ORIENTATION OF DIFFERENTIABLE MANIFOLDS

MARSTON MORSE \& STEWART S. CAIRNS

0. Introduction

We shall study compact, connected C^{∞}-manifolds M_{n} provided with a Riemannian metric. Homologically characterized, an "orientable" manifold M_{n} is a manifold whose n-th Betti number is 1 , or equivalently a manifold whose n-th connectivity over the field \mathbf{Q} of rational numbers is 1 . If the manifold M_{n} is triangulated, another and equivalent characterization is that the simplicial cells of M_{n} can be coherently oriented, in the classical sense.

In [6] the authors concern themselves with a systematic development of singular homology on M_{n} without making use of any triangulation of M_{n}. Triangulations are avoided for two reasons. In a study of $N D$ (abbreviating nondegenerate) functions on M_{n} it is found that a global triangulation is neither needed nor relevant. A deeper reason is that the methods of the critical point theory, if developed without any use of global triangulations of M_{n}, are extendable to compact, connected topological manifolds admitting a topologically $N D$ function. See [4], [8] and [7]. For a definition of topologically ND functions see [1].

Objective. We shall give a geometic definition of the orientability of M_{n}. This definition has many consequences in the study of $N D$ function on M_{n}. In particular one can show, without making use of any global triangulation of M_{n}, that M_{n} is geometrically orientable in our sense if and only if $\beta_{n}\left(M_{n}\right)=1$. It is believed, moreover, that the theory here developed for differentiable manifolds has an extension to topological manifolds admitting a topologically $N D$ function. The theorems on "critical shells", introduced in $\S 7$ when $n>2$ and f is "biorderd" (§4), are believed to be fundamental both in the orientable and nonorintable case.

1. Inverting sequences of presentations

Definition 1.0. \pm Compatibility ${ }^{1}$. Two overlapping presentations Q and F in $\mathscr{D} M_{n}$ (see [6, §13]) will be said to be Com (Com) if the transition diff λ associated with Q and F (see $[6, \S 5]$) has a positive (negative) Jacobian at each point of the euclidean domain of definition of λ. The intersection of the ranges

[^0]$R Q$ and $R F$ of Q and F may fail to be a connected set, and Q and F may accordingly fail to be Con or Com. We shall, however, establish the following basic lemma.

Lemma 1.0. If ε is a sufficiently small positive constant, any two overlapping presentations in $\mathscr{D} M_{n}$, whose ranges on $\left|M_{n}\right|$ are connected subsets of ${ }^{2}\left|M_{n}\right|$ which have diameters on $\left|M_{n}\right|$ at most ε, are either Com or $^{+}$Com.

Proof. A sufficiently small positive constant ε has the following property: corresponding to each point $p \in\left|M_{n}\right|$ there exists a presentation $F_{p} \in \mathscr{D} M_{n}$ whose range $R F_{p}$ is an open topological n-ball which contains each point $q \in\left|M_{n}\right|$ at most a distance ε on $\left|M_{n}\right|$ from p. The proof of this statement can be given in many ways. It depends on the fact that $\left|M_{n}\right|$ is a compact manifold. For such an ε Lemma 1.0 is satisfied, as we shall now verify.

Let Q_{1} and Q_{2} be presentations in $\mathscr{D} M_{n}$ whose ranges are connected subsets of $\left|M_{n}\right|$, which have diameters on $\left|M_{n}\right|$ at most ε and which contain a common point p. Note that

$$
\begin{equation*}
R Q_{1} \subset R F_{p} ; R Q_{2} \subset R F_{p} \tag{1.0}
\end{equation*}
$$

Since $R Q_{1}$ is a connected subset of $R F_{p}$, it follows that Q_{1} and F_{p} are either $\mathrm{Co}^{+} \mathrm{m}$ or Com. Similarly Q_{2} and F_{p} are either Co^{+}m or Com. Since

$$
\begin{equation*}
R Q_{1} \cap R Q_{2} \subset R F_{p} \tag{1.1}
\end{equation*}
$$

it follows that Q_{1} and Q_{2} are Com or $^{+}$Com regardless of whether $R Q_{1} \cap R Q_{2}$ has one or more components.

The ensemble $\mathscr{D}_{\varepsilon} M_{n}$. In accord with Lemma 1.0 we denote by $\mathscr{D}_{6} M_{n}$ the subset of presentations in $\mathscr{D} M_{n}$ whose ranges are connected subsets of $\left|M_{n}\right|$ with diameters less than ε. We suppose ε conditioned by Lemma 1.0.

Definition 1.1. Orientable manifolds. The manifold M_{n} will be termed orientable e^{3} if it admits a covering Γ by a subset of presentations in $\mathscr{D} M_{n}$ such that any two overlapping presentations in Γ are Com. Such a covering Γ will be termed orienting.

If M_{n} is orientable, there always exists a finite orienting covering Γ of M_{n}, since $\left|M_{n}\right|$ is compact. If M_{n} admits an orienting covering Γ, it admits an orienting covering in $\mathscr{D}_{6} M_{n}$, taken as the union of all presentations $P \in \mathscr{D}_{6} M_{n}$ such that for some presentation $Q \in \Gamma, P \mathrm{Com}_{+}^{+} Q$ and $R P \subset R Q$.

To find conditions sufficient that M_{n} be orientable various definitions are needed.

Definition 1.2. Sequences $Q_{1} * Q_{\mu}$. A sequence

[^1]\[

$$
\begin{equation*}
Q_{1}: Q_{2}: \cdots: Q_{\mu} \quad(\mu>2) \tag{1.2}
\end{equation*}
$$

\]

of presentations $Q_{i} \in \mathscr{D}_{8} M_{n}$ such that each presentation except the last is ${ }^{+}{ }^{+}$m with its successor, will be denoted by $Q_{1} * Q_{\mu}$. A sequence $Q_{1} * Q_{\mu}$ is not uniquely defined by the presentations Q_{1} and Q_{μ}.

We term a sequence $Q_{1} * Q_{\mu}$ admissible.
As a prelude to our study of "inverting sequences" we shall inroduce two lemmas on what we shall call conditioned transitivity of the relation Com. If Q_{1} and Q_{2} are two presentations in $\mathscr{D}_{\varepsilon} M_{n}$ which are Com, or Com, we shall write $Q_{1} \mathrm{Com}_{\mathrm{C}_{2}}$, or Q_{1} Com $_{-} Q_{2}$, respectively.

Lemma 1.1. If A, B, C are three presentations in $\mathscr{D}_{\mathrm{D}} M_{n}$ such that

$$
\begin{equation*}
A \text { Com }_{+} C, \quad B \text { Com }_{+}^{+} C, \tag{1.3}
\end{equation*}
$$

then $A{ }^{+}{ }^{+}$m B whenever

$$
\begin{equation*}
R A \cap R B \cap R C \neq \emptyset \tag{1.4}
\end{equation*}
$$

The proof is trivial. We continue with an extension.
Lemma 1.2. Let $F \in \mathscr{D}_{\mathrm{d}} M_{n}$ be given with a sequence ${ }^{4} Q_{1} * Q_{\mu}$ of form (1.2) such that $Q_{1} \mathrm{Com}^{+} F$ and

$$
\begin{equation*}
R Q_{j-1} \cap R Q_{j} \cap R F \neq \emptyset \tag{1.5}
\end{equation*}
$$

for j on the range $2, \cdots, \mu$. Then $Q_{j} \mathrm{Com}^{+} F$ for each j.
Proceeding inductively we assume $F \mathrm{Co}^{+} Q_{j-1}$ for some j on the range 2 , \cdots, μ. Since

$$
\begin{equation*}
Q_{j} \stackrel{+}{+} \mathrm{m} Q_{j-1} \quad \text { (by hypothesis) } \tag{1.6}
\end{equation*}
$$

and (1.5) holds, Lemma 1.1 implies that $Q_{j} \mathrm{Com}^{+} F$.
Lemma 1.2 follows.
Presentations F and \hat{F}. Let $(F: U, X)$ be a presentation in $\mathscr{D}_{6} M_{n}$. The domain U of F is an open nonempty subset of a euclidean space E_{n} of coordinates u_{1}, \cdots, u_{n}. Let ρ be a reflection of U in the coordinate ($n-1$)-plane E_{n-1} of E_{n} on which $u_{n}=0$. The presentation

$$
\begin{equation*}
\left(F \circ \rho^{-1}: \rho(U), X\right) \in \mathscr{D}_{6} M_{n} \tag{1.7}
\end{equation*}
$$

[^2]will be denoted by \hat{F}. It is clear that F and \hat{F} are Com. We term \hat{F} the invert of F.

Definition 1.3. Inverting sequences. A sequence $Q_{1} * Q_{\mu}$ such that $Q_{\mu}=\hat{Q}_{1}$ or equivalently $Q_{1}=\hat{Q}_{\mu}$ will be called an inverting sequence.

We shall prove the following lemma.
Lemma 1.3. If an inverting sequence exists on M_{n}, then for each presentation $F \in \mathscr{D}_{\ell} M_{n}$ there exists an inverting sequence $F * \hat{F}$.

Proof. By hypothesis, for some presentation $Q \in \mathscr{D}_{\varepsilon} M_{n}$ there exists an inverting sequence $Q * \hat{Q}$. Because $\left|M_{n}\right|$ is arcwise connected, one at least of the two following cases arises:

Case I. A sequence $F * Q$ exists;
Case II. A sequence $F * \hat{Q}$ exists.
In Case I a sequence $\hat{Q} * \hat{F}$ also exists. Hence a sequence $F * \hat{F}$ exists of the form

$$
\begin{equation*}
(F * Q):(Q * \hat{Q}):(\hat{Q} * \hat{F}) . \tag{1.8}
\end{equation*}
$$

Thus Lemma 1.3 is true in Case I.
In Case II a sequence $F * \hat{F}$ exists of the form

$$
\begin{equation*}
(F * \hat{Q}):(\hat{Q} * Q):(Q * \hat{F}) \tag{1.9}
\end{equation*}
$$

Thus Lemma 1.3 is true in both cases.
In preparation for a proof of Theorem 1.1 we shall give a definition and prove a lemma and a corollary.

Definition 1.4. An orienting covering of M_{n} in $\mathscr{D}_{6} M_{n}$ is termed maximal in $\mathscr{D}_{6} M_{n}$ if it is a subset of no other orienting covering of M_{n} in $\mathscr{D}_{6} M_{n}$.

Lemma 1.4. If there exists an orienting covering Δ of M_{n} in $\mathscr{D}_{e} M_{n}$, there exists an orienting covering of M_{n} which is maximal in $\mathscr{D}_{6} M_{n}$ and includes Δ.

We shall show that the set of presentations

$$
\begin{equation*}
\Gamma=\left\{A \in \mathscr{D}_{\varepsilon} M_{n} \mid A \text { Com }_{+} Q \text { for some } Q \in \Delta\right\} \tag{1.10}
\end{equation*}
$$

is a maximal orienting covering in $\mathscr{D}_{\varepsilon} \boldsymbol{M}_{n}$. We first prove (α) :
(α) If F and G are two overlapping presentations in Γ, then F Com G.
Case 1. Suppose F and G are in Δ. Then $F \mathrm{Com}^{+} G$ by definition of Δ.
Case 2. Suppose that just one of the presentations F and G, say G, is in Δ and the other F is in $\Gamma-\Delta$. Since Δ is a covering there exists a presentation $Q \in \Delta$ overlapping F. Because $R F$ is arcwise connected, Δ contains a sequence $Q_{1} * Q_{\mu}$ such that $Q_{1}=Q, Q_{\mu}=G$ and

$$
\begin{equation*}
R Q_{j-1} \cap R Q_{j} \cap R F \neq \emptyset \quad(j=2, \cdots, \mu) \tag{1.11}
\end{equation*}
$$

From Lemma 1.2 it follows that $F \operatorname{Com}_{+}^{+} Q_{\mu}$.
Case 3. Suppose that F and G are in $\Gamma-\Delta$. Since F and G overlap and Δ is a covering, Δ contains a presentation Q such that $R F \cap R G \cap R Q \neq \emptyset$.
By Case 2, $F \mathrm{C}^{+} \mathrm{m} Q$ and $G \mathrm{C}^{+} \mathrm{m} Q$. Hence by Lemma 1.1, $F \mathrm{C}^{+} \mathrm{m} G$.
Since $\Delta \subset \Gamma, \Gamma$ is a covering of M_{n} and it follows from (α) that Γ is an orienting covering. If $A \in \mathscr{D}_{\&} M_{n}$, then exactly one of the pair $\{A, \hat{A}\}$ is in Γ by virtue of (α). Therefore, if $\hat{\Gamma}$ denotes the set of inverts of elements of Γ, then $(\Gamma, \hat{\Gamma})$ is a partition of $\mathscr{D}_{\star} \boldsymbol{M}_{n}$. It follows that Γ is maximal.

Thus Lemma 1.4 is true.
We state a corollary.
Corollary 1.1. If M_{n} is orientable, there exists a unique partition ($\left.\Gamma, \hat{\Gamma}\right)$ of $\mathscr{D}_{\varepsilon} M_{n}$ in which Γ and $\hat{\Gamma}$ are maximal orienting coverings of M_{n} in $\mathscr{D}_{6} M_{n}$.

