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Introduction

Let M be a Banach manifold which is not assumed to be Hausdorff, and
let D denote the group of diffeomorphisms of M and V the Lie algebra of
vector fields on M. A Lie group ¥ is called a Lie transformation group of
M if the underlying group G of ¥ is a subgroup of D and the natural map
a: (g, p) — g(p) from ¥ X M into M is a morphism (of manifolds). In this
case, « induces a homomorphism «* from the Lie algebra L(%) of ¢ into V
(cf. § 3). Conversely, we prove that the set of complete vector fields of a finite-
dimensional subalgebra of V is a subalgebra (Proposition 8), and if L is a com-
plete finite-dimensional subalgebra of V then there exists a unique connected
Lie transformation group % such that «* is an isomorphism from L(%) onto
L (Theorem 9). In case M is finite-dimensional and Hausdorff, this result is
due to Palais [4]. For the numerous applications in differential geometry, the
reader is referred to [1]. Unfortunately, the proof of the just-mentioned special
case given in [1] seems to be incomplete. The proof to be presented here is
quite elementary; it relies heavily on the use of one-parameter families of
diffeomorphisms, instead of one-parameter groups. To be more precise, we
define a curve in D to be a morphism ¢: I, X M — M such that

(1) 1, is an open interval in R containing O;

(ii) the map ¢,: p — ¢(¢, p) belongs to D, for all te1,;

(iii) ¢, = Idy.

With ¢ we associate a time-dependent vector field d¢ by

og(t, p) = (Bp)(p) = (d]ds);_p (@ (D)) -

The map ¢ — d¢ is injective (Proposition 4). The underlying group G of %
turns out to be the set of diffeomorphisms ¢, where ¢ is any curve in D such
that I, = R and (3p), €L for all e R. Using canonical coordinates of the
second kind, G becomes a Lie group with the desired properties. We also
prove the following criterion for a subgroup G of D to be a Lie transforma-
tion group (Theorem 10): assume there is a set S of curves in D such that
{p:: pe S and tel,} generates G and that {(dp),: ¢S and tecl,} generates a
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finite-dimensional subalgebra L of V. Then L is complete and G is the under-
lying group of the connected Lie transformation group generated by L.

We work throughout in the category of real Banach manifolds of class C*
where Kk = o or kK = w, and a morphism is a map of class C*. For the basic
facts on Banach manifolds we refer to Lang [3].

1. Curves of diffeomorphisms and time-dependent vector fields

Notational convention. If f is a map on a product space, then the partial
maps p — f(t,p) and ¢t — f(t, p) will be denoted by f, and f?, respectively. If

t is a real variable, then f7(¢) = f,(p) = %f(t, p) is the tangent vector of the

curve f? at f(¢, p). By I we denote an open interval in R containing 0.
Let D(I) be the set of all curves in D with I, = I. Then with the operations

() (t, p) = ¢, 0 ¢(D); o '(t,p) = ¢7'(p)

D(I) is a group. Indeed, the only non-obvious fact is that ¢! is a morphism,
and this follows from the implicit function theorem.

A time-dependent vector field is a morphism &: I X M — T(M), the tangent
bundle of M, such that &, ¢V for every tel. Note that &7 is a curve in the
tangent space T,(M) for every p € M. Identifying as usual the tangent space of

T,(M) at &2(¢) with T,(M), we define a time-dependent vector field —- 65 by
65 (t p) = £7(1). The set V(I) of time- -dependent vector fields becomes a L1e
algebra with
(&, 71(¢, p) = [§1,7])(@) -
Also V C V(I) by setting X(¢,p) = X(p) for X eV, and then £¢V if and

i3

only if —>- Fy = 0, i.e., £ is time-independent.

