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SUBMANIFOLDS WITH PARALLEL
MEAN CURVATURE VECTOR
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0. Introduction

J. Simons [5] has recently proved a formula which gives the Laplacian of the
square of the length of the second fundamental form, and applied the formula
to the study of minimal hypersurfaces in the sphere (see also [1], [2]).

K. Nomizu and B. Smyth [4] have obtained a formula of the same type for
a hypersurface immersed with constant mean curvature in a space of constant
sectional curvature, and derived a new formula for the Laplacian of the square
of the length of the second fundamental form, in which the sectional curvature
of the hypersurface appears. Using this new formula, they determined hyper-
surfaces of nonnegative sectional curvature and constant mean curvature im-
mersed in the Euclidean space or in the sphere under the additional condition
that the square of the length of the second fundamental form is constant.

The purpose of the present paper is to generalize Nomizu-Smyth formulas
to the case of general submanifolds and to use the formulas to study submani-
folds, immersed in a space of constant curvature, whose normal bundle is locally
parallelizable and mean curvature vector field is parallel in the normal bundle.

1. Preliminaries

Let there be given an ra-dimensional connected submanifold Mn immersed in
an ra-dinensional Riemannian manifold Mm (1 < n < m) with the metric
tensor G, whose components are Gάi with respect to local coordinates {ξh},
(Riemannian manifolds we discuss are assumed to be difϊerentiable and of class
C°°.) and suppose that the local expression of the submanifold Mn in M m is

(1.1) ξh = ξh(ya) ,

where {ηa} are local coordinates in Mn. (Submanifolds we discuss are always
assumed to be difϊerentiable, of class C°° and connected. The indices h, i, /, k, I
run over the range {1, , m) and the indices a,b,c,d,e over the range {1, ,
ri\. The summation convention is used with respect to these systems of indices.)
Differentiate (1.1) and put
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(1.2) B»* = 9sf
ft, db =

which is, for each fixed index b, a local vector field tangent to Mn. These local
vector fields Bb

h spann the tangent plane of Mn at each point of Mn. We denote
by Cx

h m — n mutually orthogonal local unit vector fields normal to Mn. (The
indices x,y,z run over the range {n-\-1, , m) and the summation convention
is used with respect to this system of indices.)

If we denote by g the metric tensor on Mn induced from the metric tensor G
of Mm, then for the components of g we have

(1.3) gcb = GJtBe>BbJ .

The contravariant components of g are denoted by gcb, i,e., gceg
eh — δh

c.
Denoting by {/J and {c

a

b} the Christofϊel symbols formed with Gόi and gcb

respectively, we put

(1.4) VCBS = dβf + { / , } 2 W - { Λ } V ,

which is the van der Waerden-Bortolottί covarίant derivative of Bb

h. From (1.2)
and (1.4) we then have

(1.5) FcBb

h = FbBc

h .

For tensor fields on Mn, Fc is the operator of covariant differentiation with
respect to {c

a

b}. The van der Waerden-Bortolotti covariant differentiation Fc is
extended to tensor fields of mixed type, say Γ6V> on Mn in such a way that

F T α h ^ T fl Λ _L J Λ 1R JT a fc / k 17? JT a h
c1 b i — Vc1 b ί -T \j k)ΰc l b i ~ \j ij&c * b k

1 ί α I T e ft ί e I T α ή
"Γ \c e)1 b i \c b]1 e i

Thus we have

FdFcBb

h = dd(FcBbh) + {/*}SdΨc56*

- {d%}Γββ6

Λ - {Λ}FAΛ

It is easily verified that for any fixed indices b and c, FcBb

h is normal to Mn,
and hence that

(1.7) F A Λ = heb*Cx

h ,

where /ic^ satisfies, due to (1.5),

(1.8) λc6* = hbc

x .

The /zc6

x is, for each fixed index x, a local tensor field of type (0,2) of Mn and
called the second fundamental tensor of the submanifold Mn relative to the unit
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normal Cx

h. Equations (1.7) are the equations of Gauss for the submanifold
Mn.

If we denote by g* the metric tensor induced on the normal bundle Jί{Mn)
of Mn from the metric tensor G of Mn, then we have, for the components of
g* relative to the frame {Cx

h},

Syx = GjiCy

JCx

ι == δyx ,

because Cx

h are orthonormal. The contravariant components of g* are given
by gv* = δvx, since gyzg

zx = δx

y.

If we put

hx = gcbhcb

xjn , A2 = gyxh?h* (A > 0) ,

then we see that A* or A*C/ is a global vector field normal to Mn, which is
called the mean curvature vector of the submanifold Mn, and that A is a global
function, which is called the mean curvature of the submanifold Mn. When hcb

x

vanish identically, the submanifold Mn is said to be totally geodesic. When

Kb

x = hgcbC
x (A φ 0) ,

Cx = —hx or Ch = CxCx

h being a global vector field normal to Mn, Mn is said
A

to be totally umbilical.
Denoting by Γc

x

y the components of the connection F* induced on the
normal bundle Jf(Mn) from the Riemannian connection of the ambient mani-
fold Mm, we have, by definition,

rx

y - (3cc/ + {Λ}*ΛV)C*Λ,

where C\ = C^g^g^. If we put

(1.9) FCC/ = 3CC/ + {/,}5C^C/ - Γc

x

yCx* ,

which is the van der Waerden-Bortolotti covariant derivative of Cy

h, then we
see that VcCy

h is, for any fixed indices c and y, tangent to Mn. For tensor fields
associated with the normal bundle Ji{Mn), Fc is the operator of covariant dif-
ferentiation with respect to Γx

y. We thus have Fcgyx = 0, Fcg
yx = 0. The van

der Waerden-Bortolotti covariant differentiation F c is extended to tensor fields,
say Tb

a

y

x, of the mixed type on Mn in such a way that

F T a x — Ά T a x Λ- ί a \T e x i e \T a x

\ ~Π x T a z Γ1 z T a x
~~Γ ί c z1 b y J- c y1 b z

For tensor fields, say Tby

h, of the mixed type on Mn, by definition we have
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π ηr n % T h
 _L / h \Π JT ί I a \T h Γ x T h

v c1 by — Ocl by ~Γ \j i)Dcλby \c b)1 ay L c y1 bx >

and hence

,* ^ x * cv b^y — °c\y b^y ) \ \j i)Dc v b^y

\c b)v a^y J- c yv b^x

Differentiating covariantly G^B^Cy1 = 0, we have GjiiVβ^Cj + G^B^
(PcCy1) = 0 and hence, from (1.7),

(1.12) PcCy

h= -K%Ba

h ,

since VcCy

h is, for any fixed indices c and y, tangent to Mn, where we have
put

U a — U xgeag

llc y — ltfce o oxy

We use the following notations in the sequel:

fo — h XQ hha — h Xgdbpcag Jηbax — U xgdbgca
ncby — ncb όxy ? n y — rίdc 6 ό όxy i n — ndc ό ό

Equations (1.12) are the equations of Weingarten for the submanifold Mn.
We have, from (1.4) and (1.6), the Ricci formula

(1.13) VaVJBf - FcFdBb

h = RkJi

hB%i - Kdch*Ba

h ,

and, from (1.9) and (1.11), the Ricci formula

(1.14) FdFcCy

h - VcVaCy

h = R^miCj - Kdey*Cx

h .