Theorem 1.1. A necessary and sufficient condition that M_{n} be orientable is that there exist no inverting sequence in $\mathscr{D}_{6} M_{n}$.
(α) The condition is necessary. In fact, if M_{n} is orientable $\mathscr{D}_{\varepsilon} M_{n}$ admits a partition $(\Gamma, \hat{\Gamma})$ as in Corollary 1.1. If $Q_{1} * Q_{\mu}$ is a given sequence, then $Q_{1} \in \Gamma$ or $Q_{1} \in \hat{\Gamma}$. If $Q_{1} \in \Gamma$, then each presentation in the sequence $Q_{1} * Q_{\mu}$, including Q_{μ}, must be in Γ. The sequence cannot then be an inverting sequence. If $Q_{1} \in \hat{\Gamma}$ the proof is similar.

The condition of Theorem 1.1 is accordingly necessary.
(β) The condition of Theorem 1.1 is sufficient. We seek a subset of $\mathscr{D}_{8} M_{n}$ which is an "orienting covering" Γ of M_{n} (Def. 1.1). We shall define Γ as a special subset of $\mathscr{D}_{e} M_{n}$ whose presentations cover M_{n}, and prove that any two overlapping presentations in Γ are Co^{+}.

The definition of Γ. Let A be a finite or countably infinite range of indices α. Let

$$
\Pi=\left(Q_{\alpha}\right)_{\alpha \in A}, \quad \hat{\Pi}=\left(\hat{Q}_{\alpha}\right)_{\alpha \in A}
$$

be subsets of $\mathscr{D}_{\star} M_{n}$ such that the presentations of Π (and hence of \hat{I}) cover M_{n}. Let a presentation $H_{0} \in \Pi$ be prescribed and fixed. For each $\alpha \in A$ one, at least, of the presentations Q_{α} and \hat{Q}_{α}, say H_{α}, is such that a sequence $H_{0} * H_{\alpha}$ exists. With H_{α} so defined we set

$$
\begin{equation*}
\Gamma=\left(H_{\alpha}\right)_{\alpha \in A} \tag{1.12}
\end{equation*}
$$

We understand that 0 is an index in A so that H_{0} is in Γ. It is clear that the presentations of Γ cover M_{n}.

It remains to prove the following:
I. If H_{α} and H_{β} are two overlapping presentations in Γ, and no inverting sequences exist in $\mathscr{D}_{\varepsilon} M_{n}$, then H_{α} and H_{β} are $\mathrm{C}^{+} \mathrm{m}$.

Suppose on the contrary that H_{α} and H_{β} are Com. Then one has the relation

$$
\begin{equation*}
H_{\beta} \mathrm{Com}_{\mathrm{H}_{\alpha}} \text {. } \tag{1.13}
\end{equation*}
$$

By definition of Γ there exist sequences $H_{0} * H_{\alpha}$ and $H_{0} * H_{\beta}$. There accordingly exist a sequence $H_{\alpha} * H_{0}$ and, by virtue of (1.13), a sequence of the form

$$
\begin{equation*}
H_{0} * H_{\beta}: \hat{H}_{\alpha} . \tag{1.14}
\end{equation*}
$$

Hence there exists an inverting sequence of the form

$$
\begin{equation*}
H_{\alpha} * H_{0}: H_{0} * \hat{H}_{\alpha} \tag{1.15}
\end{equation*}
$$

contrary to hypothesis in I.
Hence I is true and the conditions of Theorem 1.1 are sufficient. This completes the proof of Theorem 1.1.

We shall make use of the following lemma, leaving its verification to the reader.

Lemma 1.5. Two overlapping presentations in $\mathscr{D}_{\bullet} M_{n}$ which are restrictions respectively of presentations F and Q in $\mathscr{D}_{\epsilon} M_{n}$ are $\mathrm{C}^{+}{ }^{+}$if and only if $F \mathrm{C}^{+} \mathrm{m} Q$.

Definition 1.5. Inversion invariant coverings of $M_{n} . A$ subset Λ of presentations in $\mathscr{D}_{\epsilon} M_{n}$, which covers M_{n} and is such that \hat{Q} is in Λ whenever Q is in Λ, will be called an inversion invariant covering of M_{n}.

The following lemma is immediate.
Lemma 1.6. If M_{n} admits an orienting covering, and Λ is an inversion invariant covering of M_{n} in $\mathscr{D}_{8} M_{n}$, then the following is true.

If $(\Gamma, \hat{\Gamma})$ is the partition of $\mathscr{D}_{\star} M_{n}$ given in Corollary 1.1, then Λ admits a unique partition

$$
(\Gamma \cap \Lambda, \hat{\Gamma} \cap \Lambda)
$$

into two subsets each of which is a maximal orienting covering of M_{n} in Λ.
Theorem 1.1 can be generalized as follows.
Theorem 1.2. If Λ is an inversion invariant covering of M_{n}, then a necessary and sufficient condition that M_{n} be orientable is that there exist no inverting sequence $F * \hat{F}$ in Λ.

The condition is necessary since an inverting sequence in Λ would be an inverting sequence in $\mathscr{D}_{i} M_{n}$, contrary to Theorem 1.1. A proof that the condition is sufficient is given by the proof that the condition of Theorem 1.1 is sufficient, on replacing $\mathscr{D}_{8} M_{n}$, wherever it occurs in the latter proof, by Λ.

Definition 1.6. Extended geometric orientability. Let M_{n}^{\prime} be a differentiable manifold such that $\left|M_{n}^{\prime}\right|$ is an open arcwise connected subspace of $\left|M_{n}\right|$ and M_{n}^{\prime} has a differentiable structure induced on $\left|M_{n}^{\prime}\right|$ by \boldsymbol{M}_{n}. Definitions 1.1 to 1.5 can be extended to M_{n}^{\prime}, by replacing M_{n} by M_{n}^{\prime}. The lemmas and theorems of $\S 1$ remain valid if M_{n} is replaced by M_{n}^{\prime}.

2. f-level manifolds on M_{n}

Definition 2.1. Admissible ND functions f. We admit ND functions f of class C^{∞} on M_{n} such that f has different values a at different critical points and just one critical point of index 0 and one of index n. See [2]. The critical point of f at the f-level a is denoted by p_{a}.

Given a value c of f, a subset of $\left|M_{n}\right|$ of the form

$$
\begin{equation*}
f^{c}=\left\{x \in\left|M_{n}\right| \mid f(x)=c\right\} \tag{2.1}
\end{equation*}
$$

is called an f-level set on M_{n}.
If c is an ordinary value of f, then f^{c} is a compact topological ($n-1$)-manifold which is the union of a finite number of disjoint compact, connected, topological ($n-1$)-manifolds. It is well-known that when c is ordinary, f^{c} is the carrier of a C^{∞}-manifold \mathbf{f}^{c} which is C^{∞}-embedded in M_{n} by the inclusion mapping of f^{c} into $\left|M_{n}\right|$. See (ii) of the proof of [6, Theorem 20.1].

When c is a critical value a of f of index $k \neq 0$ or n, the topological manifold $\dot{f}^{a}=f^{a}-p_{a}$ is also the carrier of a C^{∞}-manifold $\dot{\mathbf{f}}^{a}$ which is C^{∞}-embedded in M_{n} by the inclusion mapping of \dot{f}^{a} into $\left|M_{n}\right|$.

Notation. Suppose that c is an ordinary value of f. Let M_{n-1} be a component of \mathbf{f}^{c}. Let a metric on M_{n-1} be induced by the Riemannian metric on M_{n}, and $\mathscr{D}_{e} M_{n-1}$ be a subset of the presentations in $\mathscr{D} M_{n-1}$ with e conditioned relative to M_{n-1} as ε was conditioned by Lemma 1.0 relative to M_{n}. We suppose $e<\varepsilon$.

A trajectory on M_{n} which is orthogonal to the non-singular level manifolds of f will be called an ortho-f-arc on M_{n}. Each such arc γ will be parameterized by the values of f on γ.
ff-Presentations. The proof in $\S 20$ of [6] that the non-singular level manifolds \mathbf{f}^{c} are C^{∞}-embedded in M_{n} by the inclusion mapping of f^{c} into $\left|M_{n}\right|$ makes use of specialized presentations $\mathscr{F} \in \mathscr{D} M_{n}$, termed ff-presentations, whose nature we shall briefly recall.

The euclidean domain of an \mathscr{F} is taken as a product $J \times V$ of a bounded open interval J containing the value c of f and an open subset V of the coordinate $(n-1)$-plane E_{n-1} of E_{n} on which the coordinate $u_{n}=0$. A point in J will be represented by its coordinate t, a point in V by rectangular coordinates v_{1}, \cdots, v_{n-1}, a point in the domain $J \times V$ of \mathscr{F} by a set of coordinates

$$
\left(t, v_{1}, \cdots, v_{n-1}\right)=(t, v)
$$

An ff-presentation \mathscr{F} is a presentation in $\mathscr{D} M_{n}$ which can be given the form

$$
\begin{equation*}
(t, v) \rightarrow \mathscr{F}(t, v): J \times V \rightarrow\left|M_{n}\right| \tag{2.2}
\end{equation*}
$$

subject to the condition that each partial mapping $t \rightarrow \mathscr{F}(t, v): J \rightarrow\left|M_{n}\right|$ be

[^3]an ortho- f-arc. When c is an ordinary value of f, J is restricted to an open interval of ordinary values of f containing c. In this case, partial mappings of the form $v \rightarrow \mathscr{F}(c, v): V \rightarrow f^{c}$ cover f^{c} and define a differential structure of class C^{∞} on f^{c}. With this structure f^{c} becomes a differentiable manifold $\mathbf{f}^{c}, C^{\infty}$-embedded in M_{n} by the inclusion mapping of f^{c} into $\left|M_{n}\right|$. We suppose $\dot{\mathbf{f}}^{a}$ similarly defined when a is a critical value.
"Bases" of $f f$-presentations. If c is ordinary, let M_{n-1} be a component of \mathbf{f}^{c}. If c is a critical value a of f let M_{n-1} be a component $\dot{\mathbf{f}}^{a}$. If a presentation
\[

$$
\begin{equation*}
(Q: V, X) \in \mathscr{D} M_{n-1} \tag{2.3}
\end{equation*}
$$

\]

is given, an ff-presentation

$$
\begin{equation*}
(H: J \times V, Y) \in \mathscr{D} M_{n} \tag{2.4}
\end{equation*}
$$

based on Q is defined as follows. If c is an ordinary value of f, then J shall be an interval of ordinary values of f as above. If $c=a$ is critical, J shall be an interval of values of f of which a alone is critical. For $(t, v) \in J \times V, H(t, v)$ shall be the point at the f-level t on the ortho- f-arc which meets the point $Q(v)$ of M_{n-1} when $t=f(Q(v))$.

We can now prove the following theorem.
Theorem 2.1. (i). Suppose that $n>2$ and that c is an ordinary value of f. If a component M_{n-1} of \mathbf{f}^{c} is non-orientable, M_{n} is non-orientable.
(ii) If M_{n} is orientable, then for each ordinary value c of f each component of \mathbf{f}^{c} is orientable.

Proof of (i). Since M_{n-1} is non-orientable, there exists (Theorem 1.1) an inverting sequence $F * \hat{F}$ of presentations

$$
\begin{equation*}
Q_{1}: Q_{2}: \cdots: Q_{\mu} \quad\left(F=Q_{1} ; \hat{F}=Q_{\mu}\right) \tag{2.5}
\end{equation*}
$$

in $\mathscr{D}_{e} M_{n-1}$. For i on the range $1, \cdots, \mu$ suppose that Q_{i} has the form

$$
\begin{equation*}
\left(Q_{i}: V_{i}, X_{i}\right) \tag{2.6}
\end{equation*}
$$

We are taking $e<\varepsilon$ so that if J is a sufficiently small open interval containing c, then an ff-presentation

$$
\begin{equation*}
\left(H_{i}: J \times V_{i}, Y_{i}\right) \in \mathscr{D}_{e} M_{n} \tag{2.7}
\end{equation*}
$$

based on Q_{i} exists. The sequence

$$
\begin{equation*}
H_{1}: H_{2}: \cdots: H_{\mu} \quad\left(\text { in } \mathscr{D}_{\varepsilon} M_{n}\right) \tag{2.8}
\end{equation*}
$$

is readily seen to be admissible on M_{n}. The hypothesis that $Q_{\mu}=\hat{Q}_{1}$ implies that $H_{\mu}=\hat{H}_{1}$ so that (2.8) is an inverting sequence $H_{1} * \hat{H}_{1}$ in $\mathscr{D}_{8} M_{n}$.

Thus Theorem 2.1 (i) is true. The proof of Theorem 2.1 (ii) is similar.

3. f-Preferred Riemannian structures on M_{n}

In [6, § 22] we have shown that a Riemannian structure on M_{n} can always be modified near the respective critical points of f in such a manner as to leave M_{n} and f unchanged and yield a new Riemannian structure on M_{n} of the type which we have termed f-preferred. We shall recall the theorem which characterizes such structures.