Let feD and X ¢V, and denote by Tf the induced map on the tangent
bundle of M. Then

Adf-X =TfoXof!

is a vector field on M, and in this way D acts on V by automorphisms.
Similarly, D(I) acts on V(I) by

(Ad ¢-8)(t,p) = (Ad ¢,-£)(P) .
We define : D(I) — V() by

op(t, p) = (@7 (P)) -



LIE TRANSFORMATION GROUPS 177

Then.we have

(1) 8pd) = dp + Ad @-6¢ ,
(2) dp~t = —Ad ¢! dp .
Indeed,

8ed)(t, p) = -j—t(sot(sbt(p» — 6.0®) + Told®)

= 0¢(t, ¢, 0 ¢(D)) + T, (3¢(t, ¢(P))
= (6p + Ad ¢-69)(t,p) ,
and (2) follows by setting ¢ = ¢~'. Note that § is a crossed homomorphism

from D(I) into V(I).
Lemma 1. For oe D(I) and £ e V(I) let = Ad ¢-&. Then

0 o0&
3 9 — [5p, 7] + Ad - %5
(3) ot [5¢, 7] ® ot

Proof. This is a local result. Let U and V be coordinate neighborhoods of
p and ¢;(p), and choose V' C V, U’ C U and e > 0 such that o((t, — ¢, , + ¢)
X V) C Uand o~ ((t, — &, t, + &) X U’) C V’. By continuity, this is possible.
We may identify U and V' with open sets in a Banach space E. Then T(U)
=UXE and TW) =V X E. For yeV, let &t,y) = (v, g(t, y)) where
g (t—¢ety+e XV —>E. For xelU and |t — t)| < e we have dp(t, x) =
(x, f(t,x)) and 9(t, x) = (x, h(t, x)) where f(¢, x) = ¢,(¢;(x)) and A(t, x) =
Do, (p;74(x)) - 8(t, ;7' (x)), Dg, denoting the derivative of ¢,; see [3, p. 6 ff.].

Let ¢;(x) = y for short. Then from D?ot = D¢, it follows

h(t, x) = Dg()-8.») + Do, (%), 8,))
+ Do) - 2. + Dg,(y) o Dg,(y)-¢; () ,

Df,(x)-h,(x) — Dhy(x)-f,(x) + De,(y)-&.(»)
= D¢,(y) o Dp;'(x) - h,(x) — D, (y)(De;(x) - (), 8:(3)
— D¢, () o Dg,(y) o Do;'(x)-¢,(y) + Dg,(3)-£.() .
From ¢,(p;*(x)) = x for all xe U’ we get
?(y) + Do,(y)-¢;*(x) =0, (Dg,(»)™* = Dg; (%) ,

and the assertion of Lemma 1 follows.

(Note that our definition of the bracket of vector fields differs from the usual
one by sign; this is the ‘good’ definition for transformation groups acting on
the left.)
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Corollary. Let Ye'V. Then y = Ad ¢-Y is the unique solution of the par-
tial differential equation

9y _
(4) P [¢, 7]

for the time-dependent vector field 3 with initial condition 5y = Y.

Proof. From (3) it follows that Ad¢-Y is a solution of (4). To prove
unicity, let » be any solution of (4), and let { = Ad ¢~*-5. Then, from (2)
and (3),

oy

o -1 -
% = [5p71,2] + Ad gt %1
ot L ¢ d ¢ ot

= [—Adg™"-dp, Adp™' 7] + Ad p7'-[3p,7] = 0 .

Hence Adg;'-np, =¢, =¢ = Adg;*-n =Y and therefore 7, = Adg, Y
forall tel. q.e.d.

A curve ¢ € D(R) is called a one-parameter group if ¢, 0 ¢, = ¢,,, for all
s, teR. .

Lemma 2. a) If ¢ is a one-parameter group, then 8¢ is time-independent.

b) Let ¢ e D(I) and 6p = X be time-independent. Then Ad ¢,-X = X for
all tel, and ¢ can be extended uniquely to a one-parameter group.

Proof. a) This follows by differentiating the identity ¢, ,(¢;*(P)) = ¢,(p)
with respect to s at s = 0.

b) From (2) and (3) we get

%(Ad ' X) =[50, Ad ¢~ X] = [~Ad ¢~ X, Ad p"'- X] = 0 .