Here and in the sequel
Ώkjίh r> kf> j τ> iτ> h τ>kji τ> kτ> j p> ί τ>kj τ> kf> j

ndcba — ΰ d ΰ c ΰ b ΰ a 5 ΰdcb — ΰ d ΰ c &b •> ΰdc ~ ΰ d Dc

and Rkji

h, Kdcb

a and Kdcy

x are respectively the curvature tensors of the
Riemannian metrics G of Mm, g of Mn and the induced connection F* of the
normal bundle J^(Mn), the curvature tensor Kdcy

x of F* being defined by

J^dcy — a d ι c y °c1 dyΛ-*-dzLcy λ c z1 d y

For tensor fields, say Tb

a

y

x, of the mixed type on Mn, we have, from (1.10),
the Ricci formula

V,V Tr,a x — V P,T*.a x

/i I ^\ d c b y c d b v

JC ftT ex if eT α x j _ Jf xΎ1 a z Jf Z T α x

— Γ^dce *- b y £Vdcb L e y ~Γ £S-dcz A b y £s-dcy ± b z

Substitution of (1.7) in the Ricci formula (1.13) gives

RkJi

hB%i = Kdcb

aBa

h - (hd\hcb

x - hc\hdb

x)Ba

h

+ {Vdhcb

x - Vchdb

x)Cx

h ,

and substitution of (1.12) in the Ricci formula (1.14) gives
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(1 17) R*nB%cS = KicyxCx

h - {hae

xhe% - hee*hd%)Cx*

- (Vahc% - Γ Λ ' Λ * ,

where Fdhcb

x and Vdhc

a

y are defined in the sense of (1.10), i.e.,

(1. lo)
v dnc y — V̂  dncb Jό όxy

We now have, from (1.16) and (1.17),

τ> Ώkjih Tζ (U U x h h XΛ

^kjih^dcba — ^dcba — \ndaxncb — ncaxndb ) ?

(1.19) RkJSB«JiC\ = Fdhcb

x ~ V*hdh* ,

Rkji

hB%CJC*h = Kdcy* - (hde*he% - hce*hd%) ,
where

RkjiL£lh •> Kdcba = Kdcb

egea .

The first, second and third equations of (1.19) are the equations of Gauss,
Codazzi and Ricci respectively. Equations (1.19) altogether are sometimes
called the structure equations of the submanifold Mn.

We now assume that the ambient manifold M m is a space of constant cur-
vature c, i.e., that

(1.20) Rkjίh = c(GkhGH - GjhGkί) .

Then, substituting (1.20) in (1.19), we find

(1.21) Kdcba = c(gdagcb - gcagdb) + (hda

xhcbx - hca

xhdbx) ,

(1.22) 0 = Fdhcb*-Fchdb* ,

(1.23) Kdcy

x = hde

xhc% - hce

xhd% ,

which are the structure equations for the submanifold Mn immersed in a space
of constant curvature c. Transvection of (1.21) with gda yields

(1.24) Kcb = c(n - \)gcb + nhxhcbx - hce

xhb

e

x ,

where Kcb = Kecb

e is the Ricci tensor of Mn.
When the ambient manifold Mm is a space of constant curvature c, we com-

pute the Laplacian ΔF of a function F = hcb

xhcb

x, which is globally defined in
Mn, where Δ—gchVcVb. We thus have

\ΔF = g«d(PeFdhcb

xWb

x + (FAax)(Fehba

x) ,

Fc being defined by Fc = gcψb.



100 KENTARO YANO & SHIGERU ISHIHARA

By using the Ricci identity (1.15) and equations (1.22) of Codazzi, we find

\ΔF = gedWcVeKax - Kecb

ahad* - Kecd

ahba*

where Kc

a is defined by Kc

a — Kcbg
ba, and we have used (1.8) and equations

(1.11) of Codazzi. If we substitute (1.21), (1.23) and (1.24) for Kecba,Kecy

x

and Kc

a — Kcbg
ba respectively in the above equation, then we have

\ά¥ = n{VcVbh*)hcb

x + [c(n - ΐ)gca + nhyhcay - hcevha%]hb

a

xh
cb*

- [C(geagcb - gcage,) + (hejhcby - hcjheby)]hea

xh
cb*

+ [he

ayhca* - hc%hea

x]hb

evhcb

x + {Vchba
xWchb\) ,

and therefore

\ΔF = n{VcVbh*)hcb

x + cnhba*hba

x - cn2h*hx + nhyhcayhb

a

xh
cb*

- heoyhcbyh™xh
cb* + ivchba

xwchb-x),

when the ambient manifold Mm is a space of constant curvature c.
To establish some formulas for a submanifold immersed in a hypersurface

for the later use, we consider an n-dimensional submanifold Mn immersed in a
hypersurf ace Mm which is further immersed in an (m + 1)-dimensional
Riemannian manifold M m + 1 with the metric tensor G whose components are
GCB with respect to local coordinates ζA.

Suppose that the local expression of Mm in M m + 1 is

ζA = ζΛ(ξh) 9

where {ξh} are local coordinates of M m , and that the local expression of Mn in
Mm is

ξ» = ξKηa) ,

where {ηa} are local coordinates of Mn. (The indices A, B, C run over the range
{1, -m + 1}, the indices ft, /, / over the range {1, , m} and the indices a,
b, c over the range {1, , ή). The summation convention is used with respect
to these systems of indices.) Then the local expression of Mn in M m + 1 is

ζA = ζA(ξh(ya)) .