To that end let D_{σ} be an open origin-centered n-ball of radius σ in the euclidean space E_{n} of coordinates u_{1}, \cdots, u_{n}. Let ${ }^{6}$

$$
\begin{equation*}
\left(F: D_{a}, X\right) \in \mathscr{D} M_{n} \quad\left(F(\mathbf{O})=p_{a}\right) \tag{3.1}
\end{equation*}
$$

be a presentation of a neighborhood X of a critical point p_{a} of f. We term the presentation F "isometric" if the euclidean length in E_{n} of any rectifiable arc $\gamma \subset D_{\sigma}$ equals the Riemannian length on X of $F(\gamma)$. The following theorem is a special consequence of [6, Theorem 22.2].

Theorem 3.1. If $\sigma>0$ is sufficiently small, there exists a Riemannian metric ${ }^{7}$ on M_{n} such that corresponding to each critical point p_{a} of f of index k there exists an isometric presentation $F=I^{a}$ of form (3.1) of a neighborhood X of p_{a} on M_{n} such that

$$
\begin{equation*}
f\left(I^{a}(u)\right)-a=-u_{1}^{2}-\cdots-u_{k}^{2}+u_{k+1}^{2}+\cdots+u_{n}^{2} \quad\left(u \in D_{\sigma}\right) . \tag{3.2}
\end{equation*}
$$

Ortho-f-arcs near p_{a}. Set

$$
\begin{equation*}
\varphi_{k}(u)=-u_{1}^{2}-\cdots-u_{k}^{2}+u_{k+1}^{2}+\cdots+u_{n}^{2} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
X-p_{a}=\dot{X}, \quad D_{\sigma}-\mathbf{O}=\dot{D}_{\sigma} \tag{3.4}
\end{equation*}
$$

Since I^{a} is isometric, the ortho- f-arcs on X are images under I^{a} of the ortho-φ_{k}-arcs on \dot{D}_{σ}. Orthogonality in \dot{D}_{σ} is euclidean.

The case $k=n-1$. In this case let E_{n-1} denote the coordinate ($n-1$)plane in E_{n} on which $u_{n}=0$. With $0<\rho<\sigma$ set

$$
\begin{equation*}
\Delta_{\rho}=\left\{u \in E_{n-1} \mid\|u\|<\rho\right\} . \tag{3.5}
\end{equation*}
$$

Let $\dot{\Delta}_{\rho}$ be Δ_{ρ} with the origin deleted. Ortho- φ_{n-1}-arcs are radial in $\dot{\Delta}_{\rho}$ and have images under I^{a} which radiate ${ }^{8}$ from p_{a} on M_{n} on the ($n-1$)-manifold $I^{a}\left(\Delta_{\rho}\right)$. The intervals $(0, \rho),(-\rho, 0)$ on the u_{n}-axis represent radial ortho- φ_{n-1}-arcs. All other ortho $-\varphi_{n-1}$-arcs in \dot{D}_{ρ} are arcs of rectangular hyperbolas with either the positive u_{n}-axis or negative u_{n}-axis as an asymptote. See [6, § 22].

[^4]The cone Λ_{n-1}. In § 7 we shall refer to the $(n-1)$-cone

$$
\begin{equation*}
\Lambda_{n-1}=\left\{u \in E_{n} \mid u_{n}^{2}=u_{1}^{2}+\cdots+u_{n-1}^{2}\right\} \tag{3.6}
\end{equation*}
$$

and to the subsets Λ_{n-1}^{+}and Λ_{n-1}^{-}of Λ_{n-1} on which $u_{n} \geq 0$ and $u_{n} \leq 0$ respectively. The subsets Λ_{n-1}^{+}and Λ_{n-1}^{-}intersect only in the origin.

Definition 3.1. A neighborhood ${ }^{9} U_{e}^{k}$ of \mathbf{O} in E_{n}. Corresponding to the function $u \rightarrow \varphi_{k}(u)$ defined by (3.3) when $0<k<n$, we shall define for future use an arbitrarily small neighborhood

$$
\begin{equation*}
U_{e}^{k} \subset D_{\sigma} \quad(0<e<\sigma) \tag{3.7}
\end{equation*}
$$

in E_{n} of the origin \mathbf{O} in E_{n}. Corresponding to a positive constant $e<\sigma$ we introduce the truncated ($n-1$)-cone

$$
\begin{equation*}
\Omega_{e}=\left\{u \in E_{n} \mid \varphi_{k}(u)=0,\|u\|<e\right\} . \tag{3.8}
\end{equation*}
$$

The neighborhood U_{e}^{k} shall be the union of the origin and all ortho $-\varphi_{k}$-arcs which meet Ω_{e} or have the origin as limiting end point and on which φ_{k} is in absolute value less than e. A final condition is that e be so small that (3.7) holds.

The set U_{e}^{k} is connected and by virtue of condition (3.7) I^{a} is defined on U_{e}^{k} and

$$
\begin{equation*}
I^{a} \mid U_{e}^{k} \in \mathscr{D} M_{n} \tag{3.9}
\end{equation*}
$$

Subsets of U_{e}^{k}, with $\varphi_{k}>0$ or $\varphi_{k}<0$. Set

$$
\begin{align*}
U_{-}^{k} & =\left\{u \in U_{e}^{k} \mid \varphi_{k}(u)<0\right\}, \tag{3.10}\\
U_{+}^{k} & =\left\{u \in U_{e}^{k} \mid \varphi_{k}(u)>0\right\} . \tag{3.11}
\end{align*}
$$

The following lemma is easily verified.
Lemma 3.1. U_{-}^{k} is connected when $1<k<n$, and U_{e}^{k} is connected when $0<k<n-1$. Neither U_{-}^{1} nor U_{-}^{n-1} is connected.
U_{-}^{1} is the union of two components

$$
\begin{equation*}
{ }^{\prime} U_{\bar{e}}^{1}, \quad{ }^{\prime \prime} U_{\bar{e}}^{1} \tag{3.12}
\end{equation*}
$$

on which $u_{1}>0$ and $u_{1}<0$, respectively, while U_{+}^{n-1} is the union of two components

[^5]\[

$$
\begin{equation*}
{ }^{\prime} U_{+}^{n-1}, \quad " U_{+}^{n-1} \tag{3.13}
\end{equation*}
$$

\]

on which $u_{n}>0$ and $u_{n}<0$, respectively.

4. ND functions f of biordered type

A $N D$ function f shall be admissible in the sense of Def. 2.1.
Definition 4.1. f of biordered type. An admissible $N D$ function f on M_{n} will be said to be of biordered type if each critical value of index 1 is less than each critical value of index $k>1$ and, dually, each critical value of index $n-1$ is greater than each critical value of index $k<n-1$.

We shall prove the following theorem.
Theorem 4.1. There exists on M_{n} an admissible ND function f of biordered type.

This theorem is here proved with the aid of the theory of "bowls" of f as developed in papers [3] and [5].

Theorem 4.1 is a special case of the theorem that there exists on M_{n} an admissible $N D$ function the numerical order of whose critical values is in accord with the indices of these critical values. This result was first formulated by Smale [9]. It was discovered independently by Morse and is readily verified with the aid of Morse [3] and [5]. The proof here given of Theorem 4.1 illustrates one mode of proof.

Proof of Theorem 4.1. The reader is asked to refer to [6, § 22] for the definition of "bowls ascending or descending" from a critical point with index k. The following lemma implies Theorem 4.1.

Lemma 4.1. For $n>2$ the Riemannian form on M_{n} can be infinitesimally modified ${ }^{10}$ near a finite number of ordinary points of f in such a manner that the following is true.
(i) The 1-bowls ascending from the critical points of f of index $n-1$ (if any exist) have as upper limiting end points the critical point p_{M} at which f assumes its maximum M.
(ii) The 1-bowls descending from the critical points of index 1 (if any exist) have as lower limiting end point the critical point p_{m} at which f assumes its minimum m.
Satisfaction of (i). To satisfy (i) the modification of the Riemannian form need be made in the neighborhood of at most a finite set of points chosen as follows.

Let $B_{-}(z, k)$ be a k-bowl descending from a critical point z of index k such that $0<k<n$, and c be an ordinary value of f such that $c<f(z)$ and the interval ($c, f(z)$) contains no critical values of f. If a 1 -bowl γ ascending from

[^6]a critical point p of index $n-1$ meets $B_{-}(z, k)$, it meets $B_{-}(z, k)$ in a point $w \in f^{c}$. Note that
\[

$$
\begin{equation*}
\operatorname{dim}\left(B_{-}(z, k) \cap f^{c}\right)=k-1<n-1 . \tag{4.1}
\end{equation*}
$$

\]

If the Riemannian form is suitably altered on f^{c} sufficiently near w, the modified 1-bowl γ will not meet $B_{-}(z, k) \cap f^{c}$. Hence the modified 1-bowl γ will "by-pass" z.

After modifications of this type in number less than the number of critical points of f above p, the modified 1 -bowl γ will ascend to p_{M} as a limiting upper end point. If each subsequent modification is made so small as not to alter the "by-passing" of critical points by an original or modified ascending 1-bowl, all 1 -bowls will ascend to p_{M} as a limiting end point.
Satisfaction of (ii). One can similarly satisfy the condition (ii) of Lemma 4.1 by an additional modification of the metric, so made that (i) remains satisfied.

Thus Lemma 4.1 is true.
Completion of proof of Theorem 4.1. The theorem is trivial if $n=2$. We suppose then that $n>2$.

By virtue of Lemma 4.1 we can suppose that conditions (i) and (ii) of Lemma 4.1 are satisfied. Theorems 4.1 and 4.2 of Morse [3] or [5] then imply the following. The function f can be further modified in open disjoint neighborhoods N_{γ} of the respective 1-bowls γ in such a manner that the critical values of f of index $n-1$ differ arbitrarily little from M, while those of index 1 differ arbitrarily little from m, while other critical values of f remain unaltered. Theorem 4.1 follows.

5. Unipartite functions f

Definition 5.1. Unipartite functions f. An admissible $N D$ function f (Def. 2.1) will be termed unipartite if each level set f^{c} of f is connected.

We shall show that when $n>2$ a $N D f$ of "biordered" type (Def. 4.1) is "unipartite". To this end we first extend the comparison of the singular homology groups of f_{a} and of $\dot{f_{a}}$ made in [6, §29] for each critical value a of f. Here

$$
\begin{equation*}
f_{a}=\left\{x \in M_{n} \mid f(x) \leq a\right\}, \tag{5.1}
\end{equation*}
$$

and $\dot{f}_{a}=f_{a}-p_{a}$.
As in [6, § 29] the homology groups are taken over a field \mathscr{K}. Among fields the field \mathbf{Q} of rational numbers is for us the most important.
$N D$ functions g. If c and e are arbitrary values of f with $c<e$, set

$$
\begin{align*}
& f_{(c, e)}=\left\{x \in M_{n} \mid c<f(x)<e\right\}, \tag{5.2}\\
& f_{[c, e]}=\left\{x \in M_{n} \mid c \leq f(x) \leq e\right\} . \tag{5.3}
\end{align*}
$$

If c and e are ordinary values of f, then $f_{[c, e]}$ is a bounded topological manifold with the non-singular ($n-1$)-manifolds f^{c} and f^{e} as boundaries. To give a differential structure to f_{c} of to $f_{[c, e]}$ is to give a differential structure to some open neighborhood of f_{c} or $f_{[c, e]}$ relative to M_{n}. A differential structure will be induced on $f_{(c, e)}$ and on open neighborhoods of f_{c} and $f_{[c, e]}$ by M_{n}. For simplicity of notation we shall hereafter denote the differentiable manifolds carried by

$$
\begin{equation*}
f_{c}, f_{(c, e)}, f_{[c, e]} \tag{5.4}
\end{equation*}
$$

by the same symbols.
In Theorems 5.1 and 5.2 below, g shall be one of the three restrictions

$$
\begin{equation*}
g=f\left|f_{(c, e)} ; g=f\right| f_{[c, e]} ; g=f \mid f_{c} \tag{5.5}
\end{equation*}
$$

of f, with c and e ordinary values of f.
In the comparisons in [6, §29], one can replace f by g subject to proper interpretations of the theorems involved. The principal theorems of [6, § 29] are proved by induction with respect to an integer denoted by \mathbf{m}. The induction is completed in [6] so that in stating our extensions we can properly omit the inductive integer \mathbf{m}. A first theorem extends [6, Corollary 29.1].

Theorem 5.1. If p_{α} is a critical point of g of index k with critical value α, and if one sets $\dot{g}_{\alpha}=g_{\alpha}-p_{\alpha}$, then over an arbitrary field \mathscr{K} the connectivity

$$
\begin{equation*}
R_{q}\left(g_{\alpha}, \dot{g}_{\alpha}\right)=\delta_{k}^{q} \quad(q=0,1, \cdots), \tag{5.6}
\end{equation*}
$$

where \dot{g}_{α} serves as a modulus.
The proof of this theorem is identical in form with the proof of [6, Theorem 29.1].

Definition 5.2. q-caps. A relative q-cycle on $g_{\alpha} \bmod \dot{g}_{\alpha}$ which is nonbounding on $g_{\alpha} \bmod \dot{g}_{\alpha}$ will be called a q-cap of p_{α} relative to g. Cf. [6, Def. 29.1].

By virtue of Theorem 5.1 there are no q-caps of p_{α} relative to g other than k-caps, nnd any such k-cap of p_{α} is a "homology prebase" ${ }^{11}$ for the homology group $H_{k}\left(g_{\alpha}, \dot{g}_{\alpha}\right)$ over \mathscr{K}.

