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ANALYTIC COMPLEX STRUCTURES
ON HILBERT MANIFOLDS

DAN BURGHELEA & ANDREI DUMA

Always by a Hilbert manifold we mean a paracompact separable infinite
dimensional C~-manifold whose local model is the infinite dimensional sepa-
rable Hilbert space and by differentiable, C~-differentiable. In this note we
construct, for any such Hilbert manifold M, many nonequivalent complex
analytic structures (for the definition of complex analytic structures we refer
to [4]), namely, an infinite family of different analytic structures, all of whose
holomorphic functions are constant (Theorem 4.1), and infinitely many dif-
ferent analytic structures which have sufficient holomorphic functions, i.e., for
any two different points x, y there exists a holomorphic function with different
values at x and y (Corollary 5.2). We invite comparison of these results with
the following ones: Any two homotopy equivalent Hilbert manifolds are diffeo-
morphic, and any two homotopic diffeomorphisms are isotopic, [2], [1]. To
prove the stated results we need some differential topology of Hilbert manifolds
which will be developed in § 1, the Calabi-Eckmann equivalent in Hilbert
space (§ 2), and Hartogs’ theorem in Hilbert space (§ 3). §§ 4 and 5 deal with
the construction of the stated complex structures.

1.

Theorem 1.1 (Eells and Elworthy [5]). Any Hilbert manifold is diffeo-
morphic to an open set of the real Hilbert space H.

Since all infinite dimensional separable Hilbert spaces are isomorphic, we
will denote them by H and sometimes by HZ, H®, when we indicate the field over
real R and complex Crespectively ; of course, H® and HC are R (real) isomorphic.

Theorem 1.2 ([2], see also [1]). Any Hilbert manifold M is Palais stable
(stable, for short), i.e., M is diffeomorphic to M X H.

Theorem 1.3 [2]. Two homotopy equivalent Hilbert manifolds are diffeo-
morphic.

Proposition 1.3’ (Bessaga [2]). The unit sphere S = {ve H|||v| = 1} is
diffeomorphic to H.

Proposition 1.4 [2]. Any Hilbert manifold can be closed and bounded dif-
ferentiably imbedded in H.

Communicated by R. S. Palais, July 22, 1970. Supported by NSF grant GP 7952X1.



372 DAN BURGHELEA & ANDREI DUMA

Proposition 1.5. For any given open set U C H and any Hilbert manifold
M, there exists a closed and bounded imbedded manifold with boundary L such
that'

1) L\OL is an open set in H,

2) LCU,

3) H\L is diffeomorphic to M.

Proof. Let f: M — H be a closed imbedding which exists according to
Proposition 1.4. Choose f: B(v) — H to be a closed tubular neighborhood of
f, where B(v) denotes the total space of the fibre bundle with discs associated
with the normal bundle of f. Let T = f(B(v))(Hilbert manifold with boundary)
and P = H\IntT. Take points g, ¢Int T and g,¢ U and the closed discs
Dy C IntT, Dy C U centered at g,, g, respectively. Because H is diffeomorphic
to §= (Proposition 1.3") there exists a diffeomorphism /: H — H such that
I(H\Dy) C Int Dy. The theorem follows taking L = I(P) because of Theorem 1.3
and the remark that Int B(v) has the same homotopy type as M.

Theorem 1.6. Given a Hilbert manifold M, p ¢ H, and an open neighborhood
Uofp X R*C H X R?, there exists a closed imbedded manifold with boundary
(&,0%) C H X R? such that

1) £\oZ is an open set in H X R?,

2) £CU,

3) H X {t}\& diffeomorphic to M, t e R%.

Proof. Choose a C=-function p: R* — R, such that for any ¢, the disc
D>(p, p()) centered at p with radius p(¢) is contained in U N H X t. Now let
us consider U = Int D>(1) in Proposition 1.5, define m: H X R* - H X R?
by m(v, 1) = (p()v + p, 1), and take & = m(ZL X R?).

According to [8] an analytic family of complex structures on a differentiable
manifold M with parameter ¢ N (complex analytic manifold) is a complex
analytic manifold & and a holomorphic map p: # — N such that

1) p is holomorphic locally-locally trivial, i,e., for any x ¢ & there exist
open neighborhoods U » x and V¥ 3 p(x) and an analytic isomorphism A: U —
V X U’ such that the diagram

is commutative.

1 4\B denotes the subset consisting of those points of 4, which do not belong to B.
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2.