If we put
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along Mn and Bt

A = d ^ ( ? Λ ) along M m , where dδ = d/dηb and 3 t = 3/3?*,
then we find Bb

A = Bb

lBiA along Mn. Denote by Cx

h m — n mutually orthogonal
local unit vector fields normal to Mn in Mm, and by DA a local unit vector field
normal to Mm in M m + 1 . (The indices x, y, z run over the range {n + 1, , m}.
The summation convention is used with respect to this system of indices.) If
we put CX

A = Cx

lBiA, then CX

A and DA are mutually orthogonal unit vector
fields normal to Mn in M m + 1 .

If we denote by G the metric tensor on Mm induced from the metric tensor
G of M m + 1 , then we have, for the components of G, GSi = GczBfBf. The
contravariant components of G are denoted by Gjί. If we denote by g the
metric tensor on Mn induced from the metric tensor G of M m , then we have,
for the components of g,

gcb = GjJBJBS = GCBBc

cBb

B .

The contravariant components of g are denoted by gcb.
If we denote by Fc and Vά the operators of van der Waerden-Bortolloti co-

variant differentiation respectively along Mn immersed in M m + 1 and along Mm

immersed in Mm+1, then we have

Fc = BeΨj

along Mn. We now have the equations of Gauss

(1.26) VcBb

h = hcb*Cx

h ,

(1.27) VcBb

A = Heb*Cx

A + HcbD
A

for Mn relative to Mm and M m + 1 respectively, where /ιcδ^ are the second fun-
damental tensors of Mn relative to Mm with respect to the normals Cx

h, and
Hcb

x and Hcb are the second fundamental tensors of Mn relative to M m + 1 with
respect to the normals CX

A and DA respectively. Next,

(1.28) FjBS = kHDA

are the equations of Gauss for Mm relative to M m + 1 , kάi being the second fun-
damental tensor of Mm relative to M m + 1 with respect to the normal DA, and

(1.29) PjDA= -k/B A

are the equations of Weingarten for Mm relative to M m + 1 , where kf = kjhG
hi.

Differentiating covariantly Bb

A = BjB^ along Mn, we obtain

FcBb

A = {Vβ^BA + BJBWjBS)

and hence, by substituting (1.26), (1.27) and (1.28),
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(1.30) Hcb

xCx

A + HcbD
A = hcb*Cx

A + BJBJkuD*

along Mn, from which follow

(1.31) Hcb* = hcb

x , Hcb = BeJBb%t

along Mn. If we put

(1.32) hx = gcbhcb

x/n, Hx = gcbHcb

x/n, H = gcbHcb/n

along Mn and

(1.33) k = Gjikji/m

along M m , then we obtain, from (1.31),

(1.34) Hx = hx , nH = mk - gvxCv'Cx%i

along Mn, where hx or hxCx

h is the mean curvature vector of Mn in the normal
bundle ^(Mn) of Mn in Mm, Hx and H determine the mean curvature vector
HXCX

A + HDA of Mn in the normal bundle W{Mn) of Mn relative to M m + 1 ,
and kDA is the mean curvature vector of M m in M m + 1 , gyx being the contra-
variant components of the induced metric g* of the normal bundle / ( M B )
relative to the frame {Cx

h}.

When M m is a totally umbilical hypersurface in a space M m + 1 of constant
curvature, we have

(1.35) kji^kGjt,

and, from (1.29) and (1.35),

(1.36) FjDA = -kBjΛ ,

where the mean curvature k of Mm is determined up to a sign and is locally
constant.

Next from (1.34) and (1.35) follow

(1.37) Hx = hx, H = k,

and thus by taking account of (1.36) we obtain

FC(HXCX

A + HDA) = Fc(hxCx

A + kDA)

= iFch
x)Cx

A + hx(FcCx

A) + k{FcD
A) ,

which, together with the equations of Weingarten

Π Γ1 A — ZI a D A I, a Έ> A T7 T)A i^D A

* c W — — n c xDa — — n c xDa > v eU — — K n c
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for Mn relative to M m + 1 , Hc

a

x being defined by Hc

a

x = Hcb

vgbagyx, implies

(1.38) FC(HXCX

A + HDΛ) = (Fch
x)Cx

A - K\hxBa

A - k2Bc

A .

By putting W\ = Hed

ygecgdbgyx and Hcb = Hedg
ecgdb, and using (1.31) with

kjk = kGji we thus have

(1.39) Hcb

xHcb

x + HcbH
cb = hcb

xhcb

x + nk2 .

From (1.38) and (1.39) we hence arrive at
Lemma 1.1. Let Mn be an n-dimensional submanijold immersed in a totally

umbilical hypersurface Mm of a space Mm+1 of constant curvature. Then the
mean curvature vector HXCX

A + HDA of Mn relative to Mm+1 is parallel in the
normal bundle fyΓ(Mπ) of Mn in M m + 1 // and only if the mean curvature vector
hxCx

h of Mn relative to Mm is parallel in the normal bundle Jf(Mn) of Mn in
Mm, and the function fF = Hcb

xHcb

x + HcbH
cb is constant in Mn if and only if

the function F = hcb

xhcb

x is constant in Mn.

We can also prove the following lemma:
Lemma 1.2. For a submanίfold Mn in Lemma 1.1, the normal bundle

W(Mn) of Mn in Mm+ι is locally parallelizable if the normal bundle Jf(Mn)
of Mn in Mm is so also, i.e., if Rdcy

x = 0 in Jf(Mn).

2. Lemmas

In this section, for later use we establish some lemmas concerning submani-
folds immersed in a space of constant curvature. From (1.23) we first have

Lemma 2.1. Let Mn be a submanifold immersed in a space of constant
curvature. Then the normal bundle Jί(Mn) of Mn is locally parallelizable, i.e.,
Kdcy

x — 0, if and only if hb

ax and hb

ay are, for any indices x and y, commuta-
tive, i.e., if and only if he

aχhb

ey = he

ayhb

ex.
From Lemma 2.1 it follows that, when Kdcy

x = 0, there exist certain n
mutually orthogonal unit vectors eλ

a, , en

a such that

hb

aχeb = λa

xea

a (x = n + 1, , m; a not summed)

at each point of Mn immersed in a space of constant curvature. We call such
a vector ea with components ea

a an eigenvector of hb

ax's, and λa

x the eigen-
value of hb

ax corresponding to ea (a = 1, , ή). (The indices a, β, γ run over
the range {1, , n}.) We shall now prove

Lemma 2.2. Let Mn be a submanifold immersed in a space of constant
curvature c, and the normal bundle Jί(Mn) be locally parallelizable. Then at
each point of Mn
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-i- y \y (2χ — 2 χY r -\- y 2 y7 y\\
t ZJ L l ^ Λa ) 1 c -f 2 J

 Aβ λa f
a<β { X \ V

Proof. We first have

cnhba

xhha

x — cn2hxhx

(2.1)

= c \n Σ Σ (V)2 - 2 Σ Σ W - Σ Σ (V)

Next,

X a<β

\\"a ) ^λa λβ -γ- yλβ ) j \ -— C 2-i 2—i \* β — / α ) .