Hence Ad¢;-X = Ad¢,-X = X for all tel. Now let sel, and set o, =
oo tforte] =1 N1 — s Then

“c(P) = ¢’s+t(§0t_1(p)) + T§03+t(¢c_1(p))
= (X — Ad ¢,,,Ad ¢;*- X)(a(p)) = 0 .

Since J is connected and OelJ, it follows ¢,,,0¢;' = a, = &, = ¢, i.e.,
@5 0@, = ¢;,,. Now it is a standard fact that ¢ can be extended uniquely to
a one-parameter group. g.e.d.

The following change of parameter will be useful.

Lemma 3. There exists a C*-diffeomorphism f: R — I such that f(0) = 0.
The map f*: D(I) — D(R) defined by (f*¢)(t,p) = ¢(f(¥), p) is a group iso-

df

= dp(f(0), p).
The proof is left to the reader.

morphism, and §(f*¢)(t, p) =
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Proposition 4. 5: D(I) — V(I) is injective.
Proof. By Lemma 3, we may assume /= R. For ¢ € D(R), define

@i(s,0) = (t + S, 01,50 ;D)) (teR,(s,pD)eR X M) .

An immediate verification shows that @ is a one-parameter group on R X M.
As usual, T(R) is identified with R X R and T(R X M) with T(R) X T(M).
Then by Lemma 2 the (time-independent) vector field X = 63 on R X M is
given by

X.p) = S| (5,900 070D = (5, 1), 0905, )

Let ¢, ¢ € D(R). Clearly, dp = 8¢ implies 63 = 6¢, and $ = ¢ implies ¢ = ¢.
Hence it suffices to prove the proposition for one-parameter groups. Finally, let
¢ and ¢ be one-parameter groups such that X = dp = d¢. Then from Lemma
2 and (1) and (2) we have d(pgp™") = dp + Adp-0¢p"' =X — Adp Ad¢'-X
=X — X = 0. Setting & = ¢!, this implies that &?(f) = O for all pe M,
te R. Therefore the map «?: R — M is constant for all p e M, and it follows
a, = Idy, i.e., ¢ = ¢.

Note that ¢?: ¢t~ ¢(t, p) is a solution of the differential equation % =

d¢(t, x) with initial condition x(0) = p. In case M is Hausdorff, this solution
is unique which gives a simpler proof of Proposition 4. q.e.d.

A vector field X such that X = d¢ for some (uniquely determined) ¢ € D(R)
is called complete. It is well known that on a compact manifold every vector
field is complete. It can be shown that this is still true for time-dependent
vector fields, so that §: D(I) — V(I) is a bijection for compact M.

2. Lie algebras of vector fields

In this section, L will denote an arbitrary finite-dimensional subalgebra of
V. Let

(5) L(R) = {£eV(R): §,eLforalltecR} .

As a finite-dimensional vector space, L is a manifold in a natural way. Then
we have

Lemma 5. L(R) is naturally isomorphic to the set of morphisms from R
into L.

Proof. Let p e M. Since L is finite-dimensional, the subspace {X(p): X ¢ L}
of the Banach space T,(M) is closed and admits a closed complementary sub-
space. Hence, again by finite-dimensionality of L, there exist p; ¢ M and con-
tinuous linear forms 2; on T, (M) (i = 1, - - -, r) such that the map F: X —
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AX®@),- -, 4(X(p,)) is alinear isomorphism from L onto R”. Lete,,-- -, e,
be a basis of R” and set X; = F~'(e;). For any & e L(R), the map {?: R —
T,(M) is a morphism. Hence f; = 2; o £? is a morphism from R into R, and
& = > ()X, shows that ¢ — &, is a morphism from R into L. If conversely
7: R — L is a morphism, then 5(f) = ) g,(9X, with morphisms g;: R — R,
and this shows that the map (¢, p) — 7()(p) belongs to L(R). g.e.d.

