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ANALYTIC COMPLEX STRUCTURES
ON HILBERT MANIFOLDS

DAN BURGHELEA & ANDREI DUMA

Always by a Hubert manifold we mean a paracompact separable infinite
dimensional C°°-manifold whose local model is the infinite dimensional sepa-
rable Hubert space and by differentiate, C°°-diίferentiable. In this note we
construct, for any such Hubert manifold M, many nonequivalent complex
analytic structures (for the definition of complex analytic structures we refer
to [4]), namely, an infinite family of different analytic structures, all of whose
holomorphic functions are constant (Theorem 4.1), and infinitely many dif-
ferent analytic structures which have sufficient holomorphic functions, i.e., for
any two different points x, y there exists a holomorphic function with different
values at x and y (Corollary 5.2). We invite comparison of these results with
the following ones: Any two homotopy equivalent Hubert manifolds are diff eo-
morphic, and any two homotopic diffeomorphisms are isotopic, [2], [1]. To
prove the stated results we need some differential topology of Hubert manifolds
which will be developed in § 1, the Calabi-Eckmann equivalent in Hubert
space (§ 2), and Hartogs' theorem in Hubert space (§ 3). §§ 4 and 5 deal with
the construction of the stated complex structures.

1.

Theorem 1.1 (Eells and Elworthy [5]). Any Hubert manifold is diffeo-
morphic to an open set of the real Hilbert space H.

Since all infinite dimensional separable Hilbert spaces are isomorphic, we
will denote them by H and sometimes by HR, Hc, when we indicate the field over
real R and complex Crespectively of course, HR and Hc are R (real) isomorphic.

Theorem 1.2 ([2], see also [1]). Any Hilbert manifold M is Palais stable
{stable, for short), i.e., M is diffeomorphic to M x H.

Theorem 1.3 [2]. Two homotopy equivalent Hilbert manifolds are diffeo-
morphic.

Proposition 1.3' (Bessaga [2]). The unit sphere S°° = {v e H\ \\ v \\ = 1} is
diffeomorphic to H.

Proposition 1.4 [2]. Any Hilbert manifold can be closed and bounded dif-
ferentίably imbedded in H.
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Proposition 1.5. For any given open set U C H and any Hubert manifold
M, there exists a closed and bounded imbedded manifold with boundary L such
that1

1) L\dL is an open set in H,
2) LczU,
3) H\L is diffeomorphic to M.
Proof. Let /: M—>H be a closed imbedding which exists according to

Proposition 1.4. Choose / : B(v) -+ H to be a closed tubular neighborhood of
/, where B(v) denotes the total space of the fibre bundle with discs associated
with the normal bundle of /. Let T = /(5(ι/))(Hilbert manifold with boundary)
and P — H\lntT. Take points q1 € Int T and q2 € U and the closed discs
D~ C Int T,D? C U centered at q19 q2 respectively. Because H is diffeomorphic
to S°° (Proposition 1.30 there exists a diffeomorphism Z: H —• H such that
l(H\D?) c Int D2°°. The theorem follows taking L = l(P) because of Theorem 1.3
and the remark that Int B(v) has the same homotopy type as M.

Theorem 1.6. Given a Hubert manifold M,peH, and an open neighborhood
U of p x R2 C H x R2, there exists a closed imbedded manifold with boundary
(J27, dSe) a H x R2 such that

1) S£\dSe is an open set in H X R2,

2) se c c/,
3) Hχ\t\\Se diffeomorphic to M,tε R2.
Proof. Choose a C°°-function p: R2^>R+ such that for any t, the disc

D°°(P, ρ(t)) centered at p with radius p(t) is contained in U Π H X t. Now let
us consider U = IntZ)°°(l) in Proposition 1.5, define m: H x R2 -+ H x R2

by m(v, t) = (p(t)v + p, t), and take S£ — m(& x R2).
According to [8] an analytic family of complex structures on a differentiable

manifold M with parameter t € N (complex analytic manifold) is a complex
analytic manifold 2P and a holomorphic map p: 2P —• N such that

1) p is holomorphic locally-locally trivial, i,e., for a n y * e ^ there exist
open neighborhoods UBX and V3p(x) and an analytic isomorphism h: U ->
V X V such that the diagram

is commutative.

1 A\B denotes the subset consisting of those points of A, which do not belong to B*
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2.

