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THE CLASSIFICATION OF REAL PRIMITIVE
INFINITE LIE ALGEBRAS

STEVE SHNIDER

The objects under consideration are the abstract transitive infinite Lie algebras
(TILA) denoted (L, L°) which are introduced in [4]. If we let V = L/L°, then
the realization theorem of [4] proves that (L, L°) is topologically isomorphic to
a subalgebra of D(V), the continuous derivations of the formal power series
F(V*). The complex primitive TILA have been classified.

We begin by recalling this classification. The results of [3] show that g°L =
Ώ\Ώ contains elements of rank one. This fact is used to show that g°L is one
of the following: 1. si(n, C), 2. gl(w, C), 3. sp (n, C), 4. Csp (n, C) (sp (n, C)
+ {/}), or that there is a formal 1-form of maximal rank such that the principle
module generated by it over F(V*) is preserved under Lie derivation by
elements of L.

In [6] these possibilities are analyzed and the following results established:
1. If the linear isotropy algebra ( = g°L) is sl(n, C), then L is the algebra

of all vector fields with divergence zero.
2. If the linear isotroply algebra is gl (n, C), then L is either the algebra of

vector fields of constant divergence or the algebra of all vector fields.
3. If the linear isotropy algebra is spOz, C), then L is the algebra of all

Hamiltonian vector fields.
4. In the last case L is the contact algebra.
We plan to classify the real primitive TILA using these results. We begin with

a theorem of Guillemin proved in [1].
Theorem 1. Any primitive TILA (L, L°) contains a closed ideal I of finite

codimension such that (/, / Π L°) is a primitive, simple TILA.
If (L, L°) is a TILA, we define a filtered derivation to be a derivation d for

which there exists an integer — 1 < i < oo such that d: Lk —> Lk+ί for all k.
Corollary. Any primitive TILA is contained in the algebra of filtered deri-

vations of a primitive simple TILA, and contains the algebra of inner deri-
vations as a closed ideal of finite codimension.

Note that the filtered derivations of a TILA (M, M°) form a filtered algebra
Δ. Set g\ = J*/J i + 1 . g j Θ g J 1 is mapped injectively into the derivations of
g°M ® gx1 which preserve g^1 which we shall denote by Der* (g°M ® g^1)-

The program for completing the classification of real primitive TILA is to
determine
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1. all real simple TILA (M, M°),
2. Der* (g°M ® g~M

λ) for these M,
3. the possible primitive TILA (L, L°) such that (a) g°L ® gi1 is isomorphic

to a subalgebra of Der* (g°M ® gΰ1) containing g°M ® gΰ\ and (b) L contains a
subalgebra iV isomorphic to M such that g^ ® SN1 i s mapped isomorphically
onto g°M ® gΰ1 under the isomorphism in (a).

I. Determination of the real simple TILA

Let (M, M°) be a real simple TILA, and let L = M (x) C. If L is not simple,
let / be a proper closed ideal. Then define π and p as follows: π(X+iY)=X,
p(X + ίY) = y . Let / = π[I] C M. If we can show that π is 1 — 1, then by
the theorem in [1] stating that any continuous 1 — 1 map between TILA is
uniformly continuous we can conclude that J is closed. Hence J = M. ρoπ~ι

defines a complex structure on M, and M is a complex simple primitive TILA.
It is the algebra of vector fileds corresponding to one of the groups in [2].

π is 1 — 1. If not, then there exist purely imaginary elements of / and hence
pure real elements. / Π M Φ {0}, so that / D M and I Z) M. This implies 1 — L
contradicting all propriety.

Thus we have reduced the classification problem of part I to the case where
M is a real form of a complex simple TILA. In this case is (L, L°) primitive?
We shall show that it is. For this we use an alternate characterization of primi-
tivity proved in [7].

Theorem 2. A TILA (L, L°) is primitive if and only if F(L/L°) has no in-
variant proper sub algebras other than {0} and constants.

Theorem 3. Suppose (M, M°) is a real simple primitive TILA, L = M(x)C,
and L° = M° (x) C. // (L, L°) is simple, then it is also primitive.

Proof. Let F(M/M°) = G; thenF(L/L°) = G®C. Suppose (L,L°) is not
primitive then there exists an invariant nontrivial subalgebra Fι of G (x) C. Let
F2 consist of the complex conjugates of the elements of Fλ. Then Fo = Fλ Π F2

is of the form Go ® C, and F1 F2 is also of the form Gγ ®C.GQΦ G, so that
Go = {0} or R. Gx Φ {0}, R, so that Gλ = G. We conclude that Fλ D C and
FrF2 = G. Suppose f€F\L/L°). Then f = Σ figi where fi9gieF1. If
fζF°(L/L°) (power series with no constant term), then / = {̂[/^ — WO)]^
+ ίz(0)[gi - gi(0)]}. Since F x D C, there exists a ht eF^F0 such that & =
λ + K Thus Fί Π F 0 / ^ Π F 1 splits F°/FK I f ^ , Λ:71 are the cosets spanning
F1Π F°/Fί Π F 1, then F x = F(x\ , xn), showing that {Z | X € L, Z Fλ = 0} is
a nontrivial proper closed ideal of L contradicting simplicity.