Consider the (complex) Hilbert space H° denoted for short by H. Let S~ =
{v||lv|| = 1}, and let p: S* — P(H) be the canonical map where P(H) denotes
the projective space of the complex Hilbert space which is an analytic mani-
fold, [4]. p X p: S~ X §* — P(H) X P(H) is a differentiable bundle (neglecting
the complex structure of P(H) X P(H)) whose fibre is $' X S'(S' = {2e C||1] = 1}).

Let us consider C\R = {a € C|Imag & # 0}. Following Calabi-Eckmann [3]
we will define a complex family of complex analytic structures on S~ X S with
parameters in C\R such that:

For any ¢ C\R the corresponding structure on S* X §*, 5~ X S makes
p X p an analytic fibre bundle whose fibre is S* X S%,,., = T, the complex tori
obtained as the quotient-space of the Z @ Z-free action * on C and ¢* defined
by t*((m, n), z) = z + m + nr. To distinguish between the first and the second
components of H X H we will denote the first H by H, and the second by H,.
Choose the orthonormal basis ee,, ---,e,, --- in H, and f,f,, -+ +,fn, -+ in
H,. Consider the map I;: H, X H,— C defined by I ;(v, w) = (v, e;,>{w, ;>
and look at the restriction I} ; of I;; to S;° X S5. Let V. ,=1,7'(C\{0}), and for any
7eéC\R define the homeomorphism h5;: V; — Hi,,, X Hi;,;, X T, given by

. _ (v —vepe, w—wfpf, 1
hy (v, w) = ( oS s 27“[108(0, ex) + zlogdw, f,}]) .

(Hiy,, and Hj;, are respectively the orthogonal complements of e, and f;.)
h;; is a C~-diffeomorphism, and k3 - (h;.;,) ™" is an analytic homeomorphism [3].
Moreover

ij % C\R hyj(x, ©) =(h;cj(x): r)>(Hi|?ek) ~ Hzlffj)) X T

C\R

where 7 -2 C \R is a complex family of complex tori obtained as the complex
Z ® Z-free action in C X (C\R) defined by ((m, n), z,7)) = (z + m + nr, 7);
in fact, 7 = U T.. One remarks that ;- (A ;)" is holomorphic, hence A;;

defines on $* X S* X C\R a complex analytic structure. One verifies easily
that 5= x §= x C\R 222X p(r) % P(H) X C\R is holomorphic, and

8= % §2 X C\R— P(H) X P(H) X C\R

N

C\R
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is a complex family of analytic fibrebundles (whose definition is obvious, see,
for instance, [8]).

Remark 2.1. The complex family, namely, the analytic structure induced
on S= X S= for any <, is independent of the chosen basis of H.

Remark 2.2. Suppose C, is the subspaces generated by the first n vectors
e, - - -, e, of the chosen basis. Then in the commutative diagram

S X S X C\R ——>  $7 % §7x C\R

l bl

P(C™) x P(C") x C\R — P(H) x P(H) x C\R

all maps are analytic, ¢ being an analytic imbedding. It will be convenient for
us to consider some canonical charts. Let us denote by I, 7", 7™, 7 the
following open sets of .7,

Tt =,5%J\R{(Z’t)|z:2+#T’0<2’#<1}’

T :re%'J\R{(Z’T”z:Z+#t’0<#<1’1/2<2<3/2}’
M= Y {@&Ilz=14pm0<2<11/2<p<3/2),
TV = U {@d]z=2+pt,1/2<2p<3/2}.

7€C\R
Let us define
DD — - 2 )
2 riy = kjl(HiL(ek) X HZL(fj) X TP) — Hiy,,y X Hi"(fj) X T,

where (?) =%, ™, ™, ", and A} is a complex family of R-convex charts on
S§> x §°. Then any complex structure S* X S of our family can be covered
by the canonical charts {1V} ;, B P P 1 where k, j are integers,
and UV(?, is the fibre over ¢ of the family y{?;.

Remark 2.3. The Calabi-Eckmann construction is functorial on the
category of complex Hilbert spaces and closed linear imbeddings, transform-
ing the imbedding of Hilbert spaces in an analytic imbedding of complex
family.

Remark 2.4. If Hhasabasis e, - .-, e, - --, and C* denotes the subspace
generated by e, - - -, ¢, according to 2) we have an imbedding of families,
namely:

(S%-1 X §*-1) X C\R — (§” X $=) X C\R

12) Pa
C\R
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Moreover, the family of charts 77 = y7® N ($?%~! x §**~' x C/R) for
i,j < k.