Consider the (complex) Hubert space Hc denoted for short by H. Let S°° =
{v 11| v || = 1}, and let p: S°° —> P(H) be the canonical map where P(H) denotes
the projective space of the complex Hubert space which is an analytic mani-
fold, [4]. p x p: S°° X S°° -> P(H) x P(H) is a differentiate bundle (neglecting
the complex structure of P(H) x P(H)) whose fibre is Sι X Sι(Sι = {XeC\\X\ = l}).

Let us consider C\R = {a € C | Imag a Φ 0}. Following Calabi-Eckmann [3]
we will define a complex family of complex analytic structures on S°° x S°° with
parameters in C\R such that:

For any τεC\R the corresponding structure on 5°° X S^S 0 0 x S~ makes
p x p a n analytic fibre bundle whose fibre is S1 X S\hτ) = Tτ, the complex tori
obtained as the quotient-space of the Z 0 Z-free action r* on C and τ* defined
by τ*((m, ή), z) = z + m + nτ. To distinguish between the first and the second
components of H x H we will denote the first H by Hx and the second by H2.
Choose the orthonormal basis exe2^ , en9 in H1 and fj2, •••,/«,••• in
H2. Consider the map lkj: H1 x H2^> C defined by lkj(v9 w) — ζy9 ek}(w, fsy
and look at the restriction lkj of lkJ to^Γ x 5J5. Let Vkj — Vkγ{C\{0}), and for any
T€C\JR define the homeomorphism hτ

kj\ Vkj —> Hi-(eA.) X Hk/j) X ^r given by

and fl^(/i) are respectively the orthogonal complements of ek and fό.)
hτ

kj is a C°°-diffeomorphism, and hτ

kj (Λ^^)"1 is an analytic homeomorphism [3].
Moreover

where ^ > C\Λ is a complex family of complex tori obtained as the complex
Z 0 Z-free action in C x (C\R) defined by ((m, ή), z, r)) = (z + m + nr, r)
in fact, J " = U Tr. One remarks that hkj'(hkΊ,)~ι is holomorphic, hence Λfĉ

defines on S°° X S~ X C\i? a complex analytic structure. One verifies easily

that S~ x 5" X C\i? p X p X ι d , p(H) x P(fl) x C\fl is holomorphic, and
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is a complex family of analytic ίibrebundles (whose definition is obvious, see,
for instance, [8]).

Remark 2.1. The complex family, namely, the analytic structure induced
on S°° x S°° for any r, is independent of the chosen basis of H.

Remark 2.2. Suppose Cn is the subspaces generated by the first n vectors
£i? , en of the chosen basis. Then in the commutative diagram

S2n-l χ S2n-i χ C \ # _i_> 5- x S~ X C\R

I I ' I '
P(Cn) x P(Cn) x C\R • P(H) x P(H) x

all maps are analytic, t being an analytic imbedding. It will be convenient for
us to consider some canonical charts. Let us denote by £Γτ, J 1 1 , J~m, 3ΓlΎ the
following open sets of <Γ9

F1 = U {(Z,t)\z = λ + μτ,0<λ,μ<l},
τζ.C\R

= U {(Z,τ)\z = λ + μτ,O<μ < 1,1/2 <λ < 3/2} ,

= U { ( z , τ ) | z = i + / ι r , 0 < A < 1 , 1 / 2 < / ί

= U {(z,τ)\z = 2 + μt,l/2<λ,μ<3/2} .
τζC\R

Let us define

Λ / ί f c X ̂ (/y) X ̂ ( ? ) ) - Hhek) X flA/y, X

where (?) = Γ, π , Π I , I V , and hg} is a complex family of R-convex charts on
5°° x 5°°. Then any complex structure S°° x S°° of our family can be covered
by the canonical charts {{τ]V\j, {τ]Vlk,j, ίτ}J/ϊ5> {τ]^ijh where k,j are integers,
and { r }F^; )

y is the fibre over r of the family γg).
Remark 2.3. The Calabi-Eckmann construction is functorial on the

category of complex Hubert spaces and closed linear imbeddings, transform-
ing the imbedding of Hubert spaces in an analytic imbedding of complex
family.

Remark 2.4. If H has a basis e19 , ek, , and Ck denotes the subspace
generated by eΛ, -9ek9 according to 2) we have an imbedding of families,
namely:

*-1 X
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Moreover, the family of charts jf *(?) = γf j ? ) Π CS2*"1 X S2*"1 X C/R) for
Uί<k.

