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NONDEGENERATE HOMOTOPIES OF CURVES
ON THE UNIT 2-SPHERE

JOHN A. LITTLE

The purpose of this paper is to prove
Theorem 1. There are 6 second order nondegenerate regular homotopy

classes of closed curves on the unit 2-sphere.
Throughout this paper S2 refers to the unit 2-sphere in E2. A second order

nondegenerate curve in S2 is an immersion of Sι in S2 such that the geodesic
curvature is continuous and nonzero. A regular homotopy of curves on S2,
h: Sι X / —» S2, is called nondegenerate if each curve ht: S1 —• S2 is
nondegenerate and if the geodesic curvature is continuous on 51 X /. The
homotopies we consider are free, or without base point, and the curves are
oriented curves.

Proposition 2. The following 6 curves, when projected via central
projection into a hemisphere of S2, are in different nondegenerate homotopy
classes.

1. 4.

2. 5.

3. _ 6.

Fig. 1

This proposition is an observation of William F. Pohl.
Proof. We fix an orientation of S2 by saying that a tangent frame eλe2 to
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S2 is positive if eιe2ez is right-handed where e3 is the outward normal. If h: Sι

—> S2 is an immersion we define ex to be the unit tangent vector to the curve
and e2 to be normal to the curve so that exe2 is a tangent frame agreeing with
the orientation of S2. The geodesic curvature may be defined by the equation

dex j

ds 2 g

where £ is the arc length. The geodesic curvature is greater than zero for curves
1, 2, 3, and less than zero for curves 4, 5, 6. Since the sign of the geodesic
curvature is preserved under nondegenerate homotopy 1, 2, 3 are distinct
from 4, 5, 6. By symmetry, it is enough to show that 1, 2, 3 are in distinct
nondegenerate homotopy classes. 1 and 2 are not regularly homotopic; neither
are 2 and 3. (See Smale [4] and Feldman [1].) Thus it is enough to show that
1 and 3 are in different nondegenerate homotopy classes. This follows from

Proposition 3. A nondegenerate homotopy of a simple curve on S2 can
introduce no double points.

Proof. Let ht: Sι —> S2 be a nondegenerate homotopy such that h0 is simple.
If there are double points there is a first time when they appear, say t0. We
now use

Theorem 4 (Fenchel [2]). A nondegenerate simple arc, simple closed
curve, or closed curve with one double point which lies in S2 must lie in an
open hemisphere.

Since ht(Sι) for t < t0 are nondegenerate simple closed curves, they lie in
hemispheres. Let Gt(θ) with θ varying over Sι be the great circle which is
tangent to ht(Sι) at ht(θ). Thus we see that h^S1) lies in the closed hemisphere
H0) bounded by Gt(θ) for t < tQ. In the limit h^iS1) is contained in Hto(θ)
for all θ e S\ Take βx e S\ h^S1) c # ί o0?i). Since hto is nondegenerate, λ^GS1)
must have a point in the interior of HtQ(θ^), say hto(β2). Thus hto(Sι) lies in the
closed sector between the two great circles Gto(θϊ), Gto(θ2) and meets each of
them tangentially. Again because htQ is nondegenerate, h^iS1) must have a
point in the interior of this sector, say hto(θ3). Gto(θ3) cannot pass through
Gt0{θλ) Π Gt0(θ2) because h^S1) meets G ί o(^) and Gto(θ2) tangentially. Thus
hto(Sι) lies in a proper spherical triangle bounded by the great circles Gto(θi),
i = 1, 2, 3. Hence it lies in an open hemisphere. Thus ht, t0 — ε < t < t0 for
some ε > 0 provides a nondegenerate homotopy between simple curves and a
curve with doubles points which lies in an open hemisphere. But this is
impossible for plane curves and so, by central projection, for hemispherical
curves.

The total turning of an arc h: [0,1] -• E2 is defined to be 0(1) — 0(0) where
θ is the argument of the tangent vector, and is a continuous function on [0,1].

If kg is the geodesic curvature, the total turning is given by I kgds, where the
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integral is over the arc, and s is the arc length. For a closed curve the total
turning is 2π times the index of rotation.

We shall need the following result (unpublished) of William F. Pohl.
Theorem 5. Two nondegenerate plane curves are nondegenerately

homotopic if and only if they have the same total turning. Two nondegenerate
plane arcs, which agree on neighbourhoods of their endpoints and have the
same total turning, are nondegenerately homotopic by a homotopy which is
constant on the neighbourhoods of the endpoints.