In view of Lemma 5, we will identify L(R) with the set of morphisms from

R into L. Then % = dg
ot dt

, where Z—f denotes the usual derivative of a curve

in a vector space.
Now we define

(6) G(R) = {pe D(R): dpc L(R)} .

The fact that we consider only curves of diffeomorphisms defined on R is con-
venient but not essential in view of Lemma 3.

Lemma 6. Let o< G(R) and 6o = &: R — L. Then L is invariant under
Ad ¢ (teR), and the map t — Ad ¢,|L is the unique solution of the matrix
differential equation % = ad &(¢) o A with initial condition A(Q) = 1d,,. In
particular, it is a morphism from R into GL(L).

Proof. For YeL let : R — L be the unique solution of the ordinary

linear differential equation % = [&(®), X] in L with initial condition 7(0)=7.

Then by the remark above, 7 considered as an element of L(R) is a solution
of (4), and () = Ad ¢,-Y e L by the corollary of Lemma 1. Hence the lemma
follows from the standard facts on ordinary linear differential equations.

From (1) and (2) we get

Corollary. G(R) is a subgroup of D(R).

We define

(7 G ={p: e GR)}, L, = {(0p),: ¢ € G(R)} .

Lemma 7. a) G is a subgroup of D, and ¢, € G for all p ¢ G(R), s e R.

b) L, is a subalgebra of L and (6¢), € L, for all ¢ e G(R),s e R. Also, L, is
invariant under Ad g for all ge G.

Proof. By the above corollary, G is a subgroup of D. Let se¢ R, ¢ € G(R),
and set ¢, = ¢,. Then ¢, = ¢, € G and also (3¢), = s-(6¢),. Thus it follows
from (1) that L, is a subspace of L. For ¢, ¢ e G(R) and a fixed se R set
o, = @;0 P, 07, Then (da), = Ad ¢,-(6¢), €L by Lemma 6. Hence a ¢ G(R),
and it follows 7(s) = (da), = Ad ¢,-(3¢), € L,. This shows that L, is invariant
under Ad G. Furthermore, by differentiating with respect to s at s = 0 we get

ZJ(O) = [(8p)y, (6¢)o] € L,. Thus L, is a subalgebra of L. Finally, let g, =
s
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0510007 Then (6B), = (8¢);,, shows Be G(R), and it follows (5¢); = (3p),€ L.
Proposition 8. L, is the set of complete vector fields in L.
Proof. By a) of Lemma 2, a complete vector field in L belongs to L,. Con-
versely, choose ¢ in G(R) such that (5p@), (i =1, - - ., n) form a basis of
L,, and define @: R" — G by :

) = g o - ol

Clearly, (x,p) — ®(x)(p) is a morphism from R* X M into M. Also define
F: R* — Hom (R",L,) by

(8) Fo0) = 3 v (Ad g® o -+ - 0 Ad 00 £(x))
i=1

where &; = dp?: R — L,. By Lemma 6, F is a morphism. Also, F, is a vector
space isomorphism, since Fy(v) = 3 v,£,(0) and the £,(0) = (6p?), form a
basis of L,.

Let y: I — R™ be a morphism such that y(0) = 0. Then ¢, = @(y(¥)) de-
fines a curve in D, and a computation shows

(9) (5S0)t = Fr(t)(f(t)) .

Since F, is an isomorphism, there exists r > 0 such that F, is an isomorphism
for ||z|| < r. Let X e L, be given, and consider the ordinary differential equation

dz .,
- FA(X) (lzll<n).

Let y: I > R™ be a solution with y(0) = 0, and define ¢ as above. Then
6¢), = F,,F;;,(X) = X, and X is complete by Lemma 2.

For any X € L, we denote the corresponding one-parameter group by Exp tX.
Then we have

(10) AdExptX.Y = ed¥.Y for XeL,, YeL.

Indeed, by Lemma 6, Ad Exp tX|L is the solution of % = ad X o 4 with

initial condition 4(0) = Id,, which is given by e***%.