Remark 2.5. For any τ e C\R the complex analytic manifold S°° x S™ has
no holomorphic functions2, because we have a sequence of compact analytic
submanifolds

524-1 χ 5Jfc-l C £2**1 χ 5 2 f c + l C . . . C 52(* + r)-l χ 52( f c + r)-l C ,

whose union is everywhere dense in S°° X S~.
Remark 2.6. If h denotes a difϊeomorphism of 5°° X 5°° —> H which exists

because of Proposition 1.3', then h x id: S°° x S°° x C\fl —• # X C\R will
be a diffeomorphism commuting with the projection on the component C\R,
and one can consider this family of complex structures on S°° x S°° as a family
of complex stuctures on H.

Remark 2.7. S°° x 5,°° is isomorphic to S°° X S~ iff τ and τ' are related by
the following equation:

( 1 ) τ = flτ' + *

where atj are integers and det \atj\ = ± 1 . To prove this, notice that τ and τ'
related by (1) imply that the identity map is holomorphic with respect to the
analytic structures τ and τ' (as one can easily see

(—r[l°g <*> ek) + τ log <•*> fj}] -* —r[l°g <̂ > ek) + τ' log <?>>

is an analytic isomorphism of torus Γ ( l r ) —> T(hτΊ as soon as (1) is satisfied).

Conversely, one uses the same argument as in the proof of Theorem 4.1
below.

3.

Hartogs' theorem. Let Ω be a bounded open set in Hc, and K a closed
bounded set in Hc such that K C Ω and Ω\K is connected. For every holo-
morphic function u on Ω\K one can find a holomorphic function U on Ω so
that U = uin Ω\K.

This theorem is the well-known Hartogs theorem in the case H =Cn, n > 2.
The proof is exactly the same as in the finite dimensional case, namely, as the
proof of [7, p. 30], but we still give it here for the convenience of the reader.

First, choose a C°°-function φ: Ω —> R+ such that Supφ c Ω and φ = 1
on a neighborhood V of K. This is always possible because of the partition of
the unity.

2 The index τ for S°° x 5~ refers to S°° X S°° and not to the second
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Now let us consider the function u0 = (1 — ψ)u e C°° defined on all Ω. Then
uQ is 0 on F . To seek U of the form U = uQ — v, v has to satisfy the following
differential equation d(v) = Su0 = —udφ = f. (We can consider Hc =
HR®RC « HR® HR, so z e Hc corresponds to x + y, x e HR, y e HR. Then

Kz) = fix, y) and 3f(z0) = 1 dfx(z0) + ± dfy(zQ), 3/(z0) β Horn,, (HR 0 H Λ , C)

= HomΛ (Hc, C).) Notice that function feC°° can be extended on H with zero
outside Ω\ f = 0 on F (/ has bounded support because 42 is bounded).

Given a base e1? e2, in H and a e HomΛ (H, C), the 1-component of a
will be a restricted to {CeJ, and z = zx 0 zf, zx € {CβJ, Zj1 € / /£ . Now define

= i //(τ" Zi)~1/i(τ? zf) 5
Λ df'

where fx is the 1-component of /. Notice v is continuous in Ω because for any
point w € H, w = w1 ©ivf e Ceι ®H^t = //, there exists a neighborhood DO-^, ε)
X D(wf, η) C C^! ®H^ = H, where £>O15 ε) and D ^ f , 27) are discs in Cex

and HJi centered at wx 6 C{eJ and wf e //Ji with radii ε and η, respectively, such
that v is continuous on this neighborhood which can be found in the following
way:

( 1 ) If w e V, take (ε, η) such that D(w19 ε) X D(wt, rj) C F. Then for any

X

2πi J J
dτ A dτ

D(Wi,ε)

+ — Γ Γ (r - z,)-Vi(r, ̂ i1)^ Λ dτ
2πi Jo J

= i /J Λ
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since / restricts on V to zero. The last term becomes equal to

— C f (τ — zd~ιfi(τ> zDdτ A dt, where D(0, N) denotes the disc in C
2πi J Jo

Z>(0,iV)\Z)(M;1,e)

centered 0 with radius N since / has bounded support. The last integral
is obviously continuous on D(wλ, ε) X D(w£, η), because g(τ, z19 z£) =

/i(r,zi-) restricts on (D(0,ΛO\£>°(>V> ε) X D(w19ε) X D(w£,η) to a
(r - ^i)"1

continuous function, ane D(0,N)\D°(w1; ε) is compact.
( 2) If w e Ω\V, it is easy to verify that v(w) is well defined and equal to

UQ(W) — v(w) by applying, for instance, Theorem 121 of [7]. Hence v is locally
continuous onfl\F.

4.

