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HIRZEBRUCH THEOREM FOR

KAEHLER MANIFOLDS
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1. Introduction

Let X be a compact complex manifold of (complex) dimension n, and ξ a
holomorphic vector bundle over X. We shall denote by Ω(ζ) the sheaf of germs
of holomorphic sections of f, and by Hι(X, Ω(ξ)) the z-th cohomology group
of the space X with coefficients in the sheaf Ω{ξ). Then H^X^Ωiξ)) are
finite dimensional vector spaces over the field C of complex numbers, and
Hl(X, Ω(ξ)) = 0 for i > n. Let dim H%X, Ω(ξ)) denote the dimension of the
vector space H^X, Ω(ξ)), and χ(X, Ω(ξ)) be the Euler-Poincare characteristic
defined by the formula

χ(X, Ω(ξ)) = Σ ( - D* d i m HKX, fl(f))
i=0

Let f{X) be the Todd class of the complex tangent boundle T{X) of X,
and ch (ξ) the Chern character of the holomorphic vector bundle ξ. Then the
Riemann-Roch-Hirzebruch theorem can be stated as follows.

Theorem 1.1. The Euler-Poincare characteristic χ(X, Ω(ξ)) can be ex-
pressed in terms of ch (ξ) and

(1.1)

Formula (1.1) can be interpreted as follows: ch(f) and ZΓ(X) are elements
of H*(X, Z) ® Q. If the multiplication is considered as the cup product, then
ch (ξ)f(X) defines an element of H*(X, Z) <g> Q, and hence its 2n-\h com-
ponent defines an element of H2n(X, Z) ® Q. The value of this element on the
2π-dimensional cycle of X determined by the natural orientation is equal to

In this paper we shall give an analytic proof of this theorem under the
assumption that X is a Kaehler manifold. We start with the following observa-
tions. Let η denote the complex vector bundle Λ(Γ*(Z)) (x) C, T*(X) being
the cotangent bundle of X. Then η has a canonical direct sum decomposition
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η = 0 ηp>« ,
P,Q

ηp'q being the sub-bundle of differential forms of type (p, q) with values in the
vector bundle ξ.

Let ζq = ξ ®η°>q and ζ = 0 ζq. Then there is a canonical operator d2
0.

(exterior differentiation with respect to z) from C°°(ζq) -> C~(ζq+1), 0 < q < n.
The following theorem of Dolbeault is the complex analogue of de Rham's
theorem.

Theorem 1.2. Consider the complex

o —• c-(c°) — c~(o -^> î> c-(c») — > o ,

and to Zp = feme/ (dβ: C~(ζ9) -> C°°(ζQ+1)) and B e = image (d2: C°°(ζq-1) -•
C°°(ζ)), 0 < ^ < n. TTien ί/iβ cohomology groups Zq/Bq are canonically iso-
morphic to the sheaf theoretic cohomology groups Hq(X, Ω(ξ)).

We introduce hermitian metrices in the bundles ξ and T(X). Then there are
canonical hermitian metrices in the bundles ζq, 0 < q < n. Let d*2: C°°(ζq+ι)
-+ C°°(ζq) be the adjoint of the differential operator d2: C°°(ζq) -+ C°°(ζq+ι) with
respect to the hermitian metrices in the bundles ζq, ζq+\ and let ζe = 0 ζ2q

and ζ° = 0 ζ2q+1. Then the operator d2 + d*2 maps C°°(ζe) into C°°(ζ°) and is
q

easily seen to be an elliptic operator. The following proposition is an immediate
consequence of Theorem 1.2 and the complex analogue of the Hodge de-
composition theorem.

Proposition 1.3. The analytic index of the operator

is equal to the Euler-Poincare characteristic of X with coefficients in the sheaf
Ω(ξ), that is,

χ(X, Ω(ξ)) = dim (kernel of d2 + d*2: C°°(ζe) -> C°°(ζ0))

-codim (image of d2 + d*g: C°°(ζe) -> CTO(ζ0)) .

The adjoint of the operator d2 + d*2: C°°(ζe) -* C°°(ζ°) is the operator
d2 + d*2: C°°(ζ0) -^ C°°(ζe) and we have

(d2 + rf*g)W, + d*g) = dfd*f + dV. = - 4 ,

J 2 being the complex analogue of the Laplace-Beltrame operator. The operator
Δ2 is a self-adjoint elliptic operator from C°°(ζq) —> C°°(ζQ), 0 < (? < n.

Let ^ be a non-negative real number, and Sq(λ) be the eigenspace of the
operator Δ2\ C°°(ζ9) —• C°°(ζα) corresponding to >ί. Then the following proposi-
tion is an immediate consequence of an argument due to Atiyah Bott; see
[4, §3].
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Proposition 1.4.
0, if λ>0,

the analytic index of the operator

if

In fact, for λ > 0, d2 + d*2 induces an isomorphism of ®S2q(λ) -^®S2q+ι(λ),
and for λ = 0, Σ dimS2Q(;0 = dimension of the kernel of d2 + d*2: C°°(ζe)
-> C°°(ζ0) and Σ d i m S2q+i(λ) = dimension of the cokernel of d2 + d*2.

The operator Δ2\ C°°(ζ9) —• C°°(ζq) has an infinite sequence

0 > λuq > λ2,q > > λm>q > I - oo

of eigenvalues, each eigenvalue being repeated as many times as its multi-
plicity indicates and corresponding sequence {<pm} of eigenforms forming a
complete orthonormal set in the space C°°(ζQ) with the hermitian inner product.
Furthermore, the series

eq(t, z', z) — Σ e x P (Ki^OψmizΊ ® ψm(z)

converges uniformly on compact figures of (0, oo) x X2 to the fundamental
solution of the heat operator d/dt — Δ2, and we have

(Tr eq)(t, z, z) = Σ e x P (^vi^OζψnXz)^^)} ,

where < , > denotes the hermitian inner product in ζq, and Tr the trace of an
endomorphism. Let

(Tr e)(Λ z,z) = Σ (-l)Q(TreQ)(/,z,z) ,

Then

' (Tre)(i,z,z)*l = Σ (-^ Σ expUm,90 , t > 0f(
J

= the analytic index of the operator d2 + d*2:

C°°(ζe) -> C°°(ζ0) by Proposition 1.4

= χ(X, Ω(ξ)) by Proposition 1.3 ,

*1 being the volume element with respect to the hermitian metric in T*(X).
Thus we obtain the following theorem:
Theorem 1.5. Let eq(t,z',z) be the fundamental solution of the heat

operator d/dt — Δ-z acting on (0, q)-forms with values in the vector bundle ξ.
Then we have the following integral expression for the Euler-Poincarέ charac-
teristic χ(X, Ω(ξ)):
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χ(X, fl(f)) = J ( Σ ( - DQ Tr e\U z, z)) *1 , ί > 0 .

This theorem is of course well-known.
Moreover one can show that for any positive integer N we have the following

expansion

Σ (-Ό* Tre«(/,z,z) = r» Σ ί*Mz) + 0(^-»+1), UO
<Z = 0 1 = 0

where /0, /1? , fN arc C°°-functions defined on X.
In view of Theorem 1.5 and the above expansion, in order to express the

Euler-Poincare characteristic χ(X, Ω(ξ)) in terms of some topological invariants
of X and ξ, it is enough to do so for the element of H2n(X, R) represented by
fn(z)*l, and this is what we shall do in this paper. In fact, we shall prove the
following theorem (under the assumption that the hemitian metric which we
introduced in T(X) is a Kaehler metric).

Theorem 1.6. Let eq(t, z\ z) be the fundamental solution of the heat
operator d/dt — Δ2 acting on (0, q)-forms with values in the vector bundle ξ.
Then

where F(z) is a C'-function on X such that the element of H2n(X,R) re-
presented by F(z)*l equals [ch (ξ)^(X)]2n.

Theorem 1.1 is of course an immediate consequence of Theorems 1.5 and
1.6.

§§2 and 3 are devoted to some preliminaries. In § 4 we outline the con-
struction of the fundamental solution of the operator d/dt — Δ2 acting on
(0, q) -forms with values in the vector bundel ξ. In § 5 we prove two crucial
lemmas and in § 6 we complete the proof of Theorem 1.6. The present paper
is a natural outcome of the method developed in [3].

The author wishes to express his thanks to Professors M.S. Narasimhan and
S. Ramanan for their interest in this work, and is also thankful to Professor
C.P. Ramanujam for his help with Lemma 2.7.