Remark 2.5. For any r € C\R the complex analytic manifold S X S has
no holomorphic functions?, because we have a sequence of compact analytic
submanifolds

Sl s Q-1 QAL ¢ G L. SEEHED-L o QUEEN-L L

whose union is everywhere dense in $* X S7.

Remark 2.6. If 4 denotes a diffeomorphism of §* X §* — H which exists
because of Proposition 1.3/, then A x id: §* X §° X C\R — H X C\R will
be a diffeomorphism commuting with the projection on the component C\R,
and one can consider this family of complex structures on $* X S as a family
of complex stuctures on H.

Remark 2.7. S§~ X S is isomorphic to $* X S% iff z and ¢’ are related by
the following equation:

a,” +a
(1) r = u/+ 2
a,t’ + Gy

where a,; are integers and det |a;;| = = 1. To prove this, notice that r and ¢’
related by (1) imply that the identity map is holomorphic with respect to the
analytic structures z and 7z’ (as one can easily see

(%[log (x,e> + elog (x, £,5] — L _[log (v, &> + ¢’ log (v, fj>])
i 2xi

is an analytic isomorphism of torus T, ., — T,,., as soon as (1) is satisfied).
Conversely, one uses the same argument as in the proof of Theorem 4.1
below.

3.

Hartogs’ theorem. Let 2 be a bounded open set in H®, and K a closed
bounded set in H® such that K C Q and Q\K is connected. For every holo-
morphic function u on 2\K one can find a holomorphic function U on  so
that U = u in 2\K.

This theorem is the well-known Hartogs theorem in the case H =C", n > 2.
The proof is exactly the same as in the finite dimensional case, namely, as the
proof of [7, p. 30], but we still give it here for the convenience of the reader.

First, choose a C>-function ¢: 2 — R, such that Supp C 2 and ¢ =1
on a neighborhood V of K. This is always possible because of the partition of
the unity.

2 The index = for §= X S refers to S~ X S~ and not to the second S=.
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Now let us consider the function u, = (1 — ¢)u € C~ defined on all 2. Then
u,is O on V. To seek U of the form U = u, — v, v has to satisfy the following

differential equation d(v) = du, = —uop = f. (We can consider HC =
HEQ®,C =~ HE D HE, so z e H® corresponds tox + y,xe HE,ye HE. Then
f@) = f(x, y) and of(z)) = — dfx(zo) + — dfy(za) 0f(z)) e Homy (H® @ H*, C)

= Hom (H®, C).) Notice that function feC°° can be extended on H with zero
outside £2; f = 0 on V (f has bounded support because £ is bounded).

Given a base ¢, e,, --- in H and « e Homg (H, C), the 1-component of «
will be « restricted to {Ce,}, and z = z, @ zi", z, € {Ce;}, z- € HL. Now define

W@ == [ [e-a @), dendr,
2ni
C=R®R

where f, is the 1-component of f. Notice v is continuous in £ because for any
point we H,w = w,®wi e Ce, ® H: = H, there exists a neighborhood D(w,, ¢)
X Dwi, ) C Ce, ® H: = H, where D(w,,¢) and D(wi, ) are discs in Ce,
and HZ, centered at w, € C{e,} and wi- ¢ H;, with radii ¢ and 7, respectively, such
that » is continuous on this neighborhood which can be found in the following

way:
(1) IfweV, take (e, 5) such that D(w,,¢) X D(wi, ) C V. Then for any
ze D(w,, ) X D(wt, y),

v(2) = —ff (r — 2) iz, ) dr A dz

D(w1 €)

o [ [ €= 2t e A de
27 J
C\D(wi,)
= ff (t — z2)7Yi(z, zd)de A dz,
T 2

C\D(wl €)
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since f restricts on ¥V to zero. The last term becomes equal to
% f f (r — z)7Y,(z, z1)dr A dz, where D(0, N) denotes the disc in C
i
71' DO, N)\D (wy,¢) )
centered 0 with radius N since f has bounded support. The last integral
is obviously continuous on D(w,,¢) X D(wi,n), because g(r,z;,2{) =
G ! ) fi(z, z1) restricts on (D(0, N)\D(wy; &) X D(wy, &) X D(wi,7) to a
T — Zl -
continuous function, ane D(0, N)\D%w,; ¢) is compact.
(2) Ifwe\V, itis easy to verify that v(w) is well defined and equal to
u,(w) — v(w) by applying, for instance, Theorem 121 of [7]. Hence v is locally
continuous on 2\V.