X \_a<β

h a Lcbx I, Vh hea Ucbx
^~ynb xίL nea ίlcbyΐl xri

v ~ i v ~ i ") y 1 y ( " ) x \ 2 \~* V " 1 i x l x ^ y i y
— Z-i LΛ "a Λβ \Aβ ) / ! / f Λn Λp An Λβ

a,β x,y a,β x,y

Σ —̂i / Λ χ\4 I f\ -̂—i ̂ -T / ̂  χ\2( 5 y\2 _|_ V"1 X"1 ^ X( 1 x\&
/ 1 U α / T ^ Z j Z j V^« / V^α / 1 2_l 2_l ^α \^β '

+ Σ Σ W ( V ) 2 - Σ Σ (V)4 - 2 Σ Σ (V)2α*)2

XΦyaφβ x a x<y a

(2.2) - 2 Σ Σ (V)2(V)2 - 2 Σ Σ W ^ % "
X α<^ Xφya<β

Σ π / j -p j χ\2 5 a; T x I V^ V 1 ( T x *) χ\2 Ί ") y

v J v a x 5 #v v H M
Zj I Z j V̂ /3 Λr / / i λβ Λn ϊ .

a<β [ x y )

Thus Lemma 2.2 follows from (1.25), (2.1) and (2.2).
From (1.21) we now see that the sectional curvature σβta of Mn correspond-

ing to the plane section determined by the eignevectors ea and eβ of hb

ax's is
given by

Thus from (1.25) and Lemma 2.2 we have
Lemma 2.3. Under the same assumptions as in Lemma 2.2, we have
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\ΔF = n(FcF>h*Wx + {Vchba*W°h»\)

+ ΣΣ (V - λ.*γσf,a.
<*<β X

The mean curvature vector hx is parallel in the normal bundle Jί{Mn) if and
only if

Fch
x = dji* + Γc%hv = 0 ,

which is equivalent to the condition that for each index c, FcH
h is tangent to

Mn, where Hh = hxCx

h and F c /P = deH
h + {j^BJH*. We now proceed to

establish the following Lemmas 2.4 and 2.5.
Lemma 2.4. Lei M n fee a submanifold immersed in a space of constant

curvature and satisfy the conditions:
(C) The mean curvature vector hx of Mn is parallel in Jί{Mn), and Jf{Mn)

is locally parallelizable.
If Mn is compact and, Mn has nonnegatίve sectional curvature {for all plane
sections), then at every point of Mn

(2.5) Fchba

x = 0 ,

(2.6) ( V - V ) 2 * M = 0 (a φ β)

for any indices a, b,c,a, β and x.
Proof. From (2.4), we have ΔF > 0, since σβ^a > 0. Thus F is constant

and therefore ΔF = 0 (See, for instance, Kobayashi-Nomizu [3, Vol. I, Note 4]
or Yano [6, p. 215]). Hence we have (2.5) and (2.6).

Lemma 2.5. Let Mn be a submanifold immersed in a space of constant
curvature and satisfy the condition (C) in Lemma 2.4. If F — hcb

xhcb

x is con-
stant on Mn, and Mn has nonnegative sectional curvature {for all plane sec-
tions), then we have the same conclusion as in Lemma 2.4.

Now assume that Mn is a submanifold immersed in a space of constant
curvature and satisfies the conditions of Lemma 2.4 or 2.5. Then, by Lemma
2.4 or 2.5, Vchba

x — 0. Since Kdcy

x = 0, we can choose local vector fields Cx

h

normal to Mn in such a way that Γc

x

y = 0, i.e., that Cx

h are parallel in the
normal bundle Jί(JΛn). That is to say, for each index c, FcCx

h is tangent to
Mn, where FcCx

h = dcCx

h + {j^BJCJ. Assume in the sequel that if Kdcv

x = 0,
then the normal vector fields Cx

h are chosen in the way mentioned above. Thus,
if Kdcy

x = 0, then by (1.18), Fchba

x = 0 reduces to

(2.7) Fchba

x = dchba

x - {c%}hea

x - {c

e

a}hbe

x = 0 ,

which implies that all the eigenvalues λa

x of hb

ax are locally constant and that
each eigenspace of hb

ax is of constant dimension. Let vf, , vn

a be mutually
orthogonal local unit vector fields in Mn, which are the eigenvectors of all hb

ax
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at each point, and let λa

x be the eigenvalue of hb

ax corresponding to va

a. We
call each of va

a's an eigenvector field of hb

ax, and denote by λa the normal
vector field with components λa

h = λa

xCx

h, which is globally defined in Jf(Mn)
and is called the vector of eigenvalues of Mn corresponding to va

a. If, for a
vector λa of eigenvalues, all the eigenvector fields corresponding to λa form a
/7α-dimensional distribution, then we say that the multiplicity of λa is pa. If we,
for instance, fix the choice of the normals Cx

h, then we can identify λa with a
vector of Rm~n having components (λa

n+\ , λa

m), where the usual inner
product (λ, μ) is defined in Rm~n. Thus, in terms of such an identification, we
shall prove

Lemma 2.6. Let Mn be a submanijold immersed in a space of constant
curvature, say c, and assume that Mn satisfies the conditions of Lemma 2.4
or 2.5. Then there exists a certain number of distinct vectors μx, . , μN of
Rm-n (N < n), whose inner products are given by

(2.8) (μA,μB)= -c (AΦB;A,B= l , . , Λ 0 ,

in such a way that any vector of eigenvalues of Mn coincides with one of μ19

- , μN and any of μ19 , μN is a vector of eigenvalues.
Proof. First, assume that all sectional curvatures of Mn vanish, i.e., that

σatβ = 0. Then, from (2.3),

« σ ,^)= -c (aΦβ) .

Thus ^α's themselves have the property (2.8).

Next, assume that there exists a nonzero σβta. Then we may suppose that

<71>2, , O\tV are nonzero and σltP + 1 = = σι>n = 0. Thus, by (2.6),

M — * * ' = =
 Λ P = μι ,

and, by (2.3),

(λq,λλ) = -c (q> p) .