2. Algebraic preliminaries

Let V be a complex vector space, n its complex dimension, F * the dual
space of V, and A a linear operator from V into itself. Then for 1 < q < n,
there are two naturally defined linear operators /\qΛ (q-th exterior power of A)
and DqA (derivation extension of A) from AQV into itself such that
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( Λ ' # , Λ Λ«,) = (AvJ Λ Λ (Avq) ,

(DMXv, Λ Λ υq) = £ v, A • • • A vr_, A A(vr) A vr+ι
r = l

Λ •• Λ vq , v19 - , v q e V .

We define A0 A, D°A respectively to be the identity endomorphism, zero endo-
morphism of the field of scalars, and denote the trace of a linear operator B
of Finto itself by Ί Ϊ B .

Lemma 2.1. Let A19 ,Ak be linear operators from V into itself k < n.
Then

(0, if k<n,
Σ ( - Ό« Tr (D^A, o . . . o D*Ak) = (-1)» coefficient of xx . . . xk in
q~° I det (jCi^i + + xkAk) if k = n .

Proof (see Lemma 2.1 of [3]). Let xl9 - -,xk be ^-parameters. Then we
have

det (/ - eXίΛί ex*A") = Σ (-1) Q Tr ( Λ ^ β ^ 1 eXkAk))
q = 0

= f; ( _ i ) ί Tr (β^^^ 1 ex*D*A*) .
q = 0

n

Equating the coefficients of xι xk in det (/ — eXlAl - - eXkAk) and Σ (— 1)Q

• Tr (eXιD<lΛl e**1'^*), we get the result.
Let V, W be complex vector spaces, and n the dimension of V. For

0 < 4 < n , let φq: Horn (ϊ^, WO X Horn ( F , F ) - > Horn (W®/\W, W®ΛqV)
be the map defined by

φq(B, C) = B (x) DQC , B € Horn (W, WO, C 6 Horn (K, F) .

The map ^Q is bilinear and therefore defines a linear map ψq from W (x) W*
(8) F * (8) F ( « Horn (W7, W7) (8) Horn (F, F)) to Horn (W ® Λ Q F, Ψ ® Λ Q F).
We shall denote the image of an element A of W ® W* ® V* (x) F under φq

by D«U).
Lemma 2.2. Let A19 -,Ak be arbitrary elements of W <8> W7* (g) F * (x) F ,

A: < n.

Σ ( - l ) ^ T r (DMX o . . . o D*Ak) = 0 .

Proof. It is sufficient to prove the lemma when
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Λi = Bi®Ci9 BteW®W*, CieV*®V,

Bk)

o . . . o 5fe) Tr ( Z ^ d o . . . o D«Cfc) ,

o DqAk) = Tr (#! o . . . o £ fc)

DqCk) = 0, by Lemma 2.1 .
(Z = 0

One can similarly prove the following lemma.
Lemma 2.3. Let A19 , Ak be arbitrary elements of W (g) W* (g) F * (x) K,

A: < π, <md JB15 - - -, Bt be arbitrary elements ojW® W*. Lei σ be a permu-
tation of {1, , A: + /}, flπd /or α«)> integer q between 0 <znί/ n /eί ί/ie endo-
morphisms Sϊ(\ < i < k + I) of W ® /\qV be defined by

But then we have

DqAιo

and therefore

Tr (DqA1 o

so that

n

Σ
n

(-Ό«

(-I)4

D*Ak =

D"Ak) =

Tr φ"A

Tr (D"C

: Tr

1

O

for 1 < / < k ,

ξ) 7β, for k + 1 < i < k + I ,

is the identity endomorphism of AqV. Then

Σ ( - D Q T r ( ^ o . . . oSl+ι) = 0 .

Now let F be a real vector space with a 7-structure' (thus / is a given linear
operator from F into itself such that P — —1). Suppose that we are given a
positive definite symmetric bilinear form B in F such that B is invariant under
/, that is,

B(Jx,Jy) = B(x,y) , x,yeV .

Let F * be the dual space of F . Then the /-structure on F induces canonically
a /-structure on F * :

<jχ, Y*> = <x9 /y*> , x € F, y* e F* .

Let VC,V*C be the complexifications of F and F*, and put

F1'0 = {v e F c | / t ; = iv} , F0'1 = {vtVc\Jv = -iv) ,

F*1'0 = { ^ F * c | / ι ; = iv} , F* 0 ' 1 = {v 6 F* c | /τ ; = -iv}
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Then F c = F M 0 V° \ V*c = F * M 0 F*0-1, and furthermore

F*1-0 = {v* e F* c |<v*, w> = 0 for w e F0'1} ,

F* 0 ' 1 = {v* e F * c I <i;*, H>> = 0 for w <= F1-0} .

Thus F* 1 ' 0 and F * 0 1 are respectively the dual space of F 1 ' 0 and F 0 1 .
Let 2n be the (real) dimension of F . There is a unique element (volume

element) e <=. Λ2 7 ZF* such that B(e, e) = 1 and for any basis e19Je19 — > 9en9 Jen

of F * ,

e = aeί Λ Jeλ Λ Λ ^ Λ /^n , with[a positive[constant or.

We extend the bilinear form B to FC(F*C) as follows:

B{X + IΎ, JT + IΎO = B(X,X') + B(Y, Y') + iB{Y,Xf) - iB(X, Yf) .

The bilinear form induces a map ψf of F into F * :

>) , *,)><= F .

We extend the map ψ' by complex linearity to a map 0 of F c into F * c . The
map ^ is an isomorphism and thus defines an isomorphism ψ®Id: Vc (x) F * c

—• F * c (x) F * c , Id being the identity endomorphism of F * c . Combining the
isomorphism ψ®Id with the canonical map from F * c (x) F * c to F * c Λ F * c

(^i ® v2 H^ ̂ ! Λ v2)
 w e S e t a map, which we shall denote by φ, from F c (x) F * c

to F * c Λ F * c .
Lemma 2.4. Let A19 ,An € Fo>1 (x) F*o>1 (ί/iws ^αcΛ /4< w an endo-

morphism of F* 0 ' 1). Γ/ien

. . . o Z)Mj) e = ( - 0 V Λ ) Λ Λ ^ n ) .
I

Proof. There exist vectors e19 — ,en in F such that e19Je19 -,en,Jen

form an orthonormal basis (see Proposition 1.8 of [2]). Let e^, —Je^, ,
en*, —Jen* be the dual basis for V*9 and put vό = \(ej + iJe0) and v*j —
ef + Uef. Then v19 , vn and vf, , v* are dual bases for F M and F* 0 ' 1 .

Let Ai—Σ a)kVj (x) v?. Then we have

<z=o

= (— l) w coefficient of xx xn in det {xλAγ + + xnAn) ,

by Lemma 2.1

= ( - l)n coefficient of xx . xn in Σ eσ f[ ( Σ ^ z < 0 ) ) ,

€σ denoting the sign of the permutation a

n)p{n)
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Λ • Λ Ψ(An)

- ^ ( . Σ a)*vf Λ « f ) Λ - Λ ( Σ a%v* A v*)

Σ «ί < ( * ( . ) ί ί f ( i ) Λ v*m Λ Λ ί * ( , , Λ v*(n)

V c c /71 . . . nn 7)* Λ 4 j* Λ . . . Λ ί i * Λ 01*
~WZ~ LA fcα ^p Ua{l)p{l) "a (n) p(n)V σ (1) A Do (1) / \ ' * * / \ ^α(n) A Όa (n)

1 ^ " <%tn)P(n)i>i Λ t f Λ Λ ^ Λ ^

fl?(»)^n)«i* Λ Λ f Λ Λ β * Λ / e w *

σ{n)p(n)

\q = 0

This completes the proof of lemma.
Now let if be a complex vector space. There is a natural map φλ from

(W ® ^ * ® F * c Λ F* c) x . . . x (W ® ^ * ® F * c Λ F* c) (^-factors) into

x (8) w* (8) (v, A uj, , wk (x) >v* ® (v* Λ

•-> wx (8) w* ® . . . (8) wfc (8) wf (8) (Vi Λ Mi Λ Λ ^ Λ wj ,

Moreover the map <p2 from (W (8) H *̂) X X (W (g) W*) (ik-factors) into C
defined by

φtii, ' ' , /*) = Tr (Λ o . . . o /,), fteW®W*(& Horn ( ^ , »0)

is bilinear and therefore defines a linear map φ2 from W (x) W7* (x)
H *̂ to C. Let 5̂ = (φ2®Id)0φi> h being the identity endomorphism of Λ 2 Λ F* C .