Definition 5.3. k-caps of linking type. A k-cap y^{k} of a critical point p_{α} of g of index k is said to be of linking type relative to g and p_{α}, if ∂y^{k} is bounding (over \mathscr{K}) on \dot{g}_{α}. Otherwise, y^{k} is said to be of nonlinking type. Cf. [6, Def. 29.1].

Definition 5.4. Linking k-cycles. If p_{α} has the index k, a k-cap of p_{α} which is an absolute k-cycle λ^{k} will be called a linking k-cycle of p_{α} (relative to g).

Notation. Given the critical point p_{α} of g let

[^7]\[

$$
\begin{equation*}
\mathbf{b}_{q}\left(g_{\alpha}\right), \mathbf{b}_{q}\left(\dot{g}_{\alpha}\right) \quad(q=0,1, \cdots) \tag{5.7}
\end{equation*}
$$

\]

denote homology prebases, possibly empty, of the singular homology groups $H_{q}\left(g_{\alpha}\right)$ and $H_{q}\left(\dot{g}_{\alpha}\right)$, respectively, over the given field \mathscr{K}.

Note. A critical point p of g is a critical point of f. A k-cap of p, relative to g, is a k-cap of p relative to f. A critical point p of g which is of linking type, relative to g, is of linking type, relative to f. However, the converses of these three statements obtained by interchanging g and f are not in general true, as examples show.

The fundamental theorem follows. We continue with the field \mathscr{K}.
Theorem 5.2. (i) If a critical point p_{α} of g has the index k, then a homology prebase $\mathbf{b}_{q}\left(\dot{g}_{\alpha}\right)$ is a homology prebase $\mathbf{b}_{q}\left(g_{\alpha}\right)$ unless

Case I. $\quad q=k$ and p_{α} is of linking type, or
Case II. $\quad q=k-1$ and p_{α} is of non-linking type.
(ii) In Case I a homology prebase $\mathbf{b}_{k}\left(g_{\alpha}\right)$ is given by any ${ }^{12}$ set of absolute k-cycles of the form

$$
\begin{equation*}
\mathbf{b}_{k}\left(\dot{g}_{\alpha}\right) \cup \lambda^{k}, \tag{5.8}
\end{equation*}
$$

where λ^{k} is a linking k-cycle of p_{α} (relative to g).
(iii) In Case II a homology prebase $\mathbf{b}_{k-1}\left(g_{\alpha}\right)$ is given by any ${ }^{13}$ set of absolute ($k-1$)-cycles, $k>0$, of the form

$$
\begin{equation*}
\mathbf{b}_{k-1}\left(\dot{g}_{\alpha}\right)-w^{k-1} \tag{5.9}
\end{equation*}
$$

in which w^{k-1} is the algebraic boundary of a k-cap of p_{α} and $\mathbf{b}\left(\dot{g}_{\alpha}\right)$ contains w^{k-1}.

Theorem 5.2, as formulated above, differs from [6, Theorem 29.3] only in that g here replaces f of [6]. When stated in terms of g or f, all terms must be understood relative to g or f respectively.

A review by the reader of the proof of [6, Theorem 29.3] will make clear the proof of Theorem 5.2.

We shall use Theorem 5.2 to prove the following lemma, true for $n \geq 2$.
Lemma 5.1. Let a be a critical value of f with index k such that $0<k<n$ and such that f^{a} is connected. Let $[\mu, \nu]$ be an interval of values of f such that $\mu<a<\nu$ and $[\mu, \nu]$ contains no critical values of f other than a.
(i) If f^{μ} is not connected, then $k=1$,
(ii) If fv is not connected, then $k=n-1$.

Proof of (i). Returning to (5.5) set $g=f \mid f_{[\mu, \nu]}$. The critical point z of f at the f-level a is a critical point of g at the g-level a. By hypothesis the set f^{μ}, and hence the set g^{μ}, are not connected.

[^8]As in [6, §23], a proper use of ortho- g-arcs leads to a deformation ${ }^{14}$ retracting \dot{g}_{a} onto g^{μ}. Hence \dot{g}_{a} is not connected.

The set f^{a} and hence g^{a} are connected by hypothesis. Each point of g_{a} is either on g^{a} or can be deformed on an ortho- g-arc so as to ascend to a point of g^{a}, or to z as a limiting end point. The last statements follow from Theorem 3.1. Hence g_{a} is connected and \dot{g}_{a} is not connected.

We infer that a prebase of the homology group $H_{0}\left(g_{a}\right)$ contains just one 0 cycle while a prebase of the homology group $H_{0}\left(\dot{g}_{a}\right)$ contains more than one 0 -cycle. It follows from Theorem 5.2 that z must be a critical point of g of non-linking type with index 1 . This completes the proof of (i).

Proof of (ii). Statement (ii) follows readily if one applies Lemma 5.1 (i) to $-f$ in place of f.

Lemma 5.1 will lead to a proof of the following theorem.
Theorem 5.3. If $n>2$, and the $N D$ fon M_{n} is of biordered type (Def. 4.1), then f is unipartite (Def. 5.1), that is each level set of f is connected.

Proof. Let m and M be respectively the minimum and maximum values of f on M_{n}, and a be the largest of the values $\alpha>m$ of f such that f^{c} is connected for $m<c \leq \alpha$. Then a must be a critical value of f. We shall prove Theorem 5.3 by showing that

$$
\begin{equation*}
a=M . \tag{5.10}
\end{equation*}
$$

Proof of (5.10). If $a<M$, the index k of a is such that $0<k<n$. It then follows from Lemma 5.1 (ii) that $k=n-1$.

If there are $n o$ critical values of f of index $n-1$, it is impossible that index $a=n-1$ and (5.10) must be true.

If there are critical values of f of index $n-1$, then the hypothesis that f is of "biordered" type implies that the critical values of index $n-1$ form a sequence

$$
\begin{equation*}
a_{1}>a_{2}>\ldots>a_{r} \tag{5.11}
\end{equation*}
$$

of values which exceed each critical value of index less than $n-1$. It is impossible that $a=a_{1}$ since for $M>c>a_{1}, f^{c}$ is connected, contrary to the definition of a.

It is impossible that $a=a_{2}$. Were $a=a_{2}$ then for $a_{1}>c>a_{2}, f^{c}$ would be nonconnected by virtue of the definition of a, and hence a_{1} would be of index 1 by Lemma 5.1. If, however, index a_{1} is both 1 and $n-1, n=2$, contrary to hypothesis. Continuing, one proves inductively that a is no one of the numbers (5.11) of index 1. From this contradiction we infer the truth of Theorem 5.3.

Theorem 5.3 follows.

[^9]We shall make repeated use of the following lemma and its variations.
Lemma 5.2. If a and b, with $a<b$, are successive critical values of f on M_{n}, then

$$
\begin{equation*}
H_{q}\left(f_{a}, \mathbf{Q}\right) \approx H_{q}\left(\dot{f_{b}}, \mathbf{Q}\right) \quad(q=0,1, \ldots) \tag{5.12}
\end{equation*}
$$

As in [6, § 23] there exists an f-deformation d retracting \dot{f}_{b} onto f_{a}. It follows from [6, Theorem 28.4], with the moduli A and A^{\prime} empty sets, that the deformation d induces the isomorphisms (5.12).

6. Homological orientability

The manifold M_{n} will be termed homologically orientable if and only if the connectivity

$$
\begin{equation*}
R_{n}\left(\left|M_{n}\right|, \mathbf{Q}\right)=1 \tag{6.1}
\end{equation*}
$$

In this section we shall show that if the manifold M_{n} is geometrically orientable in the sense of $\S 1$, then M_{n} is homologically orientable. The proof is given for the case $n>2$. It can be shown in many ways without use of any global triangulation of M_{n} that geometrical orientability of M_{n} implies (6.1) when $n=2$.

The proof is inductive in character and will make use of an inductive hypothesis formulated as follows:

Inductive hypothesis. We shall assume that if $n>2$, then for each integer r such that $1<r<n$, a connected, compact, differentiable, orientable ${ }^{15}$ manifold M_{r} is such that

$$
\begin{equation*}
R_{r}\left(\left|M_{r}\right|, \mathbf{Q}\right)=1 \tag{6.2}
\end{equation*}
$$

From this point on we shall assume that f is of biordered type on M_{n} (Def. 4.1) and so is a $N D$ unipartite function on M_{n} (Def. 5.1).

If c is an ordinary value of f and M_{n} is orientable, then the level manifold f^{c} has but one component, since f is unipartite, and f^{c} is orientable in accord with Theorem 2.1 (ii). By the inductive hypothesis (6.2),

$$
\begin{equation*}
R_{n-1}\left(f^{c}, \mathbf{Q}\right)=1 \tag{6.3}
\end{equation*}
$$

There accordingly exists a rational $(n-1)$-cycle y_{c}^{n-1} carried by f^{c} which is a "prebase" for the singular homology group $H_{n-1}\left(f^{c}, \mathbf{Q}\right)$.
Theorem 6.1. Suppose that $n>2$ and that M_{n} is orientable. If c and e are ordinary values of f such that $c<e$, and if y_{c}^{n-1} and y_{e}^{n-1} are respectively suitably chosen $(n-1)$ st $R H P^{16}$ of f^{c} and f^{e}, then

[^10]\[

$$
\begin{equation*}
y_{c}^{n-1} \sim y_{e}^{n-1} \quad\left(\text { over } \mathbf{Q} \text { on } f_{[0, e]}\right) . \tag{6.4}
\end{equation*}
$$

\]

We shall begin the proof of Theorem 6.1 by showing that Theorem 6.1 is true in a special case.

Lemma 6.1. In the special case in which the interval $[c, e]$ contains just one critical value a of f, Theorem 6.1 is true.

We shall prove a proposition bearing on Lemma 6.1.
Proposition 6.1. Under the hypotheses of Lemma 6.1 an $(n-1)$-cycle which is an $(n-1)$ st RHP of f^{c} or of f^{e} is an $(n-1)$ st RHP of $f_{[c, e]}$.

Notation. Let k be the index of the critical value a in the interval (c, e). We shall verify the following.

Under the hypotheses of Lemma 6.1, an $(n-1)$ st $R H P$ of $f_{[c, e]}$ is given
(i) by y_{c}^{n-1} when $0<k<n-1$,
(ii) by y_{e}^{n-1} when $1<k<n$,
(iii) by y_{c}^{n-1} when $k=n-1$,
(iv) by y_{e}^{n-1} when $k=1$.

Proof of (i). As in (5.5) we set $g=f \mid f_{[c, e]}$. Since there is an f-deformation retracting \dot{g}_{a} onto g^{c}, we infer that y_{c}^{n-1} is an $(n-1)$ st $R H P$ of \dot{g}_{a}. Since $0<k<n-1$ in the case at hand, Theorem 5.2 (i) implies that y_{c}^{n-1} is an $(n-1)$ st RHP of g_{a}. Since there exists an f-deformation retracting $f_{[c, e]}$ onto g_{a}, y_{c}^{n-1} is also an $(n-1)$ st $R H P$ of $f_{[c, e]}$.

Proof of (ii). On replacing f by $-f$, (i) implies (ii).
Proof of (iii). By virtue of (ii), for some rational number r, possibly 0 ,

$$
\begin{equation*}
y_{c}^{n-1} \sim r y_{e}^{n-1} \quad\left(\text { over } \mathbf{Q} \text { on } f_{[c, e]}\right) . \tag{6.5}
\end{equation*}
$$

Hence (iii) is valid if $r \neq 0$.
Proof that $r \neq 0$. On setting $g=f \mid f_{[c, e]}$ as in the proof of (i), we see that y_{c}^{n-1} is an $(n-1)$ st $R H P$ of \dot{g}_{a}. The critical point p_{a} has the index $n-1$. Whether p_{a} is of linking or non-linking type relative to g, Theorem 5.2 implies that y_{c}^{n-1} is an element in an $(n-1)$-st $R H P$ of g_{a} and hence of $f_{[c, e]}$. Hence $r \neq 0$ in (6.5), and (iii) is true.

Proof of (iv)• On replacing f by $-f$, (iii) implies (iv).
Lemma 6.1 follows from (i), (ii), (iii), (iv).
Note. The proof of (iii) shows that p_{a} is of non-linking type relative to g since it shows that y_{c}^{n-1} is an $(n-1)$-st $R H P$ of both \dot{g}_{a} and g_{a} when $k=n-1$.

Completion of proof of Theorem 6.1. Let

$$
\begin{equation*}
\alpha_{1}<\alpha_{2}<\cdots<\alpha_{t} \tag{6.6}
\end{equation*}
$$

be ordinary values of f on $[c, e]$, such that $c=\alpha_{1}$ and $e=\alpha_{t}$ and such that between successive values in (6.6) there is just one critical value of f. In case there are no critical values of f between c and e, Theorem 6.1 is trivial.

For j on the range $1,2, \cdots, t$ let $y_{\alpha_{j}}^{n}{ }^{-1}$ be an $(n-1)$ st $R H P$ of $f^{\alpha_{j}}$. It follows from Lemma 6.1 that if r_{j} is a suitably chosen non-null rational number, then

$$
\begin{equation*}
r_{1} y_{\alpha_{1}}^{n-1} \sim r_{2} y_{\alpha_{2}}^{n-1} \sim \cdots \sim r_{t} y_{\alpha_{t}}^{n-1} \quad\left(\text { over } \mathbf{Q} \text { on } f_{[c, e]}\right) \tag{6.7}
\end{equation*}
$$

Hence Theorem 6.1 is true.
Before coming to the principal theorem of this section we shall show how to associate a special n-cap with p_{M}.