If we now take account of (2.3), we find

0βta = <*\t2 (β < a; a,β = 1, - —,p) ,

°β,Q = 0 (β = 1, , p ; q = P + 1, •• , n )

If σp+lfβ+29 - ',0P+i,r a r e nonzero, and σp+hr+1 = = σp+ι>n = 0, then

Λp + l = * ' * — Λr r = = Â 2 ?

and
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Qq,μ2) = -c (q> r) ,

0>,α = σp+ltP+2 (β < a; a,β = p + 1, , r ) ,

0>,<? = 0 (j8 = p + 1, , r ; g = r + 1, .,/z) .

In this way, we shall have

λr+ι — ..« = λp = μ3 , (Λ?, /i3) = — c (q > s)

as far as there exists a non-zero 0^>α.
If ^ α = 0 for /3 < α: (or, β = ί, , n ί > 1), then we put

Thus from (2.3) we have

U z , μ B ) = '" = (Zq, μ N ) = —c ( q > t ) ,

so that these μ15 , μN have the properties of the lemma.
We shall now prove the following algebraic lemma for later use.
Lemma 2.7. Let μ19 , μN be distinct vectors belonging to Rs such that

(μA,μB) = k (A φB;A,B= 1,...,N).

If μl9 -, μN span an r-dimensional subspace (s > r > 0), then N = r or N =
r + 1 and hence N < s + 1. Furthermore in the last case where N — r + 1,
we have

(2.9)

k
k = 0 ,

and one of μ19 , μN is necessarily zero when k = 0.
Proof. First assume that k ψ 0. Then none of μ1? , μN vanishes. If

N > r + 1 and μ1? , μN span an r-dimensional subspace, then we may sup-
pose that μ19 - - , μr are linearly independent. Putting

μr + ι = axμx + + arμr ,

taking the inner product with μr+2 and μ19 and using ( ^ , ^ β ) = k (A Φ B), we
obtain respectively

fli + * + ar — 1 5 a\((μι > μO — k) = 0
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Thus we may assume that

μr+1 = axμx + + atμt (t < r) ,

(μA,μA) = k (A = 1, " -,t),

so that

(μA,μB) = k (A,B = 1, •..,*) ,

which contradicts the independence of μ19 , μr, since

(μ19 μd ' " (μi, μ

t> μd

= 0

for t Φ 1, and μr + ι = μx for t = 1. Thus we have N < r + I.
When N = r + 1, we have a nontrivial linear relation

<Vi + + fliv^iv = 0

and therefore, by taking inner products with μ1? , μN in turn,

ai(^i> μi) + a2k + + <%& = 0 ,

aλk + a2{μ2, μ2) + + fl^Λ = 0 ,

aλk + a2k + + aN(μN, μN) = 0 ,

respectively, which imply (2.9) because of (a19 , aN) Φ (0, , 0). When
k = 0, the lemma is obviously true. Thus Lemma 2.7 is proved.

Let Mn be a submanifold immersed in a space of constant curvature, and
suppose that Mn satisfies the condition of Lemma 2.4 or 2.5. Then for a vector
μa of eigenvalues all the corresponding eigenvector fields span a distribution Da,
and for a vector field va belonging to Da we have

(2.10)

Thus

hb

aχvb = μa

xva

hb

aχVcV
b = μa

xVcV
a

by (2.7) and the constancy of μ/, so that the distribution Da and the orthogonal
complement Da of Dα are both integrable and that the integral manifolds of Da

and Da are totally geodesic in Mn. Hence Mn is locally a pythagorean product
Ma x Ma, where Mα and Mα are respectively some integral manifolds of Da

and Da. For any vector fields ua and va tangent to Ma, from (2.10) we have



SUBMANIFOLDS 109

«eFe(«»B4

ft) = (uT cv
δ)fl s

Λ + hJteehυFvh)C.h (μ. φ 0) ,

uΨc(vbBb») = {u°VcV
b)Bb* (μa = 0) ,

where

K = {Σ (μ.xy}1/2, c.» = μ.*cx*/h. .
X

Thus, when dim Mα > 2, the submanifold Ma is totally umbilical or totally
geodesic in Mm according as the mean curvature vector μa of Ma is nonzero or
zero.

When dim Ma = 1 and μa Φ 0, Ma is a curve in M m whose first curvature
along Ma is constant. For simplicity such a curve is called a totally umbilical
submanifold of dimension 1 in Mm. When dimMα = 1 and μa = 0, Ma is a
geodesic arc of M m , which is, for simplicity, called a totally geodesic submani-
fold of dimension 1 in Mm. Thus we have

Lemma 2.8. Let Mn be a submanifold immersed in a space Mm of con-
stant curvature, and assume that Mn satisfies the condition of Lemma 2.4 or
2.5. // distinct vectors of eigenvalues of Mn are given by μl9 , μN, then Mn

is locally a phthagorean product Mxχ x MN, where Ma is a totally um-
bilical or totally geodesic submanifold in Mm according as the mean curvature
vector μa (a = 1, , N) of Ma is nonzero or zero.

Let Mn be a submanifold immersed in an m-dimensional Euclidean space
Rm, and denote by NP the normal space of Mn at a point P of Mn. The sub-
space 'NpζCZNp) spanned by normal vectors vcubhcb

xCx

h, ua and va being
arbitrary tangent vectors of Mn at P, is assumed to be of constant dimension r,
i.e., dim 'NP = r is independent of P (I <r < m — n). Thus 'Jf (Mn) = \j 'NP

P<ZMΠ>

is a subbundle of the normal bundle J^(Mn). Take mutually orthogonal r local
unit vector fields CA

h in 'Jf(Mn) and mutually orthogonal m — n — r local
unit vector fields Cp

h, which are normal to Mn and CA

h. (The indices A,B,
C run over the range {n + 1, , n + r} and the indices p, q, r over the range
{n + r + 1, ,m}. The summation convention is used with respect to the
system of indices A, B, C.) Then equations (1.7) of Gauss and equations (1.12)
of Weingarten for the submanifold Mn reduce respectively to

(2.11) J W = heb*CB* , Λ c/ = 0 ,

and

(2.12) F c C β ^ = -h*BBa* ,

(2.13) FbCq* = 0 .