Lemma 2.5. Let A^ . ,An be elements of W <8> ^ * ® F o a (x) F * 0 1 .

( - 1)Q Tr (DMX o . o DM,)) β = ( - O ^ ί t f d ® ^Mi, , (/*

Proof. It is sufficient to prove the lemma for At = 5^ ® Ci9 BteW ®
M *̂, C< e F 0 1 ® F* 0 ' 1 , 1 < i < n. But in this case the lemma is an immediate
consequence of the previous lemma.

Corollary 2.6. Assume S 6 W ® W* ® F0-1 ® F* 0 ' 1 , and to Λ l s , Ak be
arbitrary elements of F 0 1 ® F*o > 1, k < n, and σ be a permutation of 1 to n.
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Assume Bσ(r) — Id<g) Ar for 1 < r < k, Id being the identity endomorphism
of W, and Bσ(r) = S for k + 1 < r < n. Then

Σ ί - D ' T r C D ^ o . . . oD*Bn))e

= \ Σ (~ Dα Tr ((D*S o . . . o D«S) o (Id (x) (DM, o . . . o D«At)))]e

= {-i)nψdld ® φ)S, , (Id (x) φ)S) A ψ{Aλ) Λ Λ φ(Ak) .

The last lemma of this section is about the polynomial functions defined on
the Lie algebra ^7(/t, C) of the Lie group GL(n, C) (the group of n x n in-
vertible matrices with complex entries). Let /0, fl9 ,fn be the polynomial
functions defined on @l(n, C) by

(2.1) det (λln - - L _ z ) = Σ ^ ~ r ίrffl, A- 6 ^/(/i, C) .

With respect to the canonical basis for ^7(n, C), we can represent every
element X of &l(n,C) by a n x n matrix (X)) and then have the following
explicit formula for the functions /0, fl9 , fn:

where the sum runs over all ordered tuples (/15 , ίr) and the permutation a
o f { l , . . . , r } .

Let r < n be a positive integer, and 5 a permutation of {1, , r}. Define
a polynomial function gδ on the Lie algebra &l(n, C) by

(2.3) & ( * ) = . Σ ^ x%m • • • xtι(r) •

We can define the polynomial function gδ in an intrinsic way as follows. Let
h§ be the endomorphism of (x)r Cn (r-th tensor product of the complex vector
space Cn) defined by

hδ(vλ (8) (x) vr) = vH1) (8) (x) v i ( r ) .

Then gδ(Z) = Trace (A, o (x)- X), X ε &l(n, C), and

= Trace (A, o (x)- (Y

= Trace (A, o (®- Y"1) o ((gr Z) o (® r Y))

= Trace (((g)r Y"1) o hδ o (® r Z) o (<8>r Y))

= Trace (A, o (® r Z) o ( ® r Y) o (®" Y"1))

= Trace (A, o ®^ Z) = gδ(X), X, Y e &l(n, C) .
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Therefore gδ is invariant under the action of the Lie group GL(n, C).
Lemma 2.7. There exists a unique polynomial Pδ(Yλ, , Yr) in the vari-

ables Y19 , Yr, P9(Y19 . . ., Yr) = Σ Pa

s Yΐ1 Yarr, ̂ ch that

(2.4) gδ(X) = PMX), , /rffl) > * 6 »*(", C) .

Proof. We shall first prove the lemma for diagonal matrices. A diagonal
matrix X with entries X19 , Xn on its diagonal can be identified with the
tuple (X19 -,Xn). The functions f19 ,fn are then constant multiples of
elementary symmetric functions of X19 ,Xn. Moreover, the function gδ is
easily verified to be a symmetric function of X19 , Xn. In fact, any invariant
polynomial function (on &l(n, C)) restricted to diagonal matrices is a sym-
metric function. Hence there exists a unique polynomial Pδ(Y19 , Yr) such
that (2.4) holds for all diagonal matrices X. Since the functions Pδ9 f19 , fn

are invariant under the action of the group GL(n, C), we have (2.4) for all
matrices X which can be diagonalized. In particular (2.4) holds for all matrices
X which have distinct eigenvalues. Since the matrices which have distinct eigen-
values form an open set and both sides of (2.4) are analytic functions, we have
(2.4) for all matrices X.

3. Commutation formulas for covariant differentiation

Let ft be a hermitian inner product in the holomorphic vector bundle ξ.
Then there is a unique connection (called the hermitian connection) in the
principle bundle associated with ξ such that the metric tensor is parallel and
the connection form is of type (1,0); see [2, Chapter IX, § 10]. Let U be an
open subset of X such that U is holomorphic to an open subset of Cn, (we shall
denote the coordinate functions by z1? ,zn) and the bundle ξ is trivilized
over U. Let s19 , sk (k = rank of E) be the holomorphic cross sections of E
defined on U, which are everywhere linearly independent. Let

Kb = h(sa, sb) , 1 < a, b < k ,

and (hah) be the inverse matrix of (hab) so that Σ haChcb equals 0 if a Φ b and
c

equals 1 if a = b.
With respect to the hermitian connection we have the following formulas for

covariant differentiation :

F a / a , β ω = Σ la\sb , l < a < n , l < a < k ,
b

where /„» = Σ ~ h e \ and F3 / 5 2 (sa) = 0.
OZ

Let 5 be the curvature tensor associated with the hermitian connection and

set (S(d/dza,d/dzβ))sa = Σ SLβSf Then S|., = -dla

b

a/dzβ.
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Let H be a hermitian metric in the tangent bundle T(X) of X. Thus for each
x ε X, H is a positive definite inner product in TX{X) such that H(JX, Y) —
iH(X, Y) = - # ( X , 7Y). Let g be the Riemannian metric in T(X) defined by

g(X, Y) = Real part of #(X, Y) , X, Y e T,(Z) , JC e X .

We extend g to the complexified tangent bundle TC(X) as follows:

g{Xλ + iX29 Yx + iY2) = g(Z1? Y,) + g(X2, Y2) + /g(Z2, Y,) - ig(Xl9 Y2) .

Let gα̂  = g(d/dza,d/dzβ) and (^0 be the inverse matrix of (gaβ).
We consider the hermitian connection in the principle bundle associated with

holomorphic vector bundle T(X). The principle bundle associated with T(X)
can be regarded as a real vector bundle (say ζ) with structure group GL(2n, R),
and the hermitian connection defines a connection in ζ. We extend the covariant
differentiation in T(X) (regarded as a real vector bundle) given by this con-
nection in ζ to TC(X) as follows:

YuY2;Zγ, Z2 being vector fields defined on an open subset of X. Then we have
the following formulas for covariant differentiation:

Fd/d2β/dzβ) = 0 , 1 < a, β < n ,
r

where

1 aβ — Zj —Z δ
0Z

Let K be the curvature tensor, and set

(K(d/dza,d/dzβ))(d/dzr) =

(KO/az., didzβwidzr) =
Then

(3.1) KUf=-ψi- and «

where ΓJr denotes the complex conjugate of Γδ

βr From now on we shall assume
that the metric g is a Kaehler metric. The Kaehler property is equivalent to
the following relation of summetry:

J- aβ — J- βa

(that is the hermitian connection has no torsion).
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Let

φ = ( Σ φf,..ftdzhA ••• ΛdzAa
\βi< ~<βq I

be a C°°-(0, q) form defined on U with values in the vector boundle ξ (thus
φ e C°°(U, ξ (x) AqT*°-\X))). Then we have the following formulas for covariant
differentiation (with respect to canonical connection in ξ (g) ΛqT*c(X)):

(3.2) (PB/B,aφ)l...βq = dφa

h...βq/dZa + Σ la%φh

h...h ,

(3.3) (ra/,aφ)ί...βq = dφa

βl...βqldZa - Σ Γβ

aβrφ
a

h...βr_lββr+1...βq .