A simply-carried n-cap. If β is an ordinary value of f such that $M-\beta$ is sufficiently small and positive, then the special isometric presentation of a neighborhood of p_{M} given by Theorem 3.1 shows that $f_{[\beta, M]}$ is a topological hemisphere H^{n} bounded by f^{β} as a topological $(n-1)$-sphere. It follows ${ }^{17}$ that there is an n-cap z^{n} of p_{M}, which is defined by a homeomorphic map of a vertex-ordered euclidean n-simplex onto H^{n}. Such a cap has been termed "simply-carried". See [6, Def. 30.2]. It follows then from [6, Lemma 30.3] that ∂z^{n} is an $(n-1)$-cycle y_{β}^{n-1} which is an $(n-1)$ st $R H P$ of f^{β}.

Theorem 6.2. If M_{n} is orientable, then

$$
\begin{equation*}
R_{n}\left(\left|M_{n}\right|, \mathbf{Q}\right)=1 . \tag{6.8}
\end{equation*}
$$

We suppose $n>2$. According to the definition of a critical point of linking type, p_{M} is of linking type if and only if the $(n-1)$-cycle y_{β}^{n-1}, introduced in the paragraph preceding the theorem, satisfies the homology

$$
\begin{equation*}
y_{\beta}^{n-1} \sim 0 \quad \text { (over } \mathbf{Q} \text { on } \dot{f}_{M} \text {) } . \tag{6.9}
\end{equation*}
$$

Because M_{n} is orientable, (6.9) holds in accord with (6.4) of Theorem 6.1, since in (6.4) $y_{c}^{n-1} \sim 0$ on f_{c}, if $c-m$ is sufficiently small.

The critical point p_{M} is accordingly of linking type. It follows from [6, Theorem 29.3 (ii)] that (6.8) holds.

The proof of Theorem 6.1 shows that it has the following useful extension.
Theorem 6.3. Suppose $n>2$. Let c and e be ordinary values such that $c<e$. Suppose further that some open neighborhood of $f_{[c, e]}$ is orientable. If then y_{c}^{n-1} and y_{e}^{n-1} are suitably chosen $(n-1)$ st RHP's of f^{c} and f^{e} respectively, then

$$
\begin{equation*}
y_{c}^{n-1} \sim y_{e}^{n-1} \quad\left(\text { over } \mathbf{Q} \text { on } f_{[c, e]}\right) . \tag{6.10}
\end{equation*}
$$

We shall use this extension of Theorem 6.1 in proving that $R_{n}\left(\left|M_{n}\right|, \mathbf{Q}\right)=0$ when M_{n} is nonorientable.

[^11]
7. Orientability and critical shells

Let a be a critical value of f with index k such that $0<k<n$, and μ, ν be ordinary values of f such that a is the only critical value of f in (μ, ν). Set

$$
\begin{equation*}
f_{(\mu, \nu)}^{a}=\left\{x \in \mid M_{n} \| \mu<f(x)<\nu\right\} . \tag{7.1}
\end{equation*}
$$

It will be convenient to suppose that

$$
\begin{equation*}
\nu-a=a-\mu=e>0 \tag{7.2}
\end{equation*}
$$

We term $f_{(\mu, \nu)}^{a}$ a critical shell, based on f^{a}, with index k, provided e is so small that the following conditions are satisfied.

Conditions on e of (7.2). Note that

$$
\begin{equation*}
f_{(\mu, \nu)}^{a}=f_{(\mu, a)} \cup f^{a} \cup f_{(a, \nu)} . \tag{7.3}
\end{equation*}
$$

We impose two conditions on e each of which is satisfied if e is sufficiently small. A first condition is that the closures of ortho-f-arcs on $f_{(a, \nu)}$ and $f_{(\mu, a)}$ have diameters less than $\varepsilon / 2$, where ε is conditioned by Lemma 1.0. A second condition on e is a reimposition of the condition

$$
\begin{equation*}
\left.U_{e}^{k} \subset D_{\sigma} \quad(\text { of } 3.7)\right) . \tag{7.4}
\end{equation*}
$$

This condition implies that $e<\sigma$.
The choice of μ, ν. It will simplify our theorems if the parameters μ and ν associated with a critical value a in the definition of a critical shell $f_{(\mu, \nu)}^{a}$ are chosen once and for all when a is given.

We shall define a special covering of critical shells $f_{(\mu, \nu)}^{a}$ by special presentations in $\mathscr{D}_{e} M_{n}$.

A covering $\Gamma_{(\mu, \nu)}^{a}$ of $f_{(\mu, \nu)}^{a}$. A first presentation has the form

$$
\begin{equation*}
\mathbf{F}^{k}=I^{a} \mid U_{e}^{k} \quad(k=\operatorname{index} a), \tag{7.5}
\end{equation*}
$$

where I^{a} is the isometry of Theorem 3.1, and e is given by (7.2). The range of \mathbf{F}^{k} is an open neighborhood in $f_{(\mu, \nu)}^{a}$ of p_{a} and of the union of p_{a} and the ortho- f-arcs on $f_{(\mu, \nu)}^{a}$ which have p_{a} as a limiting end point.

Corresponding to an arbitrary point $p \in \dot{f^{a}}$ let

$$
\begin{equation*}
\left(Q_{p}: V_{p}, X_{p}\right) \in \mathscr{D} \dot{f}^{a} \tag{7.6}
\end{equation*}
$$

be a presentation of an open connected subset X_{p} of \dot{f}^{a}, which contains p. We can suppose that X_{p} is so small a neighborhood of $p \in \dot{f}^{a}$ that the $f f$-presentation

$$
\begin{equation*}
\left(H_{p}:(\mu, \nu) \times V_{p}, Y_{p}\right) \tag{7.7}
\end{equation*}
$$

based on Q_{p} satisfies the condition

$$
\begin{equation*}
H_{p} \in \mathscr{D}_{\epsilon} M_{n} \tag{7.8}
\end{equation*}
$$

A covering $\Gamma_{(\mu, \nu)}^{a}$ of the critical shell $f_{(\mu, \nu)}^{a}$ is thus afforded by the presentations

$$
\begin{equation*}
\mathbf{F}^{k}, H_{p} \quad(\text { index } a=k) \tag{7.9}
\end{equation*}
$$

and their "inverts", as p ranges over \dot{f}.
\hat{H} interpreted. The domain V_{p} of Q_{p} in (7.6) is an open connected subset of E_{n-1} with coordinates v_{1}, \cdots, v_{n-1}. Let ρ denote a reflection of V_{p} in the ($n-2$)-plane of E_{n-1} on which $v_{n-1}=0$. One can obtain \hat{H}_{p} by first replacing Q_{p} by

$$
\begin{equation*}
Q_{p}=\left(Q_{p} \circ \rho^{-1}: \rho\left(V_{p}\right), X_{p}\right) \in \mathscr{D} \dot{f}^{a} . \tag{7.10}
\end{equation*}
$$

\hat{H}_{p} is then a presentation

$$
\begin{equation*}
\left(\hat{H}_{p}:(\mu, \nu) \times \rho\left(V_{p}\right), Y_{p}\right) \in \mathscr{D}_{\star} M_{n} \tag{7.11}
\end{equation*}
$$

"based" on \hat{Q}_{p} with a euclidean domain $(\mu, \nu) \times \rho\left(V_{p}\right)$ which is a reflection of the euclidean domain $(\mu, \nu) \times V_{p}$.

The role of \mathbf{F}^{k}. Let K_{e} be the subset of U_{e}^{k} which is the union of \mathbf{O} and the ortho- φ_{k}-arcs which tend in U_{e}^{k} to \mathbf{O}. The union of the ranges of the presentations H_{p} admitted in (7.9) cover

$$
\begin{equation*}
f_{(\mu, \nu)}^{a}-I^{a}\left(K_{e}\right), \tag{7.12}
\end{equation*}
$$

while $I^{a}\left(K_{e}\right)$ is covered by \mathbf{F}^{k}.
Given a critical shell $f_{(\mu, \nu)}^{a}$ it is essential that we define "inversion invariant coverings" of $f_{(a, \nu)}$ and $f_{(\mu, a)}$ by presentations which are simply related to the presentations in the set $\Gamma_{(\mu, \nu)}^{a}$ covering $f_{(\mu, \nu)}^{a}$. These presentations should be in

$$
\begin{equation*}
\mathscr{D}_{t} f_{(a, \nu)}, \quad \mathscr{D}_{\mathrm{f}} f_{(\mu, a)} \tag{7.13}
\end{equation*}
$$

respectively and so, in particular, have connected ranges.
To cover $f_{(a, \nu)}$ and $f_{(\mu, a)}$ we shall make use of presentations which are restrictions of the presentations H_{p} and \hat{H}_{p} of $\Gamma_{(\mu, \nu)}^{a}$ and of the special presentation \mathbf{F}^{k} in $\Gamma_{(\mu, \nu)}^{a}$ and of $\hat{\mathbf{F}}^{k}$.

Restrictions of H_{p}. For each point $p \in \dot{f^{a}}$ there exist unique presentations

$$
\begin{equation*}
H_{p}^{+} \in \mathscr{D}_{\epsilon} f_{(a, \nu)}, \quad H_{p}^{-} \in \mathscr{D}_{\mathrm{t}} f_{(\mu, a)}, \tag{7.14}
\end{equation*}
$$

which are the restrictions of H_{p} with ranges

$$
\begin{equation*}
R H_{p}^{+}=R H_{p} \cap f_{(a, \nu)}, \quad R H_{p}^{-}=R H_{p} \cap f_{(\mu, a)} \tag{7.15}
\end{equation*}
$$

respectively. The set of presentations H_{p}^{+}, as p ranges over \dot{f}^{a}, cover all points of $f_{(a, \nu)}$ except points of $f_{(a, \nu)}$ on ortho- f-arcs tending to p_{a} as a limit point. Each of the presentations H_{p}^{+}has a connected range. To cover the set of residual points of $f_{(a, \nu)}$ we make use of restrictions of \mathbf{F}^{k}.

Restrictions of \mathbf{F}^{k}. Recall that index $a=k$. Referring to the subsets

$$
\begin{equation*}
U_{-\bar{e}}^{k}, \quad U_{+}^{k} \tag{7.16}
\end{equation*}
$$

of U_{e}^{k} defined in (3.10) and (3.11), and to the isometry I^{a} of Theorem 3.1, we introduce restrictions of \mathbf{F}^{k} of the form

$$
\begin{equation*}
F_{-}^{k}=I^{a}\left|U_{-}^{k}, \quad F_{+}^{k}=I^{a}\right| U_{+}^{k} \quad(0<k<n), \tag{7.17}
\end{equation*}
$$

and state the following lemma.
Lemma 7.1. By virtue of Lemma 3.1

$$
\begin{array}{ll}
F_{-}^{k} \in \mathscr{D}_{6} f_{(\mu, a)} & (1<k<n) \\
F_{+}^{k} \in \mathscr{D}_{6} f_{(a, \nu)} & (0<k<n-1) . \tag{7.18}
\end{array}
$$

A first condition that (7.18) hold is that the sets $\mathrm{Cl} R F_{-}^{k}$ and $\mathrm{Cl} R F_{+}^{k}$ have diameters on M_{n} less than ε. This condition is satisfied as a consequence of the relation $\mathbf{F}^{k} \in \mathscr{D}_{c} M_{n}$. That $R F^{k}$ and $R F_{+}^{k}$ are connected subject to the conditions on k in (7.18) follows from Lemma 3.1.

Note. The relation in (7.18)' is not valid if $k=1$, nor the relation in (7.18)" if $k=n-1$, because $R F_{-}^{1}$ and $R F_{+}^{n-1}$ are not connected.

The case $k=1$. In this case we refer to (3.12) and set

$$
\begin{equation*}
{ }^{\prime} F_{-}^{1}=\left.I^{a}\right|^{\prime} U_{\bar{e}}^{1}, \quad{ }^{\prime \prime} F_{-}^{1}=\left.I^{a}\right|^{\prime \prime} U_{\bar{e}}^{1} \tag{7.19}
\end{equation*}
$$

The ranges of these two restrictions of F_{-}^{1} are connected sets. These ranges are disjoint and have $R F_{-}^{1}$ as their union. Cf. (3.12).

The case $k=n-1$. In this case we refer to (3.13) and set

$$
\begin{equation*}
' F_{+}^{n-1}=\left.I^{a}\right|^{\prime} U_{+}^{n-1}, \quad " F_{+}^{n-1}=\left.I^{a}\right|^{\prime \prime} U_{+}^{n-1} \tag{7.20}
\end{equation*}
$$

The ranges of these two restrictions of F_{+}^{n-1} are connected sets. These ranges are disjoint and have $R F_{+}^{n-1}$ as their union. Cf. (3.13).

We summarize as follows:
Theorem 7.1. "Inversion invariant coverings" $\Gamma_{(\mu, a)}$ of $f_{(\mu, a)}$ and $\Gamma_{(a, \nu)}$ of $f_{(a, \nu)}$ are given respectively by the second and third columns in the following table, provided these presentations are supplemented by their inverts and the point p ranges over $\dot{f^{a}}$.