3. Connected Lie transformation groups

We first recall some facts about group actions. Let ¥ be a Lie group. A
morphism «: (g, p) — g-p from ¥ X M into M is called an action of ¥ on M
on the left if

i) g(-p=@Ehp,

(i) ep=p,
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for g,he % and pe M (e is the neutral element of G). The Lie algebra L(%)
of ¢ is the tangent space T,.(¥) with the bracket [X, Y] = [X, Y](e), where
X is the right-invariant vector field on ¢ such that X(e) = X (this coincides
with the usual definition in terms of left-invariant vector fields since our bracket
of vector fields differs from the usual one by sign). Then « induces a homo-
morphism a*: L(¢) — V by

a*(X)(p) = Ta?(X) ,

(see [4, p. 35]). The proof is a straightforward computation in local charts by
using (i) and (ii) and is omitted here.

In case the underlying group G of ¢ is a subgroup of D and «(g, p) = g(p)
is the natural map, we say ¢ is a Lie transformation group of M.

Theorem 9. Let L be a finite-dimensional complete subalgebra of V. Then
there exists a unique connected Lie transformation group ¢ of M such that o*
is an isomorphism from L(¥) onto L, and for every ¢ e D(I) such that ¢, 4
for all t € I the map t — ¢, is a morphism from I into 4.

Proof. Let G be the subgroup of D defined by (7), choose a basis
X, ---,X, of L, and define &: R* — G by

O(x) = Expx,X,0 - o Expx, X, .

We will show that in the canonical coordinates of the second kind given by @,
G becomes a Lie group with the desired properties.
First we prove

an @ is injective in a neighborhood of 0.

Since L is finite-dimensional there exist p,, ---,p, € M such that the map
X - (X(@), ---,X(,) from L into E=T,(M) X --- X T, (M) is in-
jective. Define f: R® — M” by f(x) = (@(x)(p)), - - -, ?(x)(p,)). Then T f(v) =
O viX(p), - -+, X v:Xi(p,), and Tf is injective since X, - - -, X, is a basis
of L. Thus the image of T,f in the Banach space E, being finite-dimensional, is
closed and admits a closed complementary subspace. Hence by the implicit
function theorem, f is injective in a neighborhood of 0 in R” which proves (11).
Next we show

(12)  there exists a neighborhood N of O in R® and a real analytic map
i N X N — R" such that 4(0,0) = 0 and ¢(u(x,y)) = D(x) o D(y).

Defining F: R* — Hom (R", L) in analogy with (8), we obtain, from (10),

n
Fz(v) = Z Q)i.(eadlel O +ee0 eadzi_,Xi_l.Xi) .
i=1
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Thus F is real analytic. As in the proof of Proposition 8, F, is a vector space
isomorphism, and we choose r > O such that F, is an isomorphism for z¢ B,
= {xe R": ||x|| < r}. Set

At z; x,¥) = F7U(F,(x) + erdtm %10 ..o o e2dtondn. F (y)) .

Then A: R X B, X R* X R* — R* is real analytic, and A(t,z; 0,0) = 0.
Thus there exists an open neighborhood N of 0 in R such that

4@, z; x, 9| < 2r/3 for |t] £ 3/2,zeB,, and x,yeN .
By standard theorems on differential equations, the equation

dz
2 =A@, z; x,
7 (t,z5 x,y)

has a unique solution y(¢; x,y) such that 7(0; x,y) = 0, defined for |¢| < 3/2
and depending real analytically on the parameters x,y e N. We define p(x, y)
=7(1; x,y), and show that @(u(x, y)) = D(x)oD(y). Indeed, let p, = D(y(¢; x, y))
and ¢, = @(tx) o ®(ty). Then, by (1), (6) and (7),

(09); = Foo(x) + Ad O(tx) - F () (y) = F;,(x) + e4!%1 %10 ... 0 e2dt5nXn. F (y)

= Fr(t;z,y)(f(t; xa )’)) = (6§D)t .
Thus by Proposition 4, ¢, = ¢, for |t| < 3/2, and for ¢ = 1 the assertion follows.
In a similar fashion, we can prove, with details omitted:

(13)  there exist a neighborhood N of 0 in R™ and a real analytic map
¢: N — R* such that «(0) = 0 and O(«(x)) = «(x)71;

(14)  for every ge G there exist a neighborhood N of O in R and a real
analytic map 6: N — R™ such that 6(0) = 0 and ®(0(x)) = g 6(x)-g7},

by considering the differential equations

daz

- = _F;I e—adtannO e oe_adtIIXI,sz ,
dt ( ¢2(%))
dz 1

— = F;*(Adg-F,(x))

dt

depending on the parameter x.