Let A e C°°(U, ξ ® ξ* (8) r-XZ) (x) Γ * 0 ' 1 ^ ) ) . Then for each JC € t/, A(x) is
an element of ξx ® ξ* ® T^KX) ® T*°>\X) and hence defines an endo-
morphism Dq(A(x)) of ^ (g) Λ ^ Γ * 0 ' 1 ^ ) . Thus we get an endomorphism DqA
of C°°(C7, ξ (8) A 9 r* 0 > 1 (Z)) (regarded as a module over the ring of C°°-comρlex
valued functions on U):

In the following lemmas covariant differentiations are taken with respect to
the canonical connections in the bundles ξ (g) ξ* <8> Γ 0 1 (Z) ® Γ* 0 1 (Z), f (g) AQ

T*0Λ(X) induced by the hermitian connections in the bundles f, T(X).
Lemma 3.1. Let Xu , Xm be C™-vector fields defined on the open set

U, A e C°°(U, ξ (g) ?*), flπd /Λβ operators FXl, , Γ j r m o/ covariant differentia-
tion be denoted respectively by Fλ, , F,rt. ΓΛen w^ Λαve ί/ι̂  following com-
mutation relation

a(l)< <σ(k)
i (fc + l)< <σ(m)

Q denotes the identity endomorphism of ΛqT*°'\X).
Lemma 3.2. Let X19 , Xm be C°°-vector fields defined on the open set

U, A β C°°(U, ξ (g) ξ* (8) T 0 ' 1 ^ ) (g) Γ * 0 ' 1 ^ ) ) , αnJ ίAe operators VZl, , F X m

o/ covariant differentiation be denoted respectvely by F19 , F m . TAβn w^
Λαve ίΛe following commutation relation

F j o . . . o F m o D M = DqA oFλo . . . o F m

+ Σ Σ O β ( Γ . ( 1 ) o . . o Fa{k){A)) o F # ( f c + 1 ) o . . o F σ ( m ) ,
k = l »(l)<...<*(t)

«r(* + l)< ••<*(»»)

w/zer̂  ί/ze second sum on the right hand side runs over all permutations a of
{1, , m} such that σ(l) < < σ(k) and σ(k + 1) < <σ(m).



RIEMANN-ROCH-HIRZEBRUCH THEOREM 263

The proofs of Lemmas 3.1 and 3.2 by induction on m are analogous to the
proofs of Lemmas 3.2 and 3.3 of [3]. Here we shall not go into the details of
the proof which are quite straight forward.

For any two vector fields X, Y defined on U, K(X, Y) is an endomorphism
of C~(17, T*C(X)) and maps C°°(U, Γ*°-1(Z)) into itself. Therefore we can
regard K(X, Y) as an endomorphism of C°°(£/, T * 0 ' 1 ^ ) ) , and then have

® K(Y, X))

(3.4) - S(Y, X)®Iq + Fίx,Y1)(a) ,

aεC~(U, ξ ® ΛqT*°>KX)) ,

Iξ denoting identity endomorphism of ξ and Iq the identity endomorphism of
ΛqT*°>ι(X).

Formula (3.4) for q = 1 is just the definition of curvature tensor. Moreover
it is easy to see that if (3.4) is true for a = φ19 φ2, where

ψι 6 C~(U, ξ ® Λ^T*°>\X)) , φ2 6 C"(U, Λ^Γ*

then it is true for a = ψx Λ φ2- Hence by induction on q, we get formula (3.4).
Lemma 3.3. Let X, X19 , Xm be C™-vector fields defined on U, and the

operators PXi, , VXm of covariant differentiation be denoted respectively by
F19 •• ,ΓT O . Then

V,
m - 1

+ Σ Σ DV, ® (r.ω o . . . o r.c
f2)< <σ(m)

W - l

— Σ Σ ((^(1) ° * * * ° ^ ( ^ ( ^ ( ^ J ^ O ' + I)))) ® Iq)

ΐ=i l 1

Proof. Lemma 3.3 follows easily by arguing inductively on m and using
Lemma 3.1, Lemma 3.2 and formula (3.4).

4. Construction of a parametrix and the fundamental solution

We shall first obtain an expression for the operator J2. This expression will
be an analogoue of the expression (1) of § 3 of [3]. Let U be an open subset
of X such that U is holomorphic to an open subset of Cn, and the bundle ξ is
trivilized over U.
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Let φ = ( Σ φ<β1...βqdzβl Λ Λ dzβq)a be a C°°(0, (?) form defined on U
with values in the vector bundle ξ. We have the following expressions for the
operators άz and df (see [5, Chapter 3, § 10]),

\a V1 ( 1V-1/I7 ,Λa A

''βi—βq + i — LΛ \—l) \ y βrΨ'βi~ βr~'βq + i '

where " Λ " denotes that the particular term is to be omitted, and

Therefore

(dtdίΨrh...βq = -

?....ίί = - Σ (-iY-Y"(rfr

Thus we get

(4.1) 4 = -(dV, + ^*.) - Σ S'T.

where

h...h = Σ (-Dr-V"((Γίr o ί . - ί . o Γ^P)?,

= Σ (-l)r-V"{(9/3zίr)α>?ίl...ίr...ίί)

O I Σ ΓlrβsΨββi- βr' βs-i'δPs
\ rφs

By the relation Γa

βr = Γ"β, the second and fourth terms on the right side of the
above equation are zero, and we thus obtain

?,...,, = Σ ( - D-V"{0«/3z ίr) φ\n~lr-H

I 1 « V f ' , . ' A \

+ ιab ZJ 1 PrPsΨββi PrPs-iifo+l fai *

Therefore

(4 2) (
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At each point zeX, the curvature tensor fields S and K are elements of
ξ, ® f* (x) T*{X) ® T*(X), TZ(X) (x) T*(X) <g> Γ*(X) ® Γ*(X) respectively.
But by the hermitian metric we can identify T*(X) with TZ(X). Moreover
there are projection operators from TC

Z(X), T*C(X) onto T°z'
ι(X), T*°>ι(X)

respectively. By using the above isomorphism and the projection operators,
S and K define elements (which we shall also denote by S and K) of ξz (x)
ξ* (x) TZ

Λ(X) <g) T*°^(X), T°z'
ι(X) (x) TfΛ(X) ® Ta>

ι{X) ® Tf>ι(X). Thus we
may have

θZβ

oZa oZr

where

By contracting the second and third indices the tensor field K defines a tensor
field K of type (1,1):

K= Σ
dZa

The tensor fields S and K, as we have stated in § 3, define endomorphisms
DqS, Iξ ® D 9 Z of C°°(X, f (x) Λ ρ Γ* 0 1 (Z)) , and now we can write (4.2) as

Rq(φ) = -D«S(φ) + (/, C

Hence by (4.1) we get the expression

(A 3) Λ — y σ/̂ F o Fβ 4- /* (R)

Therefore for any complex-valued C°°-function / defined on U we have

(4.4) Δ-SJψ) = (ΔJ)φ + KΔ/p) + gβa(Fβf)(Faφ) + gβa(FJWβφ) ,

(4.5) 4 / = gβa-^- .

We now proceed to construct a parametrix for the fundamental solution of
the heat operator d/dt — Δz. We shall first fix some notation. By a double
(0, g)-form φ defined on an open subset W of X x X, we shall mean an element
of C°°(W, (ξ (x) Λ^Γ* 0 ' 1 ^)) ® (f ® Λ^Γ* 0 ' 1 ^))) . Thus for each (z\ z) e W9
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we have φ(z\z) e ξt, ® AqT*°>ι(X) ®ξz ® Λ'Γ* 0 ' 1 ^). LetzeX and v€ £,®

Λ α j * o , i ( Z ) ® fβ ® Λ^Γ* 0 * 1 ^). Hermitian metrices in £ and Γ(Z) introduce
canonically a hermitian metric in £ ® Λ ^ Γ * 0 ' 1 ^ ) . By this hermitian metric in
£ ® AqT*° χX) we can identify ξz ® ΛβΓ*MCX) with its dual vector space,
and thus there is a canonical isomorphism of (fz ® Λ T * 0 ' 1 ^ ) ) ® (£* ®
Λ ' Γ * 0 - 1 ® ) with (£, ® AqT*°'\X))* ® (£, ® Λ β Γ* O f l (*)) We therefore can
regard v as an endomorphism of ξg ® AqT*Otl(X), and shall denote the trace
of this endomorphism by Tr v.

We fix an integer q, 0 < q < n and construct a parametrix //^(ί, z7, z) in a
sufficiently small neighbourhood of the diagonal in X x X. We set

(4.6) H*N(t, zf, z) = (2πt)-n(exp (-r2/(2ί))) Σ tWtf, z) ,
N

—i

= 0

where UUq(z',z) are double (0, g)-forms defined in a sufficiently small neigh-
bourhood of the diagonal, and r is the geodesic distance between z! and z.
The forms UUq(z\ z) are to be determined such that U°-q(z', z!) is the identity
endomorphism of £β> ® AqT*,°'\X) and

d__

dt

The integer N is to be chosen larger than n, and these conditions determine
the double forms Uitq(z',z) uniquely in a sufficiently small neighbourhood of
the diagonal as we shall see now.