Next, from the structure equation (1.23) for the submanifold Mn, we have
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(2.14) Kdeq* = 0,

which shows that the vector bundle W(Mn) is locally parallelizable. Thus we
can choose Cq

h in fJi{Mn~) in such a way that

(2.15) recq* = 3ccβ

Λ + {ΛI^ΛV

If we assume that (ξh) is a system of rectangular coordinates in Rm, then from
(2.15) we obtain

from which (2.13) it follows that all the components Cq

h are constant. On the
other hand, since Bc

h and Cq

h are mutually orthogonal, we have

m

Σ Cq*Bc» = 0 , 5 C " = dξ*/dτf ,

which gives, by integration,
m

Σ cβ*f *(T*) = £>«,
Λ = l

where D^ are constant and ξh = ξh(jja) is the local expression of Mn in Rm.
Thus the submanifold M n lies in an (n + r)-dimensional plane, denned by the

equations J] Cq

hξh = Z)^, of the ambient Euclidean space Rm. Consequently,
h = l

we obtain
Lemma 2.9. For a submanifold Mn immersed in an m-dimensional

Euclidean space Rm, if the normal space 'NP spanned by vcubhcb

xCx

h, ua and
va being arbitrary vectors tangent to Mn at P e Mn, is of constant dimension
r (1 < r < m — n), i.e., if r is independent of P, then Mn is immersed in an
in + r)-dίmensional plane of Rm.

By similar arguments as above, we have
Lemma 2.10. For a submanifold Mn immersed in an m-dimensional sphere

Sm defined by an equation (x,x) = a2 (a > 0) in an (m + I)-dimensional
Euclidean space Rm+1 with usual inner product (JC, y), if the normal space fNp

{appearing in Lemma 2.9) is of constant dimension r (1 < r < m — n), then
Mn is immersed in a great sphere Sn+r of Sm defined by equations (x, x) = a2

{a > 0), (x, eλ) = 0, , (x, em_n_r) = 0, e19 , em_n_r being linearly inde-
pendent unit vectors.

If Mn is a submanifold immersed in an m-dimensional Euclidean space Rm

(or in an m-dimensional sphere 5m) and statisfi.es the conditions of Lemma 2.4
(or 2.5), then the vectors of eigenvalues of the submanifold Mn span the
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subspace 'NP appearing in Lemmas 2.9 and 2.10. Thus from Lemmas 2.9
and 2.10 we obtain

Lemma 2.11. Let Mn be a submanijold immersed in an m-dίmensional
Euclidean space Rm (resp. sphere Sm) and satisfy the conditions of Lemma 2.4
or 2.5. If the vectors of eigenvalues of Mn span an r-dimensional (0<r<Cm — ή)
subspace in the normal space to Mn at each point of Mn, then Mn is immersed
in an (n + r)-dimensional plane in Rm (resp. great sphere in Sm) and there
exists in Rm (resp. Sm) no plane (resp. great sphere) of dimension less than
n + r which contains Mn (1 < r < ra — ή).

A submanifold Mn immersed in an ra-dimensional Euclidean space Rm

(resp. sphere Sm) is said to be of essential codίmension r (0 < r < m — n), if
there exists in Rm (resp. 5m) an (n + r)-dimensional plane Rn+r (resp. great
sphere Sn+r) containing Mn and no such a plane (resp. great sphere) of dimen-
sion less than n + r. A submanifold Mn immersed in Rm (resp. Sm) is said to
be of essential codimensίon m — n, if there exists in Rm (resp. Sm) no plane
(resp. great sphere) containing Mn.

3. Submanifolds in a Euclidean space

We first explain a few examples of n-dimensional submanifolds in an m-
dimensional Euclidean space Rm with usual inner product (x, y). For integers
Pi, - ->PN s u ° h that p19 ,pN > 1, pλ + + pN = n, consider Rm as
Rpi+i x . . . x RpN

+\ where N = m — n, and let

Then the pythagorean product

S ^ C i ) X X S*N(rN) = {(x19 - ,xN)eRm,xa e S H O , a = 1, , N }

is an π-dimensional submanifold Mn of essential codimension m — n in Rm

and its vectors of eigenvalues are given by

(3.1) μx = r r 2 * i , , μN = rN~2xN

at (xl9 - -, xN) e Mn, whose multiplicities are p19 , pN respectively. Thus the
mean curvature vector field H of Mn is given by

(3.2) H = (piμi + + pNμN)/n = (p^-% + + pNrN~2xN)/n

at (x19 , xN) € Mn, which is parallel in the normal bundle Jί(Mn) of Mn,
and the function F — hcb

xhch

x is given by
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(3.3) F = (jil9μi) + + (μN,μN) = \\r\ + + \\r\ ,

which is constant in Mn. It is easily verified that the normal bundle J^(Mn) is
locally parallelizable.

For integers p19> 9 pN, p such that p19 , pN, p > 1, pt+ + PN + P = w,
consider # m as # P l + 1 X X RPN+1 X /?*, where N = m — n. Then the
Pythagorean product

Spi(rχ) X X SpN(rN) X Λ^

= {(xl9 , x^, *) e # m , xα e S M O , α = 1, , N, x e Rp}

is an π-dimensional submanifold Mn of essential codimension N = m — n in
Λm. The vectors μ1? , μN of eigenvalues, the mean curvature vector H
and the function F are given respectively by (3.1), (3.2) and (3.3) at
(x19 - - -9xN,x) eMn. Thus H is parallel in the normal bundle J^(Mn), F is
constant in Mn and Jί{Mn) is locally parallelizable.

Using the same arguments as those developed by Nomizu and Smyth (See
[4, Theorem 1]), from Lemmas 2.8 and 2.10 we have

Theorem 3.1. Let Mn be a complete submanifold of dimension n immersed
in a Euclidean space Rm of dimension m (1 < n < m) with nonnegative sectional
curvature. Suppose that the normal bundle J^(Mn) is locally parallelizable and
that the mean curvature vector of Mn is parallel in rJf(Mn). If the function
F = hcb

xhcb

x is constant in Mn, then Mn is a sphere Sn(r) of dimension n, an
n-dimensίonal plane Rn(dRm), a pythagorean product of the form

SHrJ X X S*N(rN) ,

Pi, ' - -, PN > 1 > Pi + + PN = n , 1 < N < m — n ,

or a pythagorean product of the form

SHrd X X S?N(rN) x R? ,

PI,'-,PN,P>1, PI + + PN + P = n , 1 <N < m - n ,

where Sp(r) is a p-dimensional sphere with radius r, and Rp((ZRm) a p-dimen-
sional plane. If Mn is a pythagorean product of the form (3.4) or (3.5), then
Mn is of essential codimension N.