We shall prove the second statement concerning arcs. The proof of the first
statement involves the same idea.

Proof (William F. Pohl). Let ht: [0, 3] -> E2, i = 1, 2, be two nondegener-
ate plane arcs. Suppose that hx = h2 on [0,1] U [2, 3] and that

I kxds — I k2ds

where kt is the curvature of ht, and ds is the element of arc length. Let et(t)
be the unit tangent vector of ht at t, taking into account the orientation,
/ = 1,2. Let θiif) = Aiβiif), et(0)), i = 1, 2, be continuous functions such that
dt(0) = 0, i = 1,2. Assume that kt > 0, i = 1,2 (if kt < 0 the proof is
similar). Then θx and θ2 are monotonically increasing functions of t. Hence we
may use θx and θ2 as parameters for the arcs hx and h2 respectively. Now θx(t)
= Θ2(t) for 0 < t < 1. Let 2 < t < 3. Then

θλ(t) - θλ(X) = J'k.ds = Γk.ds + Γk.ds = Γk2ds + Vk2ds
1 1 2 1 2

= Θ2(t) - 02(1) .

Thus θ^it) = Θ2(t) for 2 < t < 3. So regarding ht as parametrized by θ€ we see
that hλ and h2 both map [0, ^(3)] into E2 and agree on [0, ^(1)] U [0,(2), θλ(3)].
Let y vary over [0, 0i(3)]. Define

ht(y) = th2(y) + (1 - t)hγ(y)

ht is the required homotopy.
Lemma 6. Every nondegenerately immersed curve in S2 is nondegenerately

homotopic to a curve lying in a hemisphere.

In order to prove this lemma it will be necessary to have some information
about nondegenerate plane arcs. The proof of Lemma 6 is postponed until
after the proof of Lemma 9.

Lemma 7. Suppose that f is an oriented planar arc, and let θ be the angle
between the tangent vector and a fixed vector. Suppose that θ is a monotone
increasing function differentiable except for a jump discontinuity at one point
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/(/?), and that the jump is less than π. Then f may be approximated by an arc
f which agrees with f outside any chosen neighbourhood of /(/?), f has positive
continuous curvature, and the total turning of f equals the total turning of f
plus the jump. If f has no double point in the chosen neighbourhood of f(p)
neither will f.

We do not prove this lemma but remark only that a proof may be obtained
using spiral arcs, see for example Guggenheimer [3, pp. 48-52].

Lemma 8. Suppose that f: [0,1] -* E2 is an oriented arc with positive
curvature such that /(0), /(I) lie in the lower half plane and such that the curve
crosses the x-axis transversally twice. Suppose that either a) the second crossing
{in the sense of the orientation of the arc) is to the left of the first crossing or
b) the second crossing is to the right and the total turning of the arc in the
upper half plane is greater than or equal to 2π. Then the arc is nondegenerately
homotopic to an arc lying entirely in the lower half plane by a homotopy which
leaves a neighbourhood of the endpoints fixed.

Proof. Note first that if two oriented arcs agree on neighbourhoods of
their endpoints, then their total turnings differ by a multiple of 2π. Let / be a
line parallel to the .x-axis and a little below chosen so that / meets the arc
transversally at two points just as the x-axis does. One constructs using Lemma
7 the following arcs.

case a) jt-axis

case b) A. x-axis

7 \ '
Fig. 2
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Each loop adds 2π to the turning. By putting in the proper number of loops
one sees that the turning of the constructed arc is equal to that of the original
arc. Thus using Lemma 5 the conclusion is reached.

Lemma 9. Suppose that f: [0,1] —>E2 is an oriented arc with the following
properties:

a) / has positive curvature.
b) /(0), /(I) are in the lower half plane.
c) / meets the x-axis transversally at two points.
d) The point where the arc enters the upper half plane is to the left of the

point where it returns to the lower half plane.
e) The total turning of f in the upper half plane is less than 2π.
Then given any line L parallel to the x-axis and lying in the upper half

plane, f is nondegenerately homotopic to a curve g: [0,1]—•£* which meets L
and meets L transver sally. Furthermore the portion of g between the x-axis
and L consists of two nondegenerate arcs each without double point, though
the two may cross. The homotopy is constant on a neighbourhood of the
endpoints.