We have

But gβar2 d r °r — _ r 2 ; in fact, by denoting the Riemannian inner product
dza dZβ 2

by < , > we have

dZa oZβ 4 o

by choosing normal coordinates around zl. Therefore we have

and, by (4.4),
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_-Z_j £/*•«(£', zη = exp (——) jί-^- — —

ΐ* df V
I A TJi"Q{7 7 ) θβa X7 T_J Q-\7 7) QPa

t dZβ t

Therefore

— — Δλ H%(t, z\ z) = (2πt)~n exp ( — —

x Σ

f.utf, z) + g
t dZs t dz

-L JL.rut.itf, z)\ .

Equating the coefficient of — expί—^Λ in (J- — Δ,] H"N(t, z', z) to
zero gives ^ ^ l 2 ί ' [ d t 'zero gives

ϋ-n + i
(47)

On the other hand,

(4.8)
dr dZβ dza dza dZβ

d/dr denoting differentiation along the geodesic joining the points z! and z.
In fact, we consider the differential form \dr2 (defined in a sufficiently small
neighbourhood of the point z'), d denoting the exterior differentiation with
respect to the second variable. The Riemannian metric (which by definition is
the real part of the hermitian metric) in T(X) induces an isomorphism ψ of
TX(X) with T*(Z) for all x e X. By using normal coordinates one can easily
see that φ~\\dr2) = r-d/dr. On the other hand, we have

= \df + \df ^ ^
dZa dZa

so that

dza dlβ dZa 3zβ

Hence we obtain (4.8) and can write equation (4.7) as
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Fr.d/drU

0 < Ϊ <

In [3] it is shown that the system of equations (4.3) of that paper has a
unique solution in a neighbourhood of the diagonal. One can in an exactly
similar way show that the system of equations (4.9) has a unique solution in
a sufficiently small neighbourhood of the diagonal in X x X, with the initial
condition VQ>q(z\z') equal to the identity endomorphism of ξz, ® ΛqT*°'\X).
Thus we can construct a parametrix H%(t, zl', z) in a sufficiently small neigh-
bourhood of the diagonal W in X x X. Starting with this parametrix H%(t, z\ z)
one can carry out the construction of the fundamental solution eq(t, z'9 z) for
the heat operator 3/3* — Δz. The method is completely analogous to the method
used in [3, § 4]. Furthermore one can show that

(Tr eq)(t9 z!9 zf) = (Tr H%)(t9 z'9 z') + 0(tN~n+1)

= (2πt)-n Σ tι Tr Ui q(z?9z') + 0(tN~n+ι), by (6).
ί = 0

(See the proof of formula (4.8) of [3].) Since V*'q(z'9z') is the identity endo-
morphism of ξt, (8) ΛqT*,°>KX)9 we get

(Tr eq)(t9 z!9 z') = (2πt)-» k ( n ) + * Tr CMfe', z!) +

(4.10) X q ]

+ tN Tr UN q(z'9 z')\ + 0(tN~n+1) , * I 0 ,

k being the rank of the vector bundle ξ.

5. Two crucial lemmas

We fix a point z! of X, and let U be an open neighbourhood of z! such that
U is holomorphic to an open subset of Cn, ξ is trivilized over U and any two
points in U can be joined by a unique geodesic lying in U. To start with
some elementary observations let X be a C°°-vector field defined on U. Then

\x, r—λ = X + Y, where Y is a C°°-vector field such that Y(zO = 0. To
L dr A
prove this we introduce normal coordinates (y19 , y2n) in £/ such that z! has

coordinates (0, ,0) and the matrix (gi<7(zO)i<*,.,<2W> £o

equals the identity matrix. Then r = Σ yj d/dyj> a n d if -SΓ =
dr

for any C°°-function / defined on U we have

or A.
dr
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Therefore

L dr \ dy j dy j dyk

where Y is a C°°-vector field such that Y(j!) — 0. We also observe that
(Jέ(r(z', z))2)(z', zθ = 2π, which follows from the relations Δz = \Δ and
(Δy(r(x,y))2)(x,x) = An, Δy denoting the usual Laplace operator; the latter
can be shown by using normal coordinates.

We now state our first lemma of this section, which we think can legitimately
be named as a cancellation lemma.

Cancellation Lemma 5.1. Let l19 /2, /3, / be non-negative integers such that
IJ2 + l2 + i<n. Let X19 , Xh be C°°-vector fields defined on [/, Al9 , Ah

be C~-sections 0/ £<g)£* <g) T0Λ(X)<g) Γ* 0 ' 1 ^) defined over U and B19 , Bh be
arbitrary elements of C°°(£/, f ® f * ) . Let σ be a permutation of {1, , /2 + /3}.
For any integer q, 0 < q < n, define the endomorphisms S?, 1 < / < /2 + h,
of C°°(U9 ξ (x) Λ^T* 0 ' 1 ^)) by

)Q(Ai)9 for 1 < i < l2 ,

ί-ι2 ® Iq, for l2 < i < l2 + /3, Iq being the identity endomorphism
of /\qT*Q'\X).

Let the operators F X l , , VXι be denoted by F19 , Fh. Then we have

Σ ( - DQ Tr [SI o . . . o sj%+lt o Fλ o . . . o Fll(Uί'q(z\ z))](z', zf) = 0

(all the operators act with respect to the variable z).
Proof. We shall prove the lemma by induction on / and lx. Let / be a non-

negative integer and suppose that the lemma has been proved whenever / < /.
We shall prove the lemma for i = j . Let μq be the operator defined by

μq — S? ° - ° Sϊ2+ι3 ° Fj o . . . FZ l .

First suppose that lx = 0. If / = 0, then the lemma follows from Lemma 2.3.
Therefore we can assume that j > 0. The double form Uj>q(z', z) satisfies the
differential equation

+ (/ - n + ±

(5.1) = gβaPaFβUJ-ι'q(z', z) + Dq(Iς <g> K)(U^q(z\ z))

^tftZ)) by (4.3).
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Since the double form Fr_d_Uj'q(z\ z) is zero at (z\ z') we have
dr

Therefore applying the operator μq to both sides of equation (5.1) and then
taking the trace we obtain

= §βa Σ ( - D β Tr [μq o Va o FpiW-^U', zWz', z')
q = 0

-1)« Tr [μq

-l'q&, z))Kz', z') .

Since by the induction hypothesis each term on the right hand side of the above
equation is zero, we have

Σ ( - Ό« Tr [μq(U''Kz', z))](z', zθ = 0 .
q = 0

Now suppose that lx > 0 and the lemma has been proved for smaller values
of lλ. We wish to apply the operator μq to both sides of equation (5.1) and
then take the trace. Let

Ti = Si o . . . o sy o F r i o F 1 o . . . o F ί l ,

ff(2)<

rT'q ^Γ^ c*q &q r? T7 17 r ^ ~i 17 Ϊ7

By Lemma 3.3, μqo FrΛ_ = Ί\ + Ί\ + Ί\ + a sum of operators for each of

which the induction hypothesis for lλ applies. Since the vector field r is zero
at the point z\

zθ = 0 .

Also by the remark made at the beginning of this section,

h
/ i 3 1 O O j 3 j i O ψ O O ψ 1 O r Γ v ^ " l ^ r i ' . L i ^ • • • O §/ j

1 i v~» r>o O Q Γ7 ^ Γ 7 U ^ U r\ r\ 17
= hμq T ZJ ύϊ o . . . o ^Z2 + Z3 ° ^1 ° ' ' ' ° M - l o ^ i O M + l ° ' * ' ° K «i '

i = l
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where X€'s are vector fields such that Xt(z') = 0. By Lemma 3.3,

Σ S} o . . . o Sf2+l3 o Vλ o . . . o 7^ o Vti o Fi+ι o . . . o p
i = l

= Σ S? ° * ° S?,+ι, o ( 7

ί . o F 1 o . . . o F i o . . . o F ί l + a sum of
ί = l

operatars for each of which the induction hypothesis for lλ

applies.

Lastly since A^(z') = 0 for 1 < i < l19 we have

° S?i+I, o F v F 1 o . . . o F i o . . . o Vlχ(U>«{z!9 z))](z ;, zθ = 0 .