Table Γ

$k=$ Index a	$\Gamma_{(\mu, a)}$	$\Gamma_{(a, \nu)}$
$k=1$	$H_{p}^{-}:{ }^{\prime} F_{-}^{1},{ }^{\prime \prime} F_{-}^{1}$	$H_{p}^{+}: F_{+}^{1}$,
$1<k<n-1$	$H_{p}^{-}: F_{-}^{k}$	$H_{p}^{+}: F_{+}^{k}$,
$k=n-1$	$H_{p}^{-}: F_{-}^{n-1}$	$H_{p}^{+}: F_{+}^{n-1},{ }^{\prime \prime} F_{+}^{n-1}$

Note. Each entry in Table Γ should properly bear the critical value a as an index.

Given a critical shell $f_{(\mu, \nu)}^{a}$ we shall term $f_{(a, \nu)}$ the upper shell of $f_{(\mu, \nu)}^{a}$, and $f_{(\mu, a)}$ the lower shell of $f_{(\mu, \nu)}^{a}$. We term these subshells auxiliary shells of $f_{(\mu, \nu)}^{a}$.

Definition 7.1. Inverting critical shells. A critical shell $f_{(\mu, \nu)}^{a}$ will be termed orientation inverting if one of its two auxiliary shells is orientable and the other nonorientable.

Theorem 7.2. If $n>2$, the following is true.
(i) A necessary and sufficient condition that a critical shells $f_{(\mu, \nu)}^{a}$ be orientable is that both its upper and lower auxiliary shells be orientable.
(ii) If index $a=k$, and the shell $f_{(\mu, \nu)}^{a}$ is inverting, then $k=1$ or $n-1$.
(iii) If $k=1$, and the shell $f_{(\mu, \nu)}^{a}$ is inverting, then its upper shell is nonorientable.
(iv) If $k=n-1$, and the shell $f_{(\mu, \nu)}^{a}$ is inverting, then its lower shell is nonorientable.

We begin the proof of Theorem 7.2 by establishing the following:
The condition of (i) is necessary. Since

$$
\mathscr{D}_{t} f_{(\mu, a)} \subset \mathscr{D}_{f} f_{(\mu, \nu)}^{a},
$$

an inverting sequence in $\mathscr{D}_{d} f_{(\mu, a)}$ is an inverting sequence in $\mathscr{D}_{\star} f_{(\mu, \nu)}^{a}$. It follows from Theorem 1.1 that if $f_{(\mu, \nu)}^{a}$ is orientable, then $f_{(\mu, a)}$ is orientable.

One proves similarly that if $f_{(\mu, \nu)}^{a}$ is orientable, then $f_{(a, \nu)}$ is orientable.
The condition of (i) is sufficient. We shall establish this and the remainder of Theorem 7.2 by proving the following lemma. We are supposing that $n>2$.

Lemma $7.2(\alpha) . \quad f_{(\mu, \nu)}^{a}$ is orientable, if its lower shell $f_{(\mu, a)}$ is orientable, and index $a=k$ is on the range $2, \cdots, n-1$.
$(\beta) . f_{(\mu, \nu)}^{a}$ is orientable, if its upper shell $f_{(a, \nu)}$ is orientable, and index $a=k$ is on the range $1, \cdots, n-2$.

Proof of (α). When $1<k<n$, a covering $\Gamma_{(\mu, \nu)}^{a}$ of $f_{(\mu, \nu)}^{a}$ is given by the presentations

$$
\begin{equation*}
\mathbf{F}^{k}, H_{p} \quad\left(p \text { ranging over } \dot{f}^{a}\right) \tag{7.21}
\end{equation*}
$$

and their inverts, while a covering $\Gamma_{(\mu, a)}$ of $f_{(\mu, a)}$ is given by the presentations

$$
\begin{equation*}
F_{-}^{k}, H_{p}^{-} \quad\left(p \text { ranging over } \dot{f}^{a}\right) \tag{7.22}
\end{equation*}
$$

and their inverts. (See Table Γ.) The presentatations in $\Gamma_{(\mu, \nu)}^{a}$ and $\Gamma_{(\mu, a)}$ admit a biunique matching $\xi: \Gamma_{(\mu, a)} \leftrightarrow \Gamma_{(\mu, \nu)}^{a}$ under which

$$
\begin{equation*}
\mathbf{F}^{k} \leftrightarrow F_{-}^{k}, \quad H_{p} \leftrightarrow H_{p}^{-} \tag{7.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{F}}^{k} \leftrightarrow \hat{F}_{-}^{k}, \quad \hat{H}_{p} \leftrightarrow \hat{H}_{p}^{-} \tag{7.24}
\end{equation*}
$$

Under ξ each presentation in $\Gamma_{(\mu, \nu)}^{a}$ is matched with a restriction in $\Gamma_{(\mu, a)}$.
By hypothesis of (α) there exists a subset Λ of presentations in $\Gamma_{(\mu, a)}$ which form an orienting covering of $f_{(\mu, a)}$. The subset $\xi \Lambda$ of presentations in $\Gamma_{(\mu, \nu)}^{a}$ covers $f_{(\mu, \nu)}^{a}$ and, by virtue of Lemma 1.5 , is an orienting covering of $f_{(\mu, \nu)}^{a}$.

Proof of (β). The proof of (β) is similar to that of (α). The index k is on the range $1, \cdots, n-2$. One makes use of $F_{+}^{k}, \hat{F}_{+}^{k}, H_{p}^{+}$and \hat{H}_{p}^{+}.

Statements (ii), (iii) and (iv) follow from Lemma 7.2. Hence the proof of Theorem 7.2 is complete.

The following special lemma is needed in § 8 .
Lemma 7.3. Let a be a critical value with $0<\operatorname{index} a<n$, and a^{\prime} be a critical value such that $\left(a^{\prime}, a\right)$ is an interval of ordinary values of f. If the shell $f_{(\mu, \nu)}^{a}$ is such that $f_{(\mu, a)}$ is orientable, then $f_{\left(a^{\prime}, a\right)}$ is orientable.

Proof. We introduce a C^{∞}-diff

$$
\begin{equation*}
T: f_{(\mu, a)} \rightarrow f_{\left(a^{\prime}, a\right)} \tag{7.25}
\end{equation*}
$$

under which each maximal ortho- f-arc γ on $f_{(\mu, a)}$ is mapped onto the maximal ortho- f-arc γ^{\prime} on $f_{\left(a^{\prime}, a\right)}$ extending γ, so that a point $p \in \gamma$ goes into the point $p^{\prime} \in \gamma^{\prime}$ such that

$$
\begin{equation*}
\frac{f\left(p^{\prime}\right)-a}{f(p)-a}=\frac{a^{\prime}-a}{\mu-a} \tag{7.26}
\end{equation*}
$$

If ε^{\prime} is a sufficiently small positive constant, and $f_{(\mu, a)}$ is covered (as is possible) by an "orienting" set of presentations $Q \in \mathscr{D}_{\epsilon} \mathcal{F}_{(\mu, a)}$, then the presentations $(T \mid R Q) \circ Q$ will be an orienting set in $\mathscr{D}_{\&} f_{\left(a^{\prime}, a\right)}$ covering $f_{\left(a^{\prime}, a\right)}$.

8. The existence of inverting critical shells

We begin with new notation.
Submanifolds $M_{n, \alpha}^{-}$and $M_{n, \beta}^{+}$. Let α and β be values of f such that $\alpha>m$ and $\beta<M$ respectively. We shall denote by $M_{n, \alpha}^{-}$and $M_{n, \beta}^{+}$open submanifolds of M_{n} with differential structures induced by that of M_{n} and carriers

$$
\begin{align*}
& \left|M_{n, \alpha}^{-}\right|=\left\{x \in\left|M_{n}\right| \mid f(x)<\alpha\right\}, \tag{8.0}\\
& \left|M_{n, \beta}^{+}\right|=\left\{x \in\left|M_{n}\right| \mid f(x)>\beta\right\} .
\end{align*}
$$

We suppose $n>2$ in § 8 .
Lemma 8.1. Let a be a critical value of f with $0<\operatorname{index} a<n$. If $M_{n, a}^{+}$ and the critical shell $f_{(\mu, \nu)}^{a}$ are orientable, then $M_{n, \mu}^{+}$is orientable.

Proof. Let $e<\varepsilon$ be a positive constant such that the minimum distance from f^{ν} to f^{a} on M_{n} exceeds $3 e$. Set

$$
\begin{equation*}
\Gamma=\mathscr{D}_{e} f_{(a, \nu)} . \tag{8.1}
\end{equation*}
$$

Let Γ^{\prime} be an inversion (see Def. 1.5) invariant covering of $f_{(\mu, \nu)}^{a}$ obtained by adding to Γ presentations in $\mathscr{D}_{e} f_{(\mu, \nu)}^{a}$ the range of each of which meets $f_{(\mu, a)}$. Let $\Gamma^{\prime \prime}$ be an inversion invariant covering of $M_{n, \mu}^{+}$obtained by adding to Γ^{\prime} presentations in $\mathscr{D}_{e} M_{n, a}^{+}$the range of each of which meets $H_{n, \nu}^{+}$.

Suppose Lemma 8.1 false. By an extension of Theorem 1.2 to the submanifold $M_{n, \mu}^{+}$of M_{n} there then exists an inverting $F * \hat{F}$ in $\Gamma^{\prime \prime}$. By Lemma 1.3 we can suppose that F is in Γ. If $F * \hat{F}$ is in Γ^{\prime}, we have a contradiction to the hypothesis that $f_{(\mu, \nu)}^{a}$ is orientable. If the sequence $F * \hat{F}$ is not in Γ^{\prime}, we shall show that it can be admissibly modified without changing F or \hat{F}, so that the modified sequence is in Γ^{\prime}.

Modification of $F * \hat{F}$. A presentation in $F * \hat{F}$ which is not in Γ^{\prime} meets $M_{n, \nu}^{+}$ and is a nonterminal presentation in a subsequence of consecutive presentations

$$
\begin{equation*}
Q_{1}: Q_{2}: \cdots: Q_{r} \tag{8.2}
\end{equation*}
$$

of $F * \hat{F}$ such that Q_{1} and Q_{r} are in Γ, while the remaining Q_{i} 's have ranges which meet $M_{n, \nu}^{+}$. Each presentation in (8.2) is in $\mathscr{D}_{e} M_{n, a}^{+}$as a consequence of our choice of e. Since $M_{n, a}^{+}$is orientable by hypothesis, and since $f_{(a, \nu)}$ is arcwise connected and

$$
f_{(a, \nu)} \subset M_{n, a}^{+},
$$

each subsequence (8.2) of $F * \hat{F}$ can be replaced by an admissible sequence

$$
Q_{1}: P_{1}: \cdots: P_{s}: Q_{r}
$$

in which the presentations P_{j} are in Γ.
The sequence $F * \hat{F}$ so modified will be in Γ^{\prime}. This is impossible since $f_{(\mu, \nu)}^{a}$ is orientable by hypothesis. Thus Lemma 8.1 is true.

We continue with the following lemma, referring to the value μ in $f_{(\mu, \nu)}^{a}$.
Lemma 8.2. Let a be a critical value with $0<\operatorname{index} a<n$, and $a^{\prime}<a$ be the critical value next below a. If $M_{n, \mu}^{+}$is orientable, then $M_{n, a^{\prime}}^{+}$is orientable.

Proof. If $M_{n, \mu}^{+}$is orientable, its submanifold $f_{(\mu, \nu)}^{a}$ is orientable. According to Lemma 7.3, $f_{\left(a^{\prime}, a\right)}$ is then orientable. By an argument similar to that used in proving Lemma 8.1 one then proves that $M_{n, a^{\prime}}^{+}$is orientable. The roles of the values μ, a, ν in the proof of Lemma 8.1 are played by the respective values a^{\prime}, μ, a in the proof of Lemma 8.2.

Lemmas 8.1 and 8.2 combine to give the following.
Lemma 8.3. Let a be a critical value with $0<\operatorname{index} a<n$, and a^{\prime} be the critical value of f next below a. If $M_{n, a}^{+}$and $f_{(\mu, \nu)}^{a}$ are orientable, then $M_{n, a^{\prime}}^{+}$is orientable.

By an induction with respect to the critical values of f of index $<n$ enumerated in the order of decreasing values, one proves the following theorem. Theorem 7.2 is essential for the proof.

Theorem 8.1. If $f_{(\mu, \nu)}^{\alpha}$ is orientable for each critical value α of index $n-1$ which exceeds a critical value a, then $M_{n, a}^{+}$is orientable.

We turn to nonorientable manifolds M_{n}.
Theorem 8.2. (i) If M_{n} is nonorientable, there is a greatest value ω among critical values a with nonorientable critcal shells $f_{(\mu, \nu)}^{a}$.
(ii) The value ω is the least of the critical values a such that $M_{n, a}^{+}$is orientable.
(iii) For this value $\omega, f_{(\omega, \nu)}$ is orientable and $f_{(\mu, \omega)}$ nonorientable.
(iv) Index $\omega=n-1$.