Finally, from Lemmas 2.8 and 2.10 we have
Theorem 3.2. Let Mn be a compact submanifold of dimension n immersed

in a Euclidean space Rm of dimension m (1 < n < m) with nonnegative sectional
curvature, and suppose that the normal bundle J^(Mn) of Mn is locally paral-
lelizable. If the mean curvature vector of Mn is parallel in Jf\Mn), thenM71 is
an n-dimensional sphere Sn(r) or a pythagorean product of the form (3.4), which
is of essential codimension N.
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Remark. Suppose that a submanifold Mn immersed in Rm satisfies the con-
ditions of Theorem 3.1 or 3.2, and is of essential codimension s less than
m — n. Then Mn is contained in a plane Rm+S of Rm, and satisfies the same
conditions as those mentioned in Theorem 3.1 or 3.2 and satisfied by Mn con-
sidered as a submanifold in Rm if Mn is considered as a submanifold in Rm+S.

4. Submanifolds in a sphere

In an (m + 1)-dimensional Euclidean space Rm+ι with usual inner product

(χ,y),

Sm(a) = {xeRm+1, (x,x) = a2}

is called an ra-dimensional sphere of radius a > 0. For mutually orthogonal unit
vectors b19 , bm_n in Rm+1, a submanifold 2 W (r) defined in Sm(a) by

Σ n ( r ) = {xeSm(a), (x,bβ) = dβ9 β = 1, . . , m - π }

is called an n-dimensional small sphere of Sm(a) with radius r if (d19 , dm_n)
Φ (0, , 0), where r2 = a2 - d,2 dm_n

2 > 0 and 1 < n < m. Σn (f)
is called an n-dimensional great sphere of Sm(ά), if (d19 , dm_n) = (0, , 0),
i.e., if r = a. If r Φ a, a small sphere Σ7* (r) is a totally umbilical submanifold
of essential codimension m — n in ιSm(α), and the mean curvature h relative to
Sm(ά) is given by

(4.1) Λ = d / ( f l V r f ^ ^ ) , d2 = d 1

2 + -•• + d i _ n ( d > 0 ) .

A great sphere Σn (a) is totally geodesic in Sm{a) and of essential codimen-
sion 0.

We explain other examples of ^-dimensional submanifolds in Sm(ά). For
integers p19 , pN such that p19 , pN > 1, px + + pN = n, consider

Rm+i a s RPl+i x ... x RpN

+\ where N = m — n + 1. Then

SPl0\) X X S*N(rN)

where SPa(ra) c ΛPβ+1(α: = 1, , ΛO, is an n-dimensional submanifold M n of
essential codimension m — n imbedded in Sm(a) if

(4.3) r2 + + rN

2 = α2 .

Thus from (1.30) with Λ^ = α" 2 G^ it follows that the vectors of eigenvalues
of Mn relative to Sm(a) are given by

= rN~2xN - a-\xλ + + xN)
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at (*!, ,xN) <εMn, whose multiplicities are respectively Pi,- ,pN, and

therefore that the mean curvature vector H of Mn relative to Sm(a) is given by

H = (pλμx + + PNμN)ln
(4.4) i

= — (Pιrι 2χι + + PN*N 2xN)ln — a \xx + + xN)
n

at (x19 , xN) € Mn, which is parallel in the normal bundle Jί(Mn) of Mn

relative to Sm(a), and the function F = hcb

xhcb

x by

F = {μ^μd + + (μN>μN)

which is constant in Mn. It is easily verified that the normal bundle Jf(Mn) is
locally parallelizable.

Let Σm-\r) be an (m — 1)-dimensional small sphere of Sm(a)(0 < r < a).
For integers p19 , pN, such that /?1? , pN, > 1, px + + pN> = n, Nf

— m — «, in 2]™-1 (r) consider an π-dimensional submanifold rMn of the form

(4.5) ΣP1 W X X Σ P Λ Γ / ( ^ ' ) C Σ m ^ W ?

(4.6) rx

2 + . . . + rN*. = r2 < a2 ,

where Σ P α (O(<* = 1, , NO is a pα-dimensional sphere with radius rα, and
fMn is constructed in J]m~ι (r) in the same way as that used in constructing
in Sm(a) a submanifold Mn of the form (4.2). Then fMn is an π-dimensional
submanifold of essential codimension m — n — 1 in Σ m - 1 (r) a n c * therefore
m — n in Sm(a). The mean curvature vector of fMn relative to Sm(a) is parallel
in the normal bundle Jί(fMn) of 'Mn relative to Sm(ά), the function F = hcb

xhcb

x,
hcb

x being the second fundamental tensors of 'Mn relative to Sm(a), is constant
in 'Mn, and the normal bundle Jί^M71) relative to Sm(a) is locally parallelizable.

We shall now prove

Theorem 4.1. Let Mn be a complete submanifold of dimension n immersed
in an m-dimensional sphere Sm(a) with radius a (0 < a, 1 < n < m) and non-
negative sectional curvature. Suppose that the mean curvature vector of Mn is
parallel in the normal bundle ^(Mn) and that Jί(M.n) is locally parallelizable.
If the function F = hcb

xhcb

x is constant in Mn, then Mn is a small sphere J]n (r),
a great sphere Σn (a) or a pythagorean product of a certain number of speres.
Moreover, if Mn is of essential codimension m — n, then Mn is a pythagorean
product of the form (4.2) with r2 + + rN

2 = α2, N = m — n + 1, or of the
form (4.5) with rλ

2 + + rN

2, — r2 < α2, N' = m — n. If Mn is a pythagorean
product of the form (4.5) with r2 + + rN

2 = r2 < α2, N = m — n, then Mn

is contained in a small sphere Σ m - 1 (ή of Sm(a).
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Proof. If Mn is considered as a submanifold immersed in Rm+\ then from
Lemmas 1.1 and 1.2 the mean curvature vector of Mn relative to Rm+ι is
parallel in the normal bundle ίV(Mn) of Mn in Rm+\ the function 'F =
Hcb

xHcb

x + HcbH
cb, Hcb

x and Hcb being the second fundamental tensors of Mn

relative to Rm+\ is constant in Mn, and Sf(Mn) is locally parallelizable. Thus,
by Theorem 3.1, Mn is an π-dimensional sphere or a pythagorean product of
a certain number of spheres, since Mn(dSm(ά)) is bounded. Hence Mn is a
small sphere of Sm(a), a great sphere of Sm(a) or a pythagorean product of a
certain number of spheres.

When Mn is of essential codimension m — n in Sm(a), there exist m — ft or
ra — n + 1 distinct vectors of eigenvalues of Mn relative to Sm(a) and hence
m — norm — n-\- 1 distinct vectors of eigenvalues of Mn relative to Rm+ι.
Thus Mn is of essential codimension m — n or m — w + 1 in Rm+ί. If Mw is
of essential codimension m — n in i£ m + 1 then it is contained in a certain m-
dimensional plane jRm(CJRm+1)(See Theorem 3.1), not passing through the
origin of Rm+\ Otherwise Mn is not of essential codimension m — n in Sm(a).
Thus, if Rm is of essential codimension m — n in .Rm+1, then M71 is a pythagorean
product of the form (4.5) satisfying (4.6). When Mn is of essential codimension
m — n + 1 in i£m + 1, Mw is a pythagorean product of the form (4.2) satisfying
(4.3). Hence Theorem 4.1 is proved.