Theorem 4.1. Given a Hilbert manifold M, there exists a complex family
of complex analytic structures Mτ,τεC\R, such that:

1) Mτ has no nonconstant holomorphic functions,

2) if Mτ and Mτ, are analytic isomorphic, then τ = a"x "*" **12 with integers
a2lτ

f + a22

ais and det \aiS\ = ± 1.
Proof. Consider the complex family of complex (Calabi-Eckmann)-

structures defined in § 2. Take the complex family of charts γ\j.
As we have seen, the diagram

X {C\R}+

X %s

is commutative and the fibre of p2 in τ is a convex chart of the complex struc-
ture 5°° X 5Γ Consider the unit discs (A(#4) and D^Hjj) in H^ ane Hj.
respectively. Applying Theorem 1.6 we can construct a closed manifold with
boundary 2 such that 2 c h^D^H^) x D^H^) X ^ 0 and p^\τ)\^ is

diffeomorphic to M because 5°° X 5°° x {C\R} -^U {C\R} is the trivial differ-
ential fibre bundle with fibre diffeomorphic to S°° x S°° = HR (according to

Proposition 1.3'). The map (S°° X 5°° X {C\R})\2 -^-> {C\R} is surjective;
moreover, it is a complex family of complex analytic structures (S°° x S?\2),
and, by Hartogs' theorem, S°° X S?\2 has no nonconstant holomorphic func-
tions. (If / is a holomorphic function on S°° x S^\^, consider the restriction
of / to VkJ\29 and by applying Hartogs' theorem we get an extension of / to
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Vkj and hence an extension of / on S°° X 5Γ°° which, according to Remark 3.2,
must be constant.

Now let us consider Mτ and Mr,, both of which are open manifolds of the
complex manifolds S°° x S~, complex fibre bundles over P(H) x P(H). This is
represented by the following diagram:

S~ X S: - ^ P(H) x P{H) <-^- S~ X S~

Mτ Mτ,

Suppose there exists an analytic isomorphism l\ Mτ-> Mτ,. By construction we
can find a point x e P(H) x P(H) such that p~\x) C Mτ,. Looking at the dia-
gram

S~ x S?, - ! > P(iϊ) x P(fl)

M;

we notice that if p l(Tτ) is just one point denoted by y, then / maps Tτ in Ίτ,
— p^y) holomorphically and injectively, and it follows /: Tτ —> Tτ, is an analytic
isomorphism since Tτ and Ίτ, are l-(comρlex)-dimensional analytic manifolds.

Thus τ = anT + a u with integers ai3 and det \ai3\ = ± 1 .

It remains to prove p l(Tτ) = one point. Notice that (p O^ H2(Tτ) —•
H2(PH x P//), where ^ 2 ( ) denotes the second group of homology with integral
coefficients, is the zero homomorphism, since p I f actorizes by S°° X 5°° (con-
tractible).

Since pΊ(Tτ) is a compact set, if we denote by {Uk} the canonical charts on
P(H) with respect to a given basis eλ,e2> ,i.e., if Uk = P(H)\P(H^), then
there exists N such that pΊ(Tτ) C u {£/* X £/,-}; but as one can easily see

iJ<N

U {£/* X Uj} = EN x EN where E^ is the total space of an analytic fibre

bundle over P(CN~ι) with fibre H^eu...eN] to be orthogonal complement of the
space generated by eγ> eN. Hence pΊ can be factorized by EN X EN as is
indicated by the following diagram:
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P(H) x P(B)

X

Since EN x EN C P(//) X P(#) induces an isomorphism forpiomology up to
dimension (N — l),p'•(/?•/) is an analytic map such that (p' (p •/))*: H2(Tτ)
^H2{P(CN-ι)χP(CN~1)) is zero, and hence O V P ' (P O ) * : H2(Tτ) —
H2(P(CN-1)) is zero where p«, ι = 1,2, are the projections of P(CN-1) x PCC^"1)
onto its factors.

Because of the "intersection theory", PiP'pl(Tτ) is a discrete set; otherwise
PiPf(pΊ)*(H2(Tτ)) Φ 0. Thus p\pΊ)(Tτ) is a discrete set and is just one point
y e P(CN~ι) X P(CN~ι) because of the connectivity of Tτ. It therefore follows
that pΊ{Tτ) lies in the fibre of p' over v. Since Tτ is compact, all holomorphic
functions are constant, and hence p l(Tτ) is a point.

Corollary 4.2. TΛere exist infinitely many complex analytic structures on
any Hubert manifold, which have no nonconstant holomorphic junctions.