Therefore the induction hypothesis gives

Σ ( - Dβ Tr
β=0

and also

Σ

+ Σ
fc l

Thus by the induction hypothesis for lx we obtain

n

Σ (—IY Tr \n (A (r2)Uj'Q(z' zϊ)Λ(z; z')

= In t (-l)qτr[μq(Ui%z',z))](z',z') .

Similarly, by the induction hypothesis (for i) we have

n

Lastly Lemma 3.2 together with the induction hypothesis (for i) gives

Σ (-1)« Tr [μq o DV( ® KXU'-i Kzf, z))](zr, z') = 0 ,

Σ ( - D ? Tr [«„ o D«5(l/ί-1 «(z', z))](z', z') = 0 .



272 V. K. PATODI

Therefore applying the operator μq to both sides of equation (5.1) and then
taking the trace we get

(h + D Σ ( - D « Tr [μq(U' <(z', z))](z', zf) = 0 .
5 = 0

Since lλ + j > 0, we have

Σ ( - l)q Tr [μq(U^(z\ zMz', zΠ = 0 ,

which completes the proof of Lemma 5.1.
We now come to our next lemma of this section, and shall first introduce

some notation. Greek letters a, β, will run from 1 to n. We shall denote
the operators Fd/dZa, Vd/d2a by Fa9 Fs respectively, and the element K(d/dza, d/dzβ)
of T^\X) (x) T**>\X) by K(a,β)(K(d/dza,d/dZβ) is in fact an endomorphism
of T%X) and it maps T*^\X) into itself. We restrict this endomorphism
K(d/dza,d/dzβ) to T*°>KX) and denote it by K(a,]})). By Pk we shall denote
the group of permutations on k-symbols. Let pePk, and A19---,Ak be
operators from a suitable space into itself. By p(Aλ o o Ak) we shall denote
the operator Ap{1) o . . o Ap{k). For the sake of simplicity from now on we
shall assume that the coordinate functions z19 , zn are chosen such that
(gij(z')) is the identity matrix.

Lemma 5.2. Let I, m, p, i be non-negative integers such that I + m + p + i
= n, σ be a permutation of {1, , m + p}, p be a permutation of {I, , 2p}
and τ be a permutation of {1, , / + m}. Then

Σ Σ ( - 1 ) 9 Tr [{τ((D«Sy o (/e (x) D ^ f e , aσ(1))) o . . .

o (/, ® D«X(αm, «.<„,))) o p(F«m+1 o F a s ( m + 1 ) o . . . o F,,m+2) o FSa(m+p))}

(5.2) •([/ί «(z',z))](z',z')= Σ Σ F* Σ
r = i δζPn-r l<ai, ~,an-r<n

. Σ (-1)« Tr [ O W o (/f (g) D ^ f e , aδa)))

where Fδ's are constants depending upon δ, /, m, p, i and the permutations σ, p.
Proof. We shall prove the lemma by induction on / and p. Let / be a non-

negative integer and suppose that the lemma has been proved for / < /. We
shall prove the lemma for i = j . Let Aq denote the operator

Σ τ((D*S)1 o (/, (g) D«K(a19 α,(1))) o . . . o (Iξ ® D*K(am, ~aa{m))))
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First suppose that p — 0. If j = 0, then the lemma follows from Corollary 2.6
since £/0><?(z', z') is the identity endomorphism. Therefore we can assume that

Applying the operator Aq to both sides of (5.1) and then taking the trace

we get

/ Σ (~ Ό β Tr [Aq(U>'*W, z))](z'9 zΓ)
5 = 0

= Σ Σ ( - D ? Tr [Aq o P. o VlW' Kz!, z))](z', z')
a q = 0

n „

~\~ /_j V— 1)^ I r L^Q ° v*ί Qv LJ &)\U^ (Z , Z))J(Z , Z )

_ 2 (-l)^TrU, oj

By the induction hypothesis Lemma 5.2 holds for each of the three terms on
the right hand side of the above equation. Hence we have (5.2) for i = j and
p = 0.

Now suppose that p > 0 and the lemma has been proved for smaller values
of p (and i — /). Let Bq, Cq be respectively the operators

9 α.(1))) o . . . o (/, (x) D*K(am, aβ{m)))) ,

and Xx, , Z 2 p be vector fields such that

Xp-H2k+1) = d/dZan+k+l9 0 < Λ < p - 1 Z , _ 1 ( i t ) = 5/az«σ(m+;k), 1 < Λ < p .

Then Cq = Γ X l o . . o F X 2 p . As in the proof of Lemma 5.1, we want to apply
the operator Aq to both sides of (5.1) and then take the trace. We first look
at the term Aq o Frj^(Uj'q(z', z)), and shall apply Lemma 3.3 for the operator

dr d
Vx o . . . o Vx o p'r_r_. Since the vector field r is zero at z', we have

= 0 ,

;(2)< .<σ(2p)

If 0 < r < 2p — 1 and σ is a permutation of {1, , 2/?}, we obtain, by
Cancellation Lemma 5.1,
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q = 0

/β denoting the identity endomorphism of C°°(X, ΛqT*°>ι(X)). Also, if 2 < r
< 2p — 1 and σ is a permutation of {1, , 2p}, we have (by Cancellation
Lemma 5.1)

Tr [*, O D"{ls

z'.z0 = 0 .

Let Xs, r = Xs + X Then J?s(zO = 0 and it is an immediate con-
L dr J

sequence of Lemma 3.3 applied to the vector fields X89X19 -9Xt_x and
Lemma 5.1 that

2 (-iy Tr [BqoPXio ... o VXs_x o Vlt o FXs+1
0

Thus

Σ ( - D * Tr \Aq O FrjL(UJtq(z\z))\zf9zr>
(5.3) L " J

= 2/? Σ (-1)« Tr W^t/^ 'Cz', z ) ) ] ^ , zθ + T ,

where

7"= / , /Λ-iΓ ii |ΰflo^ΊiίWiΛMΛl'-^>Λ

ff(2)

Since the vector field r— is zero at z' for any two vector fields X and Y, we
have *

(F* (K(rA-, y))) (zθ = (x ([x, r- |-], y)) (zO = (*(*, 10)(z0

Moreover,
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κ(d/dza,d/dzp) = κ(d/dza,d/dzβ) = o ,

= -κ(d/dzβ,d/dza).

Therefore

T = Σ ( - Dc(r's'p) Σ(-1)'Tr IB, o (I, ® />«£(«„•„ a. ( m + i ) ))

o J(r, i , />)(F*m + 1 o F . . ( m + 1 , o o F e e ( m + 5 ) c

where c(r, s, p)'s are integers depending on r, s, p, and λ(r, s, p)'s are permuta-
tions depending on r, s, p. Thus by the induction hypothesis (for p) T equals
the right hand side of (5.2) possibly with different constants F s ' s depending on
d, I, m, p, i, σ, p. By Cancellation Lemma 5.1, one can easily see that

Σ ( - D β Tr [Aq o (4(r 2 )t/ '"(z ', z))](z', z') = (402))(z'> zf)

• Σ ( - D« Tr M,(t/^ «(z', z)](z', z') .

Let

Γ, = Σ ( - D ? Tr W, o g»V. o VfW-^z?, z))](z', z') ,

n ^
12 -— y, \— -ij 1Γ \_JA.Q O LJ \l & (X) i\. )\LJ \Z j ^//J\Z y Z ) y

n
V Γ 1 ΛQ T r Γ/4 n DQ^ΪίTJ^^'Qί7f 7\\Λ(7f 7rΛ

By Cancellatation Lemma 5.1 we obtain

y __ y1 (̂  )̂<? "pr [̂ 4 o P o f7 (U^~ι'(ί(z/ z)Mz' z')

and Lemma 3.2 together with Cancellation Lemma 5.1 gives

n „

±2 τ=z χ_ι \— *-j Tr [B^ o D^yl ^ (X) J\_) o Q,q\U \Z ? ZJ/JC^ ? Z )

n

Σ ( Λ\Q T * Γ Ώ

since K = K(d/dza, dza) ,

n
χ~> / i \n T"1,. Γ D _ TΛqC _ S^ (Tlj — ltQί>7f ΎWΛί7^ 7^Λ
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Hence by the induction hypothesis on /, each of the terms 7\, T2, T3 equal to
the right hand side of (5.2) possibly with different constants F/s. By applying
the operator Aq to both sides of equation (5.1) we then have, in view of (5.3),
(5.4) and (5.5),

(2p + j) £ ( - 1 ) * Tr [Aq(U*'«tf, z))](z\ z') + T = Tx + T2 - T3 .
q = 0

Since we have already proved that each of T, T19T29 Γ3 equal to the right hand
side of (5.2) possibly with different constants F/s and 2p + j > 0, we obtain
(5.2), and the proof of Lemma 5.2 is thus completed.