Proof. Statement (i) is a consequence of Theorem 8.1. It follows from Lemma 8.3 that $M_{n, \omega}^{+}$is orientable. Statement (ii) follows from (i) and Lemma 8.3. Since $f_{(\omega, \nu)}$ is orientable and $f_{(\mu, \nu)}^{\omega}$ orientation inverting, $f_{(\mu, \omega)}$ is nonorientable, so that (iii) is true. That index $\omega=n-1$ follows from Theorem 7.2.

Theorems dual to Theorems 8.1 and 8.2 are obtained by reasoning with $-f$ as with f.

Dual of Theorem 8.1. If $f_{(\mu, \nu)}^{\alpha}$ is orientable for each critical value α of index 1 which is less than a critical value a, then $M_{n, a}^{-}$is orientable.

Dual of Theorem 8.2. (i) If M_{n} is nonorientable there is a least value ω^{\prime} among critical values with nonorientable critical shells.
(ii) The value ω^{\prime} is the greatest of the critical values a such that $M_{n, a}^{-}$is orientable.
(iii) For this value $\omega^{\prime}, f_{\left(\mu, \omega^{\prime}\right)}$ is orientable and $f_{\left(\omega^{\prime}, \nu\right)}$ nonorientable.
(iv) Index $\omega^{\prime}=1$.

The theorems of this section together with Theorem 7.2 imply the following theorem. Recall that $n>2$ and that f is biordered.

Theorem 8.3. If M_{n} is nonorientable, then there exist just one inverting critical shell $f_{(\mu, \nu)}^{\omega}$ such that index $\omega=n-1$ and just one inverting critical shell $f_{(\mu, \nu)}^{\omega^{\prime}}$ such that index $\omega^{\prime}=1$. Each critical shell $f_{(\mu, \nu)}^{a}$ for which $\omega^{\prime}<a<\omega$ has a nonorientable upper and lower shell. Of the three open submanifolds

$$
f_{\left(m, \omega^{\prime}\right)}, f_{\left(\omega^{\prime}, \omega\right)}, f_{(\omega, M)}
$$

of M_{n} the first and third are geometrically orientable and the second is geometrically nonorientable.

9. The equivalence of geometric and homological orientability

In this section we shall prove that if $n>2$ and M_{n} is nonorientable, then $R_{n}\left(\left|M_{n}\right|, \mathbf{Q}\right)=0$. It can be shown by elementary methods without any use of triangulation that when a C^{∞}-manifold M_{2} is compact, connected and nonorientable, then $R_{2}\left(\left|M_{2}\right|, \mathbf{Q}\right)=0$. Proceeding inductively we shall make the following hypothesis.
Inductive hypothesis. We shall assume that if $n>2$ then for each integer r such that $1<r<n$ an admissible differentiable nonorientable manifold M_{r} is such that

$$
\begin{equation*}
R_{r}\left(\left|M_{r}\right|, \mathbf{Q}\right)=0 \tag{9.1}
\end{equation*}
$$

In Lemmas 9.1, 9.2, 9.3 we suppose that M_{n} is nonorientable and that $n>2$. The following lemma is essential.

Lemma 9.1. Let $f_{(\mu, \nu)}^{\omega}$ be the orientation inverting critical shell of M_{n} with index $\omega=n-1$. If one sets

$$
\begin{equation*}
g=f \mid f_{(\mu, \nu)}^{\omega}, \tag{9.2}
\end{equation*}
$$

then p_{ω} is a critical point of g of linking type over \mathbf{Q}, relative to g, and hence relative to f.

We shall prove Lemma 9.1 by verifying the following statements:
I. If $\omega<e<\nu$, then f^{e} is orientable.
II. If $\mu<c<\omega$, then f^{c} is nonorientable.
III. $\quad R_{n-1}\left(f^{c}, \mathbf{Q}\right)=0$.
IV. $\quad R_{n-1}\left(\dot{g}_{\omega}, \mathbf{Q}\right)=0, \quad\left(\dot{g}_{\omega}=g_{\omega}-p_{\omega}\right)$.
V. $\quad R_{n-1}\left(g_{\omega}, \mathbf{Q}\right)=1$.

Proof of I. According to Theorem 7.2, $f_{(\omega, \nu)}$ is orientable. Were f^{e} a nonorientable manifold M_{n-1}, it would follow, as in the proof of Theorem 2.1 (i), that $f_{(\omega, \nu)}$ would be nonorientable contrary to fact. Hence I is true.

Proof of II. According to Theorem 7.2, $f_{(\mu, \omega)}$ is nonorientable. Suppose II false, that is, suppose that f^{c} is orientable. By Def. 1.1 of geometric orientability there exists an orienting covering Γ of f^{c} in $\mathscr{D}_{\varepsilon^{\prime}} f^{c}$, where $\varepsilon^{\prime}<\varepsilon$ can be taken as an arbitrarily small positive constant. If ε^{\prime} is sufficiently small, a set of $f f$-presentations based on presentations in \mathscr{D}, f^{c} (cf. (2.4)) will give an orienting covering Γ^{\prime} of $f_{(\mu, \omega)}$ in $\mathscr{D}_{t} f_{(\mu, \omega)}$. (See conditions on e of (7.2).) From this contradiction to the nonorientability of $f_{(\mu, \omega)}$ we infer that f^{c} is nonorientable.

Proof of III. By our inductive hypothesis, III is true since f^{c} is nonorientable.

Proof of IV. There exists an f-deformation on M_{n} retracting \dot{g}_{ω} onto f^{c}. See [6, §23]. Since $R_{n-1}\left(f^{c}, \mathbf{Q}\right)=0$, IV is true.

Proof of V. We shall again apply Theorem 5.2, replacing g therein by

$$
\begin{equation*}
\gamma=-f \mid f_{(\mu, \nu)}^{\omega} . \tag{9.3}
\end{equation*}
$$

The critical value ω of f yields a critical value $\alpha=-\omega$ of γ. The critical point $z=p_{\omega}$ of f is a critical point of γ of index 1 . We set $\dot{\gamma}_{\alpha}=\gamma_{\alpha}-z$.

Since f^{e} is orientable by I, Theorem 6.2 implies that $R_{n-1}\left(f^{e}, \mathbf{Q}\right)=1$. However, there exists an f-deformation retracting $\dot{\gamma}_{\alpha}$ onto f^{e}, implying that

$$
\begin{equation*}
R_{n-1}\left(\dot{\gamma}_{\alpha}, \mathbf{Q}\right)=1 \tag{9.4}
\end{equation*}
$$

Since $n-1>1$, it follows from Theorem 5.2 that

$$
\begin{equation*}
R_{n-1}\left(\gamma_{\alpha}, \mathbf{Q}\right)=1 \tag{9.5}
\end{equation*}
$$

There are an f-deformation retracting $f_{(\alpha, \nu)}^{\left(\omega_{2}\right)}$ onto γ_{α} and an f-deformation retracting $f_{(\omega, \nu)}^{\omega}$ onto g_{ω} so that V is true.

The application of Theorem 5.2 to g shows that when IV and V are true, p_{ω} is of linking type relative to g. This completes the proof of Lemma 9.1.

Lemma 9.1 is supplemented by Lemma 9.2.
Lemma 9.2. Under the hypotheses of Lemma 9.1 let λ^{n-1} be a rational linking cycle of p_{ω} relative to g. Then the following is true:
(i) There exists a rational cycle y_{ω}^{n-1} on g^{ω} such that

$$
\begin{equation*}
\lambda^{n-1} \sim y_{\omega}^{n-1} \quad\left(\text { over } \mathbf{Q} \text { on } g_{\omega}\right) . \tag{9.6}
\end{equation*}
$$

(ii) The cycle y_{ω}^{n-1} is an $(n-1)$ st RHP of g^{ω}, g_{ω} and $f_{(\mu, \nu)}^{\omega}$.

Proof of (i). Because g_{ω} admits an f-deformation D retracting g_{ω} onto g^{ω}, there exists an $(n-1)$-cycle y_{ω}^{n-1} on g^{ω} such that (9.6) holds.

Proof of (ii). By V of the proof of Lemma 9.1, $R_{n-1}\left(g_{a}, \mathbf{Q}\right)=1$. It follows from Theorem 5.2 (ii) that λ^{n-1} is an $(n-1)$ st $R H P$ of g_{ω}. Since (9.6) holds, y_{ω}^{n-1} is similarly an $(n-1)$ st $R H P$ of g_{ω} and hence of g^{ω} (since D exists). Since there exists an f-deformation retracting $f_{(\mu, \nu)}^{\omega}$ onto $g^{\omega}, y_{\omega}^{n-1}$ is also an ($n-1$) st $R H P$ of $f_{(\mu, \nu)}^{\omega}$.

The following lemma is essential in proving, without triangulation of M_{n}, that geometrical and homological orientability of M_{n} are equivalent.

Lemma 9.3. Continuing Lemmas 9.1 and 9.2 let e be any ordinary value of f such that $\omega<e<M$. Then the following is true:
(i) If y_{ω}^{n-1} is an $(n-1) s t$ RHP of f^{ω}, then

$$
\begin{equation*}
y_{\omega}^{n-1} \nsim 0 \quad\left(\text { over } \mathbf{Q} \text { on } \dot{f}_{M}\right) . \tag{9.7}
\end{equation*}
$$

(ii) If y_{e}^{n-1} is a suitably chosen $(n-1)$ st $R H P$ of f^{e}, then

$$
\begin{equation*}
y_{e}^{n-1} \sim y_{\omega}^{n-1} \quad\left(\text { over } \mathbf{Q} \text { on } f_{[a, e]}\right) . \tag{9.8}
\end{equation*}
$$

Proof of (i). The cycle λ^{n-1} of Lemma 9.2 is a linking cycle of p_{ω} relative to g and hence relative to f. It follows from [6, Theorem 29.3 (ii)] that λ^{n-1} is in an $(n-1)$ st $R H P$ of f_{ω}. Hence y_{ω}^{n-1} of (9.6) is in an $(n-1)$ st $R H P$ of f_{ω}. Since each of the critical values α of f between ω and M (if any exist) is of index $n-1$, successive application of Lemma 5.2 and [6, Theorem 29.3] to the successive sets \dot{f}_{α} shows that y_{ω}^{n-1} is in an $(n-1)$ st $R H P$ of each set \dot{f}_{α} and f_{α}. A final application of Lemma 5.2 to \dot{f}_{M} shows that y_{ω}^{n-1} is in an ($n-1$)st RHP of \dot{f}_{M}. Hence (9.7) holds.

Proof of (ii). Given $f_{(\mu, \nu)}^{(}$let $c<e$ be an ordinary value of f such that $\omega<c<\nu$. An $(n-1)$ st $R H P$ of f^{c} is an $(n-1)$ st $R H P$ of $f_{(\omega, \nu)}, f_{[\omega, \nu)}$ and $f_{(\mu, \nu)}^{\omega}$. Hence, by (ii) of Lemma 9.2, if y_{c}^{n-1} is properly chosen, then

$$
\begin{equation*}
y_{\omega}^{n-1} \sim y_{c}^{n-1} \quad\left(\text { over } \mathbf{Q} \text { on }^{18} f_{[\omega, c]}\right) . \tag{9.9}
\end{equation*}
$$

According to Theorem 8.2, $M_{n, \omega}^{+}$is geometrically orientable. It follows from Theorem 6.3 that if y_{e}^{n-1} is a suitably chosen $(n-1)$ st $R H P$ of f^{e}, then

$$
\begin{equation*}
y_{c}^{n-1} \sim y_{e}^{n-1} \quad\left(\text { over } \mathbf{Q} \text { on } f_{[c, e]}\right) . \tag{9.10}
\end{equation*}
$$

The homology (9.8) follows from (9.9) and (9.10). This completes the proof of Lemma 9.3.

Theorem 6.2 and the following theorem complete the proof that geometric and homological orientability are equivalent.

Theorem 9.1. If M_{n} is nonorientable, then

$$
\begin{equation*}
R_{n}\left(\left|M_{n}\right|, \mathbf{Q}\right)=0 . \tag{9.11}
\end{equation*}
$$

In $\S 6$ we have seen that if β is such that $M-\beta$ is positive and sufficiently small, then f^{β} is the carrier of the algebraic boundary y_{β}^{n-1} of a "simply carried" n-cap associated with p_{M}. So defined y_{β}^{n-1} is an $(n-1)$ st $R H P$ of f^{β}. According to [6, Theorem 29.3], (9.11) holds if and only if

$$
\begin{equation*}
y_{\beta}^{n-1} \nsim 0 \quad\left(\text { on } \dot{f}_{M}\right) . \tag{9.12}
\end{equation*}
$$

The above value of β is admissible as e in Lemma 9.3, so that it follows from (9.7) and (9.8) that (9.11) is true.

Since the n-th Betti number of M_{n} equals its n-th connectivity over \mathbf{Q}, Theorems 9.1 and 6.2 have the following corollary.

Corollary 9.1. The manifold M_{n} is geometrically orientable if and only if its n-th Betti number is 1 .