Remark 4.3. Mτ x Hc analytically isomorphic to Mτ, x Hc implies Mτ

analytically isomorphic to Mτ,.
Proof. Suppose /: M r X H -> Mx. X H is an analytic isomorphism, and p2

is the projection of Mτ. X H -* H. Since Mτ has no holomorphic functions,

Mτ x H -^-> H is factorized by p2, and therefore p2 l = r p2. Hence we get
the commutative diagram

Mτ x H-^Mτ, x #

I
H -L> H

which implies that Mτ is analytically isomorphic to Mr,.

5.

Proposition 5.1. Let (M, 9M) fc^ α closed differentiate manifold in Hc

such that M\dM is an open set in Hc (3M is a closed differentiate sub-
manifold of Hc), and let p19—-,pn be different points in M\dM. Then
M\{dM U Pχl) U Pn-i} w analytically nonequivalent to M\{dM U pλ U

• U pn).
Proof. Suppose there exists an analytic isomorphism /: M\{dM u Pi U

• U /?„}->M\{dM U pλ U U Pn-ι} C H. Then applying Hartogs' theorem
we can extend / to IM —> H. We first notice that either l{p^ becomes pά or
l(Pi) 6 9M since / is continuous, and then show the latter case not to be possible.
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Suppose q = / (p j € dM. Let us take the normal vector v at q (outside the
manifold) and consider εv such that \εv\ Π M = q, where \εΰ\ denotes all points
W9teR+90 <t <e. Consider the origin q of the complex Hubert space and
the complex line {v} generated by v. There exists at least one complex line {ή
passing through pt such that s = prv- ϊ \ {t} is a nonconstant holomorphic func-
tion. Consider a small open disc D in {v} and s~\D) C {t}. Since s is nonconstant
and holomorphic, it has to be open, i.e., s^s'^D)) has to be an open set. But as
we can see, s(s~\D)) is not open. The origin q of {v} belongs to sis'XD)), but
neighborhoods of q contained in s(s~\D)) do not exist. Thus ϊ(pi)$dM, and
hence ϊ(Pi) = pJy so that there exist at least two points ph and ph such that
l(ph) = ϊ(pi2). Choose again a complex line {t} passing through pjt Since 7 is
nonconstant for any points ph and pi2, we can get a line {/J and {/2} such that
its projection on {ή composed by 7 is holomorphic and nonconstant and is
therefore open. This implies that there exist x1 e {ίj Π (M\dM U px U U pn-d
and x2 z {t2} Π (M\dM U pγ U U pn_x) such that l(xλ) = f(^) = 7(x,) = /(JCJ.
But this is impossible because I is injective.

Corollary 5.2. For any given Hubert manifold M, there exist infinitely
many different complex analytic structures with many holomorphic functions
(i.e., given two points x,y e M, there exists a holomorphic function f such that
f(χ) φ f(y)).

Moreover, we can construct infinitely many different structures with many
holomorphic functions, which have nonconstant bounded holomorphic func-
tions, and infinitely many different analytic structures which have no non-
constant bounded holomorphic functions.

Proof, (a) Start with M and imbed M closely in H. Take a closed tubu-
lar neighborhood of M, denote it by T, and notice that (T, dT) C Hc is a closed
differentiable submanifold and that T\dT = f is open set homotopy equivalent
to M and therefore is diffeomorphic to M according to Theorem 1.3. If H is

the complex Hubert space f, then f\pι,f\{p1 U P2},T\{p1,p2,p3}, are
complex analytic manifolds with the induced structure which has sufficient
holomorphic functions, all of which are diffeomorphic to M by Theorem 1.3
and analytically nonequivalent by Proposition 5.1.
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(b) If we apply Proposition 1.5 to U = IntD°°(l), we will get an J£? and
((#\IntL),(d(#\IntL)) is a closed differentiable manifold with M = H\L.
With the induced complex structure, the manifolds M,M\{p1}, —-,M\{p19

• -,Pk}, are different complex manifolds according to Proposition 5.1,
but all are diffeomorphic. Moreover, any holomorphic function /: M\{pl7 ,pn}
can be extended to H because of Hartogs' theorem, and if / is nonconstant,
then it cannot be bounded. In fact, if / is bounded, Hartogs' extension is also
bounded and then is constant according to Liouville's theorem.

We can construct M as an open and bounded set in H, whose boundary is
a differentiable manifold by Proposition 1.4, and then we get a structure which
has of course, sufficiently many, bounded nonconstant holomorphic functions.
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