6. Proof of Theorem 1.6.

An immediate consequence of Cancellation Lemma 5.1 is that

Σ (~ 1)Q Tr UUq(z\ z;) = 0 for i < n .
q = 0

Therefore (in view of (4.10)) to complete the proof of Theorem 1.6 and hence
that of Theorem 1.1, it is sufficient to prove the following lemma:

Lemma 6.1. The cohomology class (2π)~n( Σ (-l)qTr Un'q(z', z')\ e

equals [ch(ξ)^(X)]2n

 U =°
n

We shall prove this lemma in this section. By Lemma 5.2, Σ (~^q

•Tr Vn>q(z\ zθ equals the right hand side of (5.2) with constants F/s depend-
ing only on the dimension n of the manifold and the permutation δ. Let φ and
ψ be the maps as defined in § 2. Then

(Id ®<p)S=Σ Sϊβ&aSa ® sb*(dz9 A dzβ)

= Σ Si.flsa ® *δ* <8> (dza Λ dzβ) ,

φ(K(a, β)) = Σ K'τaβgtέdzt A dzγ .

Since we have chosen the coordinate functions such that (gaβ(z')) is the identity
matrix, at the point z! we have

and therefore

φ(K(α, β)) = Σ Kfadz, A dzr .

Put

Sα

b = Σ Sα

bαβdzα Adz,, Kα

β=Σ KW*dZr A dzδ .
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Then (SJ) and (Ka

β) are local expressions for the curvature forms of hermitian
connections in the bundles ξ and T(X) respectively.

By Lemma 5.2 and Corollary 2.6 we get

Σ ( - Ό « Tr U»'*tf, z'))e = Σ ψ(Σ Sζaβsa <g> s*
\q=0 I r=0

(6.1) <g) (dza A dzβ), , Σ Slβsa ® Jf <8> (dza A dzβ)(r-ύmes)

A T F*Kai Λ Λ Kan~r

where Â^ denotes the conjugate of the form Ka

β, and F/s are constants depend-
ing on the purmutation δ and the dimension n of the manifold.

Next we shall express the right hand side of (6.2) in terms of the charac-
teristic classes of ξ and T{X). To this end we start with some preliminaries
about characteristic classes, and adopt the definitions and terminology of
[2, Chapter XII]. Let / be an invariant homogeneous polynomial function of
degree r defined on the Lie algebra @l(k,C) of GL{k,C). In terms of the
canonical basis we can represent an element of the Lie algebra by a matrix
(Xj)i<ij<k' Let

(6.2) KX) = Σ mtxil •-*(;.

The constants /£;:;/r

r satisfy the condition fί ^'.yj;^ = /£.\\7r

r for any permu-
tation σ of {1, , r). Then the characteristic class w(f) of the vector bundle ξ
corresponding to the function / is given by

(6.3) w(f) = Σ iiΐllί Sll A Λ S{; .

Consider the function / defined on the Lie algebra by

KX) = trace (exp (j-x)) = trace ( Σ ^ V ^~)> X e m&> C> '

and let

ΠX) = trace Xr .
(2πYrl

The homogeneous polynomial function fr is invariant by ad (GL(λ;, C)). We
shall donote the characteristic class w(fr) of ξ by ch r(f). By (6.2) we then
have

(6.4) ch' (f) = ι[ Σ S\ι A S% A Λ Sfc .
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The cohomology class ch (?) = Σ chr (?) is called the Chern character.
Lemma 6.2.

ψ(Σι SlβSa ® sf <g> (dza A dzβ),

Σr Staβsa (x) j * (x) (dzα Λ dz,))

/. This lemma is an immediate consequence of the definition of φ and
the definition of Chern character.

Let fo(X), fλ(X), , fn(X) be the polynomial functions defined on the Lie
algebra &l(n, C) of the Lie group GL(n, C) by

(6.5) det [λln - * * ) = Σ ί - r W «

The polynomial functions /„,f19 ••-,/„ are invariant by ad(GL(n,C)). Let
Co, C1? , Cn be the characteristic classes w(f0), wifj), , w(/n) of the tangent
bundle T(X) of X defined by these invariant functions. Then we have

(6.6) Cr(X) = — i ^ — Σ 6 . κ<£ω Λ Λ K{;(r) ,

where the sum runs over all ordered tuples (z1? , /r) and the permutation
a of {1, ,r}, and the symbol eσ denotes the sign of the permutation σ.
C0(Z), Ci(Z), , Cn(X) are the Chern classes of the manifold X.

Let r < n be a positive integer, and d be a permutation of {1, , r}. Define
a polynomial function gδ on the Lie algebra @l(n, C) by

(6.7) gδ(X) = Σ X%ω ' Ar(r)
l<ύ< <ir<w

The polynomial function gδ(X) is invariant by ad (GL(n, C)). By Lemma 2.7
there exists a polynomial Pδ(Y19 , Yr) in the variables Y15 , Yr,

P (Y . . . y ) - v p α y α i . . . γ<*r
ai+... + rar = r

such that

(6.8) gδ(X) = PMX), , /rW) , ^ e ̂ /(Λ, C) .

As an immediate consequence of (6.1), (6.8) and Lemma 6.2 we get
Lemma 6.3. There exist polynomials

p (Y . . . Y Λ — y pa Y"1... Yar
ϊr.nK1 1? 5 Σ r) — Z J Γr,nz 1 z r

ai+ " + rar = r

such that
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(2π)-n ί Σ ( - D* Tr Un q(z', z'))e = Σ c h n " r (?) A P^^C^Z), , Cr(*))

We now proceed to determine the polynomials P r n , and shall prove that
Prn = Pr r and the polynomials PTO>TO satify the multiplicative property (see
[1, § 1.1] for the definition of multiplicative sequences). We need the following
lemmas.

Lemma 6.4. Let X be a complex analytic manifold of dimension n, and z
a point of X. Then there exist a hermitian metric g on X and an open neigh-
bourhood U of z such that the metric g restricted to U is Kaehlerian and
such that with respect to the hermitian connection induced by the metric
g, (Cn(X))(z) Φ 0 and (Q(Z))(z) = 0 for 0 < i < n, the forms Ct(X) being
defined by (6.6).

Proof. Let zl9 , zn be holomorphic coordinate functions defined in an
open neighbourhood V of z, U be an open neighbourhood of z such that the

closure of U is contained in V, and σ be the permutation L o ?) There

exists a hermitian metric g on X such that restricted to U, g is Kaehlerian
and, at the point z, (g^ ) is the identity matrix, dgij/dzk = dgij/dzk = 0 for
all ί9j,k, d2gij/dzkdZi = 0 unless k = i, I — j and the sequence {/,/'} is a
permutation of {i9σ(i)}9 and lastly d2giσ{i)/dZίdza(i) = d2gσίί)i/dzσ{ί)dzί = 1.
Then the two-forms K) = 0 unless {/, /'} is a permutation of {k, σ(k)} for some
k, and

K(ί) = - ώ , ( i ) Λ dli , K°{i) = — dzi Λ dzβii) .

It can easily be seen that (Ci(X))(z) = 0 for 0 < i < n and (Cn(X))(z)
— ( — 2)nπ~ne(z), e being the volume element. This completes the proof of
Lemma 6.4.

Similarly, one can prove the following lemma.
Lemma 6.5. Let X be a complex manifold of dimension n, z be an arbitra-

ry point of X, and ξ be a holomorphic vector bundle of rank k, 0 < k < n.
Then there exist hermitian metrices in X and ξ such that the hermitian metric
in X restricted to an open neighbourhood of z is Kaehlerian and such that
with respect to the hermitian connections in Ί\X) and ξ given by these metrices,
(CiCJOXz) = 0 for 0 < i < n and (chfc (ξ))(z) Φ 0.

Given two multi-indices a = (a19 - 9an) and β = (βl9 , βn) we shall say
that β < a if there exists a positive integer s such that βt = at for s < t < n
and βs < as.