[^12]
10. The Table Γ of $\S 7$

When M_{n} is nonorientable, ω and ω^{\prime} are respectively the inverting critical values of f of indices $n-1$ and 1 . It will be useful to obtain further information concerning the pair of monoverlapping presentations

$$
\begin{equation*}
\left.{ }^{\prime} F_{+}^{n-1}, \quad{ }^{\prime \prime} F_{+}^{n-1} \quad \text { (in } \Gamma_{(\omega, \nu)}\right) \tag{10.1}
\end{equation*}
$$

and the pair

$$
\begin{equation*}
{ }^{\prime} F_{-}^{1}, \quad{ }^{\prime \prime} F_{-}^{1} \quad\left(\text { in } \Gamma_{\left(\mu, \omega^{\prime}\right)}\right) \tag{10.2}
\end{equation*}
$$

as introduced in Table Γ. The relations

$$
\begin{equation*}
\mathbf{F}^{n-1} \mathrm{Com}^{+}{\left.\left.F_{+}^{n-1} ; \mathbf{F}^{n-1} \mathrm{Com}^{+}{ }^{+} F_{+}^{n-1} \quad \text { (in } \mathscr{D}_{d} f_{(\mu, \nu)}^{\omega}\right), ~\right)}_{\omega^{\prime}} \tag{10.3}
\end{equation*}
$$

are a consequence of the fact that the presentations (10.1), as defined in (7.20), are restrictions of the presentations \mathbf{F}^{n-1} in $\Gamma_{(\mu, \nu)}^{\omega}$, as defined in (7.5). The relations

$$
\begin{equation*}
\mathbf{F}^{1} \operatorname{Com}^{+} F_{-}^{+}, \quad \mathbf{F}^{1} \operatorname{Com}^{+} F_{-}^{1} \quad\left(\text { in } \mathscr{D} f_{(\mu, \nu)}^{\omega_{(}^{\prime}}\right) \tag{10.4}
\end{equation*}
$$

are valid for a similar reason. We shall make use of the coverings of $f_{(\mu, \nu)}^{\omega}$ and $f_{(\mu, \nu)}^{\omega^{\prime}}$, as given by the presentations (7.9) and their inverts, when $a=\omega$ and ω^{\prime} respectively.

Recall that the submanifolds $M_{n, \omega}^{+}$and $M_{n, \omega^{\prime}}^{-}$of M_{n} are orientable. We shall prove the following theorem. We suppose $n>2$.

Theorem 10.1. When M_{n} is non-orientable and ω is the inverting critical value of index $n-1$, there is no orienting covering of $M_{n, \omega}^{+}$which contains both of the presentations (10.1).

To prove Theorem 10.1 it is sufficient to prove
(i) There exists an admissible sequence in $\Gamma_{(\omega, \nu)}^{\omega}$ of the form

$$
\begin{equation*}
F_{+}^{n-1} *^{\prime \prime} \hat{F}_{+}^{n-1} . \tag{10.5}
\end{equation*}
$$

Proof of (i). Since the critical shell $f_{(\mu, \nu)}^{\omega}$ is nonorientable, there exists in the covering $\Gamma_{(\mu, \nu)}^{\omega}$ of $f_{(\mu, \nu)}^{\omega}$ an inverting sequence

$$
\begin{equation*}
\mathbf{F}^{n-1} * \hat{\mathbf{F}}^{n-1} \tag{10.6}
\end{equation*}
$$

of the form

$$
\begin{equation*}
Q_{0}: Q_{1}: \cdots: Q_{r}: Q_{r+1} \quad\left(Q_{0}=\mathbf{F}^{n-1}, Q_{r+1}=\hat{\mathbf{F}}^{n-1}\right) \tag{10.7}
\end{equation*}
$$

in which the non-terminal presentations are of the type of H_{p} or \hat{H}_{p} in $\Gamma_{(p, \nu)}^{\omega}$. We can suppose that the ranges of Q_{1} and Q_{r} are such that neither Q_{1} nor Q_{r} overlaps both of the presentations (10.1).

Corresponding to the sequence (10.7) in $\Gamma_{(\mu, \nu)}^{\omega}$ an admissible sequence

$$
\begin{equation*}
Q_{0}^{*}: Q_{1}^{*}: \cdots: Q_{r}^{*}: Q_{r+1}^{*} \quad\left(\text { in } \Gamma_{(\omega, \nu)}\right) \tag{10.8}
\end{equation*}
$$

is uniquely determined in the covering $\Gamma_{(\omega, \nu)}$ of $f_{(\omega, \nu)}$ by the sequence (10.7) and by the condition that Q_{j}^{*} be a restriction in $\Gamma_{(\omega, \nu)}$ of Q_{j} in $\Gamma_{(\mu, \nu)}^{\omega}$ for j on the range $0,1, \cdots, r+1$. More specifically, Q_{k}^{*} will be the unique restriction in $\Gamma_{(\omega, \nu)}$ of Q_{k} in $\Gamma_{(\mu, \nu)}^{\omega}$ for k on the range $1, \cdots, r$. Then Q_{0}^{*} must be that one of the two restrictions (10.1) in $\Gamma_{(\omega, \nu)}$ of \mathbf{F}^{n-1} in $\Gamma_{(\mu, \nu)}^{\omega}$ which overlaps Q_{1}^{*}, while Q_{r+1}^{*} must be that one of the two restrictions of $\hat{\mathbf{F}}^{n-1}$

$$
\begin{equation*}
\left.{ }^{\prime} \hat{F}_{+}^{n-1}, \quad{ }^{\prime \prime} \hat{F}_{+}^{n-1} \quad \text { (in } \Gamma_{(\omega, \nu)}\right) \tag{10.9}
\end{equation*}
$$

which overlaps Q_{r}^{*}. The sequence (10.8) is admissible by virtue of Lemma 1.5.
With (10.8) thereby uniquely determined we shall conclude the proof of (i) and Therem 10.1 by verifying the following.
(ii) The sequence (10.8) in $\Gamma_{(\omega, 2)}$ is either a sequence of the form (10.5) or a sequence of the form

$$
\begin{equation*}
" F_{+}^{n-1} *^{\prime} \hat{F}_{+}^{n-1} \quad\left(\text { in } \Gamma_{(\omega, \nu)}\right) . \tag{10.10}
\end{equation*}
$$

Note that the existence of a sequence of the form (10.10) implies the existence of a sequence in $\Gamma_{(\omega, \nu)}$ of the form (10.5).

Proof of (ii). As we have seen, Q_{0}^{*} in $\Gamma_{(\omega, \nu)}$ is ${ }^{\prime} F_{+}^{n-1}$ or ${ }^{\prime \prime} F_{+}^{n-1}$ while Q_{r+1}^{*} is either ${ }^{\prime} \hat{F}_{+}^{n-1}$ or " \hat{F}_{+}^{n-1}. If $Q_{0}^{*}={ }^{\prime} F_{+}^{n-1}$ then $Q_{r+1}^{*}={ }^{\prime \prime} \hat{F}_{+}^{n-1}$; otherwise, the sequence (10.8) would be an inverting sequence

$$
{ }^{\prime} F_{+}^{n-1} *^{\prime} \hat{F}_{+}^{n-1} \quad\left(\text { in } \Gamma_{(\omega, \nu)}\right),
$$

contrary to the fact that $f_{(\omega, \nu)}$ is orientable. Similarly, if $Q_{0}^{*}={ }^{\prime \prime} F_{+}^{n-1}$, then $Q_{r+1}^{*}={ }^{\prime} \hat{F}_{+}^{n-1}$. Thus (ii) is true, and Theorem 10.1 follows.

The following is the dual of Theorem 10.1.
Theorem 10.2. When M_{n} is nonorientable and ω^{\prime} is the inverting critical value of index 1 , there is no orienting covering of $M_{n, \omega^{\prime}}^{-}$which contains both of the presentations (10.2).

We supplement Theorems 10.1 and 10.2 by the following two theorems.
Theorem 10.3. When M_{n} is nonorientable and a is a critical value of f of index $n-1$ between ω and M, there is an orienting covering of $M_{n, \omega}^{+}$which contains both of the presentations

$$
\begin{equation*}
{ }^{\prime} F_{+}^{n-1}, \quad{ }^{\prime \prime} F_{+}^{n-1} \quad\left(\text { in } \Gamma_{(a, \nu)}\right) . \tag{10.11}
\end{equation*}
$$

Theorem 10.4. When M_{n} is nonorientable and a is a critical value of f of index 1 between m and ω^{\prime}, there is an orienting covering of $M_{n, \omega^{\prime}}^{-}$which contains both of the presentations

$$
\begin{equation*}
' F_{-}^{1}, \quad{ }^{\prime \prime} F_{-}^{1} \quad\left(\text { in } \Gamma_{(\mu, a)}\right) . \tag{10.12}
\end{equation*}
$$

Proof of Theorem 10.3. It is sufficient to show that the following statement is true.
(i). Under the hypotheses of Theorem 10.3 there is no admissible sequence in $\Gamma_{(a, \nu)}$ of the form

$$
\begin{equation*}
' F_{+}^{n-1} *^{\prime \prime} \hat{F}_{+}^{n-1} \tag{10.13}
\end{equation*}
$$

in which the non-terminal presentations are of the type H_{p}^{+}or \hat{H}_{p}^{+}in $\Gamma_{(a, \nu)}$.
As in the proof of Theorem 10.1, preceeding however from a sequence in $\Gamma_{(a, \nu)}$ to a sequence in $\Gamma_{(\mu, \nu)}^{a}$, one shows that the existence of a sequence in $\Gamma_{(a, \nu)}$ of form (10.13) implies the existence of a sequence $\Gamma_{(\mu, \nu)}^{a}$ of the form

$$
\mathbf{F}^{n-1} * \hat{\mathbf{F}}^{n-1}
$$

contrary to the fact that the critical shell $f_{(\mu, \nu)}^{a}$ is orientable when a is a critical value between ω and M.

The proof of the dual Theorem 10.4 is similar.

References

[1] M. Morse, Topologically nondegenerate functions on a compact manifold M, J. Analyse Math. 7 (1959) 189-208.
[2] -, The existence of polar nondegenerate functions on a compact n -manifold M , Ann. of Math. 71 (1960) 352-383.
[3] -, Bowls, f-fibre bundles and the alteration of critical values, An. Acad. Brasil. Ci. 36 (1964) 245-259. See [5] for revision of $\S \S 1$ and 4.
[4] -_, Nondegenerate functions on abstract differentiable manifolds, J. Analyse Math. 19 (1967) 231-272.
[5] -, Bowls, f-fibre bundles and the alteration of critical values, Proc. Nat. Acad. Sci. U.S.A. 60 (1968) 1156-1159.
[6] M. Morse \& S. S. Cairns, Critical point theory in global analysis and differential topology, Academic Press, New York, 1969.
[7] -, Singular homology over \mathbf{Z} on topological manifolds, J. Differential Geometry 3 (1969) 1-32.
[8] - Elementary quotients of abelian groups and singular homology on manifolds, Nagoya Math. J. 39 (1970) 167-198.
[9] S. Smale, Generalized Poincaré conjecture in higher dimensions, Bull. Amer. Math. Soc. 66 (1960) 373-375.

[^0]: Received March 25, 1970. The work of the first author was supported in part by U.S. Army Research Office-Durham grant DA-ARO-D-31-124-G1156, and that of the second author by National Science Foundation grant GP9569.
 ${ }^{1}$ Compatible will be abbreviated by Com.

[^1]: ${ }^{2}\left|M_{n}\right|$ is the carrier of M_{n}.
 ${ }^{3}$ Orientability in the sense of Def. 1.1 will be termed geometric.

[^2]: ${ }^{4}$ All sequences $Q_{1} * Q_{\mu}$ satisfy the conditions of Def. 1.2.

[^3]: ${ }^{5}$ A critical value a of f is said to have the index of the corresponding critical point p_{a}.

[^4]: ${ }^{6}$ We denote the origin by \mathbf{O}.
 ${ }^{7}$ Obtained by a modification of a given Riemannian metric.
 ${ }^{8}$ Strictly tend to p_{a} as a limiting end point.

[^5]: ${ }^{9}$ The image $I^{a}\left(U_{e}^{k}\right)$ is a subset of $f_{a+e}=\left\{x \in M_{n} \mid f(x) \leq a+e\right\}$ which is sometimes called a "handle" of f_{a+e} associated with the critical point p_{a}. Such "handles" were first introduced by Morse in 1925 although not called by this name. See the first reference to Morse in [6].

[^6]: ${ }^{10}$ The modified Riemannian form is to be admissible over all of M_{n}.

[^7]: ${ }^{11}$ If a homology group H_{q} over \mathscr{K} has a base B_{q}, a set of q-cycles, one and only one from each "homology class" in B_{q} is called a "prebase" of \boldsymbol{H}_{q}. See [6, Def. 24.7].

[^8]: ${ }^{12}$ Such a set exists in Case I.
 ${ }^{13}$ Such a set exists in Case II.

[^9]: ${ }^{14}$ We term such a deformation a g-deformation.

[^10]: ${ }^{15}$ Orientable shall mean orientable in the sense of $\S 1$.
 ${ }^{16}$ A "rational homology prebase" of $H_{r}(\chi, \mathbf{Q})$ will be termed an " r th $R H P$ of χ."

[^11]: ${ }^{17}$ From [6, "Carrier Theorem" (36.2)].

[^12]: ${ }^{18}$ The homology (9.9) holds on $f_{(\mu, \nu)}$ by virtue of Lemma 9.2, and hence on $f_{[\omega, c]}$, since there is an f-deformation retracting $f_{(\mu, \nu)}$ onto $f_{[\omega, c]}$.