4.

Theorem 4.1. Given a Hilbert manifold M, there exists a complex family
of complex analytic structures M.,z € C\R, such that:

1) M, has no nonconstant holomorphic functions,

/
2) if M, and M., are analytic isomorphic, then t = allT,—"'“” with integers
ayt + ay

a;; and det |a;;| = = 1.

Proof. Consider the complex family of complex (Calabi-Eckmann)-
structures defined in § 2. Take the complex family of charts r;;.

As we have seen, the diagram

M = (5= X %) X {C\R} 225 {C\R}
v Py ' PP

hiy ,
1
Ths —> Hity X Hipy X T

is commutative and the fibre of p, in ¢ is a convex chart of the complex struc-
ture = X S7. Consider the unit discs (D,(H,) and Dl(H}j) in H, ane H}j
respectively. Applying Theorem 1.6 we can construct a closed manifold with
boundary % such that & C h}(D(HE) X D,(H%) X 77) and p;'(0)\ & is

diffeomorphic to M because S~ X S X {C\R} —=> {C\RY} is the trivial differ-
ential fibre bundle with fibre diffeomorphic to $* X §* = HF (according to

Proposition 1.3"). The map (S X §= X {C\RD\.£ —22» {C\R} is surjective;
moreover, it is a complex family of complex analytic structures (§* X $°\.%),
and, by Hartogs’ theorem, $* X S=\.% has no nonconstant holomorphic func-
tions. (If f is a holomorphic function on S X S$*\.%, consider the restriction
of f to V,;\&, and by applying Hartogs’ theorem we get an extension of f to
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V&, and hence an extension of f on §* X S; which, according to Remark 3.2,

must be constant.
Now let us consider M, and M,., both of which are open manifolds of the

complex manifolds S= X S, complex fibre bundles over P(H) x P(H). This is
represented by the following diagram:

5= x §= 25 P(H) x P(H) <Z— 5~ x §=
Mf Mr’

Suppose there exists an analytic isomorphism /: M, — M,.. By construction we
can find a point x € P(H) X P(H) such that p~'(x) C M... Looking at the dia-
gram

5= x S:S 2, P(#) x P(H)

Mr’. p-l(x)
! I

M; S'X St=T,

we notice that if p.I(T) is just one point denoted by y, then I maps T, in T,
= pg,; holomorphically and injectively, and it follows I: T, — T, is an analytic
isomorphism since 7, and T, are 1-(complex)-dimensional analytic manifolds.
Thus ¢ = ——a“T: T %2 yith integers a;; and det |a;;] = =+ 1.

ayt’ + Gy

It remains to prove p-I(T,) = one point. Notice that (p-0),: H(T, —
H,(PH x PH), where H,( ) denotes the second group of homology with integral
coefficients, is the zero homomorphism, since p-I factorizes by $* X S= (con-
tractible).

Since p-I(T,) is a compact set, if we denote by {U,} the canonical charts on
P(H) with respect to a given basis e, e, - -, i.e., if U, = P(H)\P(H), then
there exists N such that p-I(T,) € U {U; X U,}; but as one can easily see

4L, jSN

U {U; X U;} = Ey X Ey where Ey is the total space of an analytic fibre

i,j<N

bundle over P(C¥~') with fibre Hf, ... .., to be orthogonal complement of the
space generated by e,- - -ey. Hence p-I can be factorized by Ey X Ey as is
indicated by the following diagram:
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P(H) X P(H)
Ly
.l 4
T, 255 Ey X Ey -2 P(CY-) X P(CY™)

Since Ey X Ey C P(H) X P(H) induces an isomorphism forjhomology up to
dimension (N — 1),p’-(p-D) is an analytic map such that (p’-(p-0),.: H(T.)
— H,(P(CM-1) x P(C¥-Y) is zero, and hence (p;- p'-(p-D),: H(T,) —
H,(P(CY~Y) is zero where p;, i = 1, 2, are the projections of P(C¥~') x P(CY-?)
onto its factors.

Because of the “‘intersection theory”, p;p’pl(T,) is a discrete set; otherwise
pp'(p-D(H(T,)) #+ 0. Thus p’(p-D(T,) is a discrete set and is just one point
ye P(C¥Y) x P(CY-') because of the connectivity of T.. It therefore follows
that p-I(T,) lies in the fibre of p’ over y. Since T, is compact, all holomorphic
functions are constant, and hence p-I(T,) is a point.