Lemma 6.6. Given a multi-index a = (a19 , an) such that Σ ^ = n>
there exist a complex analytic manifold X, a point zzX and a hermitian
metric g on X such that g is Kaehlerian in an open neighbourhood of z and,
at the point z,
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C^iX) Cn'»(X) Φ 0 , C/KX) CnHχ) = o for β = (ft, ...,βn)

such that 2 iβi = n and β < a.

Proof. Let the partition n = 1 + + 1 (aλ times) + 2 + + 2
(α2 times) + + n + + n (an times) be denoted as n = rx + + rfc.
By Lemma 6.4, there exist a complex manifold ^ of dimension rj9 a point
Zj of A^ , and a hermitian metric g on Z^ such that g is Kaehlerian in a neigh-
bourhood of Zj and, at the point zj9

CiiXj) = 0 for 0 < i < rj , Crj(Xj) Φ 0 .

Let X = Xx x x Xk and z = (z1? , zk). Then the complex manifold
X, the point z of X, and the hermitian metric on X induced by the hermitian
metrices on Xj satisfy the requirements of the lemma.

We now introduce some notations. Denote the forms Pr n{Cγ(X), , Cr(X))
by Pr§n(X), let Q(Y19 . ., YJ = Σ <f?ϊ ' ^ be a polynomial,

and make the formal substitution Yt = J] Z^Zfc. Then there exist unique
j + * = i

polynomials ΛΛfc = Σ Ί ; * ^ ? 1 ZJ'ATf1 ^2* such that β ( y i ? , YJ
aί + ... + jaj=j

— Σ Rj,k(Zi9 ' ' ' 9 Zj, X\, - * J ̂ Λ;) We shall denote the polynomials Rjtk
j + k = m

by 2^'fc.
Now we are in a position to prove the following lemma.
Lemma 6.7. Polynomials Pn>n satisfy the multiplicative property and Pr>n

= Pr>r for 0 < r < n.
Proof. We first observe the following. Let X be a compact complex

manifold of dimension n, and g a hermitian metric on X such that in a neigh-
bourhood U of a point z! of Z , g is Kaehlerian. Let ξ be a holomorphic vector
bundle over X, and L/°'9(z', z), C/^Cz', z), , t/^Cz', z) be C°°-double forms
defined in a neighbourhood of the diagonal in U X U such that UQ'q(z\ z') is
the identity endomorphism of ξg, (x) AqT*f

Oil(X) and the forms UUq(z', z) con-
stitute the solution of system of equations (4.9). Then Lemmas 5.1, 5.2, 6.2
and 6.3 hold at all points z! of U.

Let us consider a partition w = ^ + n2, nλ and n2 being positive integers.
Let X19 X2 be complex manifolds (with hermitian metrices) of dimensions n19 n2

respectively. Suppose that there exist points zλ€X19 z2 € X2 and open neigh-
bourhoods U19 U2 of z15 z2 respectively such that the hermitian metrices re-
stricted to t/1? U2 are Kaehlerian. Let fx be a holomorphic vector bundle
(with a hermitian metric) on X19 and f2 the trivial line bundle on X2. Put
X = Xλ x Z 2 and ξ = ξ, ® f2, and suppose that {C/j'g{z;, Zj)}0^N(j = 1 , 2 )
constitute the solution of system of equations (4.9) in a neighbourhood of the
diagonal in Uf X E/̂  with the initial condition that U^iz^z'j) be the identity
endomorphism.
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Given vector spaces W, M, M19 M2 and N, N19 N2 such that M19 M2 are sub-
spaces of M and N19N2 are subspaces of N, there is a natural map from

{{W (x) AQlMλ) ® (W (x) A9lNJ) X (Λ ? a M 2 (g) A92N2) to (W (g) A9l+q*Nf) (g)
(W (g) AQl+92N) sending (HΊ ® JCX ® w2 ® y^ JC2 ® y2) to (Wi (8) ( x̂ Λ ^2)) ®
(w2 (g) (yx Λ y2)), where w19 w2 εW, xλe AQlMx, y1 e AQίN19 x2 e Aq*M2,
y2 e Aq*N2. We shall denote the image of an element (x, y), xz(W ® A ? 1 M t )
®{W® AqχNλ), y 6 Aq*M2® Λ g W 2 under this map by x A y. Then we have

UiιQ(z'9z) = Σ UlΉzΊ, zλ) A U^q2(z'2,z2) ,

where z! — (z[9 Z0 and z = (z1 ?z2). Therefore

= Σ f Σ (-1)91 Tr UtHZu zθ) f Σ (- D?2 Tr t/ϊ ' fe, z2)

Σ (-D ? 1 Tr t/Γ « (z,,Zi)) ( Σ (-D ? 2Tr t/f ' Cz,,

by Lemma 5.1,

which implies

ch»- (?) Λ P M (I)J (z) = ^Πi* [ Σ chWl-s (ft) Λ P ^ W J ) fe)

Λ Π 2 *(P W 2 , Ώ 2 (^ 2 )),

where f]u Π2 a r e projections from X onto X19 X2. Since

C,(Z) = ?! Πi* C/Z,) Λ Π2* Ck(X2) and ch^ (f) = Πf ch* (ft) ,
j + k = i

we have

(6.9) Πf Cri(Z,), Πί C,(Xύ, , Πf

= Πi*( Σ ch -(fi) Λ P . ^ ^ ί z ) Λ Πf (P-

Let us take f x to be the trivial bundle. Then ch s (ξJ — 0 for s > 0, and from
(6.9) follows

= π? c.,.-^))^) Λ n.*
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which and Lemma 6.6 imply

pn1,n2(γ . . . V 7 7 Λ P (Y Y Λ v P (7 7 Λ
1 n,n \ x 1? 9 A Tip ^ Ί > ' > ̂ π 2 / — * ni.TzΛ^ u * * * ? ^ wx/ A 1 n2f7l2\z^ι, , ^ ^

in the polynomial ring C(Y19 , YWl, Z l s , Z n a ). This is precisely what is
needed in order that the polynomials Pn>n may satisfy the multiplicative
property.

Taking ξλ to be a holomorphic vector bundle of rank n19 (6.9) together with
Lemma 6.5 gives

,Cn2(X2)))(z2) = ( P ^ J C . C Z , ) , . . , C J

since Po Wl = 1. In view of Lemma 6.6 this implies that in the polynomial ring

* 7i2,ttV * u * * * J •* τι2/
 : = z * n 2 , n 2 v ^ l 5 ' ' " > ^ n 2 / ?

completing the proof of Lemma 6.7.
We now come to the proof of Lemma 6.1.
Proof of Lemma 6.1. In view of Lemmas 6.3 and 6.7 we need only to

prove that if X is a complex analytic manifold of dimension n, and r is an
integer less than or equal to n, then P r > r(C 1(Z), ,C r(X)) equals the r-th
component of the Todd class ZΓ(X). In other words, we need only to prove
that the polynomials Pn>n are Todd polynomials; see [1, § 1.7] for the defini-
tion to Todd polynomials.

By Lemma 6.7, polynomials Pn>n enjoy the multiplicative property. Therefore
there exists a power series Q(z) which completely determines the polynomials
Pn,n (see [1, Lemma 1.2.1]), and we need only to prove that Q(z) is the power
series z/(l — e~z) or that the coefficient of zn in (Q(z))n+1 is equal to 1 (see
[1, Lemma 1.7.1]). For this we consider the complex projective space Pn(C).
There exists a generator hn g H2(Pn(C), Z) such that the Chern classes of Pn(C)
are given by (see [1, Theorem 4.10.2])

Ci(Pn(C))= (" j

The Euler-Poincare characteristic χ(X, Ω(ξ)), for X = Pn(C) and ξ equal to
the trivial bundle over X, equals 1, and Cn[Pn(C)], the value of the n-th Chern
class of Pn{C) on the 2π-dimensional fundamental cycle of X, equals n + 1.
Therefore we have

(6.10)

By the factorization
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and the multiplication property for the polynomials Pnt7l we thus obtain

(6.11) Pn>n ^ I X ) , , (Λ + l)) = coefficient of zn in (Q(z))n+ι .

From (6.10) and (6.11) it follows that the coefficient of zn in (β(z)) n + 1 equals 1.

This completes the proof of Lemma 6.1 and hence of Theorem 1.6.

Remark. By an analogous method with essentially different algebraic

lemmas from those used in this paper the author has been able to prove the

Hirzebruch signature theorem.
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