Now let ¥ C W C N be open neighborhoods of 0 in R™ such that (11), (12)
and (13) hold for N, and furthermore w(V,«(V)) C W and w(W,W) C N.
For every ae G, let U, = a-@(V) and define f,: U,— V by f,(g) = @~ '(a"'g).
Thus ¢, = (U,,f,) is a chart at a. Assume U, N U, # §. Then a™'b =
D(x,) € D(W), and f.f;%(x) = fo(b-O(x)) = O~ (a"'b-O(x)) = O~ H(D(x)D(x))
= 071 (D(p(x,, X)) = p(Xo, X).
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Therefore any two such charts are C*-compatible, and the atlas & = {c,: a¢ G}
defines on G the structure of an n-dimensional real analytic manifold. From
the definition of ./ it is obvious that all left-translations of G are real analytic,
and by (12), (13) and (14), multiplication, inversion and inner automorphisms
are real analytic at e = Id,. Hence it follows easily that ¥ = (G, &) is a
Lie group.

Since the map (x, p) — @(x)(p) is a morphism, it is clear that « is a morphism
at (e, p) for all p e M, and hence everywhere. Let X € L(G) be represented by
v € R* in the chart c,. Then a*(X) = F,(v) shows that «* is an isomorphism
of L(%) onto L.

To prove the second statement, let Y, = (a*)~'((6¢),). This is a curve in
L(¥), and the differential equation @, = Y,a, with initial condition g, = e in
% has a unique solution defined for all rel, [2, Lemma, p. 69]. Then
¢(t, p) = a,(p) defines a curve in D such that §p = dp. By Proposition 4,
a, = ¢,, and the assertion follows; this also proves that % is connected.

To prove unicity, let ## be a Lie group with the same properties as ¢, H
be the underlying group of »#, and B: s# X M — M be the map (h, p) — h(p).
Then we have exp tX = Exp 8*(X) where exp: L(s#) — 4 is the usual ex-
ponential map. Indeed, ¢(¢, p) = p(exp tX, p) defines a one-parameter group
on M, and since 6¢(0, p) = (d/dt),_,B(exp tX, p) = TR*(X) = B*(X)(p), the
assertion follows from Proposition 4. Since s# is connected, it is generated by
exp L(s#) and therefore H = G. Now the commutative diagram

(B toar

L(9) L(%)
expl lexp
g i H

shows that Id; is a Lie group isomorphism.

Theorem 10. Let G be a subgroup of D, and assume that there is a set S
of curves in D such that {p,: peS and tel,} and {(5¢p),: ¢S and tel,}
generates G and a finite-dimensional subalgebra L of V respectively. Then L
is complete and G is the underlying group of the connected Lie transformation
group generated by L.

Proof.  After a change of parameter (Lemma 3) we may assume that I, = R
for all ¢ € S. From Lemma 7 and Proposition 8 it follows that L is complete.
Let ¢’ be the connected Lie transformation group generated by L, with under-
lying group G’. By Theorem 9, G is a subgroup of G’ such that every element
of G can be joined to e by a differentiable curve contained in G. Thus by
[2, Appendix 4], G is the underlying group of a connected Lie subgroup ¢ of
%’ and t — ¢, is a morphism from R into G for all ¢ e S. It follows that the
vectors (a*)~'((dp),) belong to L(G). Since these vectors generate L(¥4’), we
must have L(%9) = L(%’) and hence G = G'.
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