Proof. Suppose that / enters the upper half plane at px and returns at p2.
Let l1912 be the tangent lines of / at pλ and p2 respectively. l19 l2 are not the
jt-axis because / crosses transversally. Let f[pι.,p2] be the arc in the upper
half plane. If l1912 meet in the lower half plane, then we may complete f[p19 p2]
to a nondegenerate closed curve by adding an arc in the lower half plane. We
use Lemma 7 to patch the arcs together. Furthermore we may construct the
arc in the lower half plane so that its turning is less than 2π and so that it has

Jt-axis

Fig 3.
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exactly one double point. (Here we use the fact that / has positive curvature
and that / enters the upper half plane to the left of where it returns.) Hence
we obtain a closed nondegenerate curve of index of rotation less that 2 and
hence 1 which has a double point. This is a contradiction. If ll9 l2 are parallel,
let / be a line parallel to the t-axis and slightly above it. Then the same
argument may be applied to that portion of / lying above /. Thus l19l2 must
meet in the upper half plane.

Now lx and l2 will eventually meet the given line L. We may construct an arc
(using Lemma 7 to be sure that it has positive curvature) as shown in Figure 3.
Again by Lemma 7 we may patch it in with the portion of / below the x-axis
so that the resulting arc has positive curvature and agrees with / on a
neighbourhood of 0 and 1. It is not difficult to check that / and the new arc
have the same total turning. Hence by Lemma 5 the conclusion is reached.

Proof of Lemma 6. Let /: Sι —> S2 be a closed curve with positive geodesic
curvature (negative curvature is handled similarly). By a nondegenerate
homotopy we may assume that the curve has only finitely many transversal
double points and no triple points. We may choose a hemisphere H such that
dH meets the curve transversally at a finite number of points and also such
that no double point lies on dH. We may by a nondegenerate homotopy (which
just flattens the curve a bit locally) assume that the curve does not meet dH
in a pair of anitpodal points. Thus Hf]f(Sι) consists of a finite number of arcs
(connected components) each meeting dH transversally in two distinct
nonantipodal points. Let A = f[Pi,p2] be such an arc, and give dH the
orientation induced from H. Let us call the arc A troublesome if the total
turning of the central projection from H is less than 2π and if the shorter arc
from /(px) to f(p2) agrees with the orientation of dH. (We assume the curve
crosses into H at px and out of H at p2.)

We first take care of the troublesome arcs. Note that a simple hemispherical
arc cannot be troublesome. This follows from the fact that if a simple plane
arc of positive curvature with endpoints in the lower half plane meets the Λ>axis
transversally at two points, then the point where it returns to the lower half
plane must lie to the left of the point where it enters the upper half plane. Our
procedure will be to convert a troublesome arc into two simple arcs using
Lemma 9. To do this let A = f[pί9p2] be a troublesome arc. Since f(pλ) and
f(p2) are not antipodal points, they lie in a half circle C C dH.

Let R19 R2 be rotations of S2 about the axis through the endpoints of C, and
assume that R2 is a rotation with the same sense as Rι but of greater magnitude
than Rλ. These rotations will carry the hemisphere H into new hemispheres
Hγ and H2, and the half circle C into new half circles (joining the same
endpoints) C19 C2. If the sense of the rotation is correctly chosen we have

C2CHl9 dH -CCZH, .

We may choose the rotations Rl9R2 small enough in magnitude so that the
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arc A meets dHt transversally at two points contained in Ct for i = 1,2. Let
τ: H1-^ E2 be central projection. Again by choosing the rotation Rι small
enough in magnitude we may assume that the total turning of the arc τ(H1 Π A)
is less than 2π. Now C2 and dH — C are half great circles with the same
endpoints. Thus τ(C2) and τ(dH — C) are parallel straight lines.

We take τ(C2) to be the t-axis and τ(dH — C) to be the line L in Lemma
9. Let the two points at which A meets C2 be /(p3), /(p4) where p3 is the "first
point", i.e., f(p3,pA) C # 2 , where (p3,p4) is the oriented arc from p3 to p4.
Choose ε > 0 so that f[p3 — ε,p4 + ε] C fl^, where [p3 — ε,p4 + ε] is an
oriented arc containing (p3, /?4). Applying Lemma 9 to the arc

τ°f- [Ps — ε,p4 + ε] - ^ £ 2 ,

we obtain a nondegenerate homotopy

Define a homotopy /ιt: 51 —> S2 as follows:

pzS1 - [pz-e,pA + ε] ,

( " 1 /ι;(p) p € [p3 — ε, p4 + ε] .

The curve &! is the same as / except that the troublesome arc A = f(p19p2)
has been changed. /ii(p15p2) meets // in two simple arcs, which as we have
previously noted cannot be troublesome. Thus hJίS1) has one less troublesome
arc than / had. We may repeat this argument to eliminate all troublesome arcs.