Corollary 4.2. There exist infinitely many complex analytic structures on
any Hilbert manifold, which have no nonconstant holomorphic functions.

Remark 4.3. M_ X HC analytically isomorphic to M. X H¢ implies M,
analytically isomorphic to M...

Proof. Suppose I: M, X H— M_ X H is an analytic isomorphism, and p,
is the projection of M,. X H — H. Since M, has no holomorphic functions,

-1 . .
M_x H P | is factorized by p,, and therefore p,-l = r-p,. Hence we get
the commutative diagram

l
M.xH—>M.,xH

b b

r

H — H
which implies that M, is analytically isomorphic to M,..

5.

Proposition 5.1. Let (M,0M) be a closed differentiable manifold in H°
such that M\oM is an open set in H° (6M is a closed differentiable sub-

manifold of HC), and let p,, ---,p, be different points in M\oM. Then
M\{oGM U p,U --- U p,_,} is analytically nonequivalent to M\{oM U p, U

Proof. Suppose there exists an analytic isomorphism [: M\{oM y p, U
- Upt—=M\{GM U p, U --- U p,_,} C H. Then applying Hartogs’ theorem
we can extend [ to /M — H. We first notice that either I(p,) becomes p; or
I(p,) € oM since [ is continuous, and then show the latter case not to be possible.
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Suppose g = I(p) e M. Let us take the normal vector ¥ at g (outside the
manifold) and consider ¢v such that |¢9| N M = g, where |e7| denotes all points
tv,teR,, 0 <t <e. Consider the origin g of the complex Hilbert space and
the complex line {9} generated by v. There exists at least one complex line {t}
passing through p; such that s = pr,- 7 |{#} is a nonconstant holomorphic func-
tion. Consider a small open disc D in {v} and s~(D) C {t}. Since s is nonconstant
and holomorphic, it has to be open, i.e., s(s~*(D)) has to be an open set. But as
we can see, s(s~'(D)) is not open. The origin g of {#} belongs to s(s~'(D)), but
neighborhoods of g contained in s(s~(D)) do not exist. Thus /(p,) ¢ oM, and
hence I(p,) = p;, so that there exist at least two points p;, and p;, such that
I(p,) = I(p,). Choose again a complex line {f} passing through p,. Since [ is
nonconstant for any points p;, and p,,, we can get a line {t,} and {¢,} such that
its projection on {t} composed by [ is holomorphic and nonconstant and is
therefore open. This implies that there exist x, € {t,} N (M\oM Up,U - -- Up,_)
and x, € {t;} N (M\oM U p,U - - - Up,_,) such that i(x,) = I(x) = I(x,) = I(x,).
But this is impossible because [ is injective.

Corollary 5.2. For any given Hilbert manifold M, there exist infinitely
many different complex analytic structures with many holomorphic functions
(i.e., given two points x,y € M, there exists a holomorphic function f such that
1) # ).

Moreover, we can construct infinitely many different structures with many
holomorphic functions, which have nonconstant bounded holomorphic func-
tions, and infinitely many different analytic structures which have no non-
constant bounded holomorphic functions.

Proof. (a) Start with M and imbed M closely in H. Take a closed tubu-
lar neighborhood of M, denote it by 7', and notice that (T, d7) C HC is a closed
differentiable submanifold and that T\0T = T is open set homotopy equivalent
to M and therefore is diffeomorphic to M according to Theorem 1.3. If H is
the complex Hilbert space T, then T \ Do f\{Pl U b}, f’\{pl,pz, ps}, - -+ are
complex analytic manifolds with the induced structure which has sufficient
holomorphic functions, all of which are diffeomorphic to M by Theorem 1.3
and analytically nonequivalent by Proposition 5.1.
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(b) If we apply Proposition 1.5 to U = Int D~(1), we will get an % and
((H\Int L), (6(H\Int L)) is a closed differentiable manifold with M = H\L.
With the induced complex structure, the manifolds M, M\{p}, - - -, M\{p,,
-+, pi}, - -+ are different complex manifolds according to Proposition 5.1,
but all are diffeomorphic. Moreover, any holomorphic function f: M\{p,,- - - ,p.}
can be extended to H because of Hartogs’ theorem, and if f is nonconstant,
then it cannot be bounded. In fact, if f is bounded, Hartogs’ extension is also
bounded and then is constant according to Liouville’s theorem.

We can construct M as an open and bounded set in H, whose boundary is
a differentiable manifold by Proposition 1.4, and then we get a structure which
has of course, sufficiently many, bounded nonconstant holomorphic functions.
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