By similar devices as in the proof of Theorems 3.1,3.2 and 4.1, from
Lemmas 2.8 and 2.10 we have

Theorem 4.2. Let Mn be a compact submanifold of dimension n immersed
in an m-dimensίonal sphere Sm(a)(l < n < m) with nonnegative sectional cur-
vature. Suppose that the normal bundle Jί(Mn) of Mn is locally parallelizable
and that the mean curvature vector of Mn is parallel in Jf(Mn). If Mn is of
essential codimension m — n, then we have the same conclusion as in Theo-
rem 4.1.

Remark. If a submanifold Mn immersed in Sm(a) satisfies the conditions of
Theorem 4.1 or 4.2 and if Mn is of essential codimension s less than m — n,
then Mn is contained in a great sphere Sn+S of Sm, and satisfies the same condi-
tions as those mentioned in Theorem 4.1 or 4.2 and satisfied by Mn considered
as a submanifold in Sm if Mn is considered as a submanifold in Sn+S.

5. Minimal submanifolds in spheres

A submanifold is said to be minimal if its mean curvature vanishes identi-
cally.

Let Mn be a submanifold immersed in an m-dimensional sphere Sm and satisfy
the conditions in Theorem 4.1 or 4.2. Then by (4.4) the mean curvature H of
Mn is given by

H = (PM + + pNμN)ln ,
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where μ19 , μN are the distinct vectors of eigenvalues, and p19 , pN the
multiplicities of μ19 - μN respectively. Since the mean curvature h is defined
by h2 = gyxH

vHx (A > 0), Hx being the components of H, such a submanifold
Mn is minimal if and only if

(5.1) H = piμι + . . . + pNμN = 0 .

By using Theorem 4.1 we shall now prove
Theorem 5.1. Let Mn be a complete minimal submanifold of dimension n

immersed in an m-dimensional sphere Sm(a) with radius a (0 < α, 1 < n < m)
and nonnegative sectional curvature, and suppose the normal bundle Jf(Mn)
of Mn is locally parallelizable. If the function F = hcb

xhcb

x is constant in Mn,
then Mn is a great sphere of Sm(a) or a pythagorean product of the form

S**(rd X X S**(rN) ,

pλ, > -,pN> 1 , Pi + - - - + pN = n , 1 < N <m — n + 1

with essential codimension N — 1, where

(5.3) ra = aV:

PJn (a = 1, . . . , N ) .

Proof. Since Mn is minimal, we see, from (5.1), that the vectors μ19 , μN

of eigenvalues are linearly dependent. Thus from Lemmas 2.7 and 2.11 it fol-
lows that Mn is of essential codimension iV — 1 if Mn is a pythagorean product
of the form (5.2). We find (5.3) from (4.4). Thus Theorem 5.1 is proved.

We can prove
Theorem 5.2. Let Mn be a compact minimal submanifold of dimension n

immersed in an m-dimensional sphere Sm(a) with radius a (0 < a, 1 < n < m).
// Mn has nonnegative sectional curvature and the normal bundle Jf(Mn) of
Mn is locally parallelizable, then we have the same conclusion as in Theorem
5.1.

We now explain a few ̂ -dimensional minimal submanifolds Mn of essential
codimension m — n in an m-dimensional sphere Sm(a) for small m and n as
follows:

In S\a) S\a/^Ύ) x S\aj^~2) (n = 2) .

In S\a) S\aV2j3) X S\a/VT) (n = 3) .

In S5(a) S\a/V~3) x S^a/^Ύ) x S\a/VT) (π = 3) .

S\aVΎ 12) x S\a/2) , S*(a/S2) x S*(a/f2) (n = 4) .

In S\a) S2WVT) x 5^/2) X S\a/2) (Λ = 4) ,

54(2α/VT) X Sι(a/VΎ) , SW3/5) X SW2/5) (n = 5) .

In S\a) S\aj2) x S\a/2) x S\a/2) x S\a/2) (n = 4) ,
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SW3/5) x S\a/VT) x PifllVT) ,

S2(a^2β) x S\aV2β) X ^(α/VT) (w = 5) ,

SW5/6) X Pia/JT) , S\aV2β) X S2(fl/VT) ,

T) x ^(α/VT) (Λ = 6 ) .

We now observe that in Sm(ά) no minimal submanifold of the type (5.2) is
contained in an open semi-sphere, and shall show in Theorem 5.3 that this
fact generally holds for any compact minimal submanifold in Sm(ά). We first
need a lemma. Take a fixed unit vector e with components (e\ , em+1) in
Rm+1, and define a function φ in Rm+ί by

m + 1

( 5 . 4 ) # J C ) = (jt, e)=Σ *ΛeΛ , * 6 i ? m + I ,
4 = 1

where x = (x\ >,xm+1), and v denotes the restriction of φ to Sm(a). Then
along 5TO(α),

m + l
: Σ BZ^AΦ >

from which and (5.4) it follows that

m + l

and hence that

m + l

PjPiV = Σ (VjBi

A)eA = -vgji/a2 ,

because along Sm(ά)

F B Λ — Q xAla2

Thus we have
Lemma 5.1. In Sm(ά) there exists a nontrivial function v satisfying

where v is the restriction to Sm(a) of the function φ defined in Rm+1 by (5.4).
Next consider an ̂ -dimensional minimal submanifold Mn in Sm(a), 1 < n < m.

Then by transvecting (5.5) with BjBj we have, along Mn,

(5.6) B^BjFjFίV = vgcb/a2 ,
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which together with FcBb

h — Hcb

xCx

h implies

FcFbv - Heb*CxΨtv = -vgcb/a2 .

Thus by transvecting with gcb and the minimality of Mn we obtain

gcΨcVbv = —nv/a2 .

Since v cannot be positive (or negative) everywhere in a compact Mn, we have

Theorem 5.3. // an n-dimensional submanijold Mn in an m-dimensional

sphere Sm is compact and minimal ( 1 < n < m), then in Sm there exists no open

semi-sphere containing Mn. When the Mn is contained in a closed semi-sphere

V of Sm, Mn lies on the boundary dV of V, which is a great sphere of Sm.
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