Now suppose that A = /[Pi,p2] is an arc which is not troublesome. A is a
connected component of f(Sι) ΠH. Let τH: H —• E2 be the central projection.
In the case where the shorter arc from f(pλ) to f(p2) agrees with the orientation
of dH, the total turning of τH(A) > 2π. If the total turning is equal to 2π,
then f(pλ) and f(p2) are antipodal points but / has no antipodal points on dH.
Thus in this case the total turning of τH(A) > 2π. Now let C C dH be a half
circle containing f(px) and f(p2), and Rλ be a rotation of S2 about the axis
through the endpoints of C. Rλ carries the hemisphere H into a hemisphere H19

and the circle C into a circle C r. By choosing the correct sence of rotation we
may suppose that

C C Hλ .

v4 is compact and so is a positive distance from the half circle dH — C. Thus,
by choosing the magnitude of Rx small enough, we may suppose that

AczH,.

Let r : # I —• E2 be central projection. By choosing the magnitude of Rλ small
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enough we may suppose that the total turning of τ(A) is greater than 2π if the
total turning of τH(A) is greater than 2π. Choose ε > 0 so that

/ ( P i -e,P2 + e)(ZHι.

Let τ(C) be the t-axis in E2. We may now apply Lemma 8 to the arc

τof: \px-ε,p% + ε] -> E2

to obtain a nondegenerate homotopy

Define a homotopy ht: Sι —• S2 by

(/(P), for / € S1 - [px - e, p2 + ε] ,
Λί(p) — \ _ ,

(τ o Aί(/?), for /?€[/?! — ε, /?2 + ε] .

At is a nondegenerate homotopy which pulls the arc A out of H. By this process
we may remove all arcs from H; thus concluding Lemma 6.

Lemma 10. The following two curves, when projected via central
projection onto the northern hemisphere, are nondegenerately homotopic.

1. ^ 2.

Fig. 4

Proof. We give a rather explicit construction of the homotopy.
Let Ct be three great circles through the north pole which meet at 120°,

and Dt be three small circles of the same radius which form an equilateral
spherical triangle containing the north pole and such that Dt is parallel to Cu

i = 1,2,3. Ci divides the sphere into two hemispheres Hf and Hr. Hf is the
hemisphere which contains Di. The three small circles Dt will also form an
equilateral spherical triangle in the southern hemisphere about the south pole.
Let E be the small circle through the verticies of that triangle.

We construct four curves γt, i= 1, 2, 3, 4 according to Figure 5. The figures
are parallel projections of the northern and southern hemispheres as seen from
above. The curves yt go along the small circles as indicated turning corners
with loops as indicated. The loops may be constructed with the aid of Lemma
7. Since the curves are along small circles, their geodesic curvature is nonzero.
γλ is seen to be nondegenerately homotopic to curve 1) in Figure 4 and γA is
homotopic to curve 2). We show that γλ and γ2 are nondegenerately homotopic
by observing that they are identical in Hϊ and that in Hf they are arcs which
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Northern
Hemisphere

7Ί

Ϊ2

Southern
Hemisphere

Fig. 5

agree near dHf. Thus projecting Hf centrally we may use Lemma 5. Similarly
project centrally from H£ to show that γ2 and γz are nondegenerately
homotopic, and finally project centrally from H£ to show that γ3 and γA are
nondegenerately homotopic.

Conclusion of the proof of Theoem 1. In Lemma 6 we have seen that
every nondegenerate curve is nodegenerately homotopic to a curve lying in a
hemisphere. But nondegenerate plane curves and, vis central projection, curves
in a hemisphere are characterized by their total turning. Assume that the
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geodesic curvature is positive. Hence the total turning is 2πn for some positive
number n. If n < 3 we are finished by Proposition 2. If n — 4 we are finished
by Lemma 10. If n > 4 we attach n — 4 loops to the curve γ1 of Lemma 10.
This curve will then have index n. We may nondegenerately homotope this
curve to a hemispherical curve of index n — 2. Just use the same homotopy
as in Lemma 10 and allow the extra loops to be carried along. By this
procedure we eventually reach a curve with index 2 or 3. If the geodesic
curvature is negative, reverse the orientation of the curve, apply the above
argument, and then reverse the orientation of the homotopy. Thus we see that
curves in Proposition 2 represent the only nondegenerate homotopy classes
onS2.
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