finite.
PiΦ° I Ti (i = 1, , k) is the holonomy group of Mt and, by a result of Berger
[1], has finite index in its normalizer. Actually, Berger only checks this in case
Mt is not a symmetric space, but the symmetric case is also known see, for
example, [8]. The elements of Φ restricted to TR may be represented as
Ψ # ) " l o ^ ( c ) where c is a curve from m to h(m) for some heπ, and P
denotes parallel translation. Clearly, to prove the finiteness of pR(Φ)/pR(Φ°), it
suffices to prove that the group ρR(π) is finite. However, since MR is compact,
if ρR{π) were infinite, then MR would carry a non-trivial Killing field which
would be harmonic (since R i c ^ = 0) and hence would contradict the fact that
MR is simply connected. Now, if / < 1, clearly the component group of Φ
restricted to Rι is finite. If M1 X Mk X MR is compact and / is arbitrary,
then by the argument of Theorem 3, the restriction of π to Rk is seen to be a
Bieberbach group. In either case the theorem follows.

It would be interesting to know whether there are actually examples of non-
flat complete manifolds with Ric^ = 0.
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