(L, L°) is a complex primitive TILA, and M is a real simple subalgebra
which is primitive with respect to the filtration Mι = ΊJ Π M. If L/L° = F,
then L is isomorphic to one of the sub algebras of D(V) mentioned in the in-
troduction. Let M/M° = W. Then W is a real form of V, and M^M1 = g°M is
is a real form of g°L leaving W fixed. If g°L is gl (F) of si (F), then it is immedi-
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ate that g°M = gl(W) or sl(W). If g\ is sp(F) where the alternating bilinear
form defining sp (F) is /, then we reason as follows. Choose a basis for V in
W. With respect to this basis g°M is a Lie algebra of real matrices which is a
real form for g\. Let A19 , Ar be a basis for g°M, and J also denote the matrix
defining the form J with respect to our basis. Consider the equations for a
matrix B given by ιAkB + BAk = 0, k = 1, , r, let £ 1 ? , Bι be the real
matrices spanning the solution space, and define fix1, , xι) — det (xιBx +
•. + c ^ ) . Then J = Λ1^ + + Λ ^ for some U1, , λι), and thus
/U\ , λι) Φ 0 and there exist real numbers a1, , a1 such that j(aι, -a1)
Φ 0. Set J* = AιBλ + + ALBt. By a dimension argument due to
Matsushima we see g°M — sp (W, J*).

In the three case where

we find g°M = 2. sl(W0 ,

3.

The reasoning in [6] shows that the only simple algebras with these linear iso-
tropy algebras are

1. D(JV),
2. all vector fields in D(W) with 0 divergence,
3. all Hamiltonian vector fields.

To complete the first step of the classification we must study the real forms of
the contact algebra.

Let V be an odd dimensional vector space, and x1, ',xn,yλ, yn,z a
basis for the dual V*. The contact algebra is the subalgebra of D(V) consisting
of those vector fields X such that Dxω — fΣω where Dx is the Lie derivative
with respect to X, ω is the 1-form dz + I(yldxl — x^y1), and fx is a function
on V.

In [6] the structure of this algebra is analyzed. Let g be the corresponding
graded algebra. Then V = g'1 is spanned by the cosets of d/dz, d/dx1 + yidjdz9

d/dy1 — xldjdz. g° is spanned by the cosets of the following vector fields:

+ y'd/dx* ,

zd/dy* - x'lzd/dz + Σ ^jd/dxj + yjd/dyλ ,

zd\dχι + y'Ud/dz + Σ

2zd/dz + Σ Wd/dx* +
1

Let VQ be the subspace of g'1 spanned by the cosets of

djdx1 + y'd/dz , d/dy* - x'd/dz .
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Define γ: VQ-*g°L,

coset (d/dx1 + yld/dz) >->

coset(z9/3jc* + yKzd/dz + Σ (*jd/dxj + yjd/dyj))) ,

coset (3/3/ — **3/3z) »->

coset (zd/dy* - xKzd/dz + Σ (xjd/3xj + yjd/dyj))) .

If F* = r(F0), then g\ ^ Csp (F*) ® F*, where Csp (F*) is the symplectic
algebra plus center. Henceforth let (L, L°) denote the contact algebra, and
(M, M°) be a real form (M, Λf°) <g> C = (L, L°). Then we have g°M (x) C = s£,

We will first determine the real forms of Csp (F^) ® V#, which leave a real
form of V invariant, and then consider the prolongations of these algebras to
find which linear algebras are g° of a graded algebra which complexifies
properly, and finally to find which filtered algebras corresponding to these
graded algebras complexify properly.

Let G be a real form of Csp (V#) ® V\ leaving some real form of V invari-
ant, /: G-*Csp® V^ the inclusion map, a the component with range in
Csp (F*), and β the component with range in V#. Then

β[X, Y] = [a(X)9β00] - [a(Y),β(X)] .

Kernel a — W is an ideal, and β \ W is injective. Therefore W is abelian.
β(W) is a real form of F* since β(W) Π iβiW) = {0} and β(W) + iβ(W) = F*.
Both of these equalities hold because the subspaces on the right are complex
subspace invariant under a(G) + ίa(G) = CspίF*).

Let a be the factorization of a through G = G/W. Then ά(G) is a real form
of Csp (F*) leaving a real form of Csp (F^) invariant, and ά[G, G] is a real
form of sp (F*) leaving a real form β{W) of F^ invariant. We have seen that
in this case ά[G, G] = sp (β(W), /*).

Since every element of ά(G) can be expressed as a matrix with real coeffi-
cients and the identity is in ά(G) + iά(G), the identity must be in ά(G). There-
fore G = [G, G] + ά~\I), and G is a simple subalgebra of End (W) plus center.
Thus all extensions of G are inessential. Since G is such an extension, G —
Go® W, where is Go mapped bijectively onto G/W under projection.

n

Choose a basis {wί9 w2n} for W such that /* has the form Σ WT Λ wf+n.
1

There exists a M ζ ^ 1 such that u = ad/dz + Σ (^d/dx1 + λ^/dy1) where
a Φ 0, Change basis in F so that

d/dz = ad/dz + Σ (u'd/dx1 + λ'd/dy1) ,

d/dxι = [3/3Z,wJ ,

= [d/dz9wi+n] .
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With respect to this basis, wt = Zd/dx\wi+n = zd/dy\ and also Go is spanned
by

ψd\dxι + pd/dz*, dzd/dz + t (.vd/dx1 +
1

What is gM, if g^1 and g°M are as above?
Let U* = span{d/dx\d/dy%=h...,n. In [6], it is established that

(Λ)(fe) = fe} θ z*£/* θ zk~ι sp (£/*) θ θ sp (U^ ,

where

Since gk

L is the full prolongation which has the same representation as (gMYk)

only with respect to the basis {d/dz, d/dx\ d/dy1}, we conclude that (g0

MYx) =
gk

M. The graded algebra of M has the same structure as the graded algebra of
the contact algebra.

We must now determine the possible filtered algebras having this graded
structure. The solution depends on the cohomology groups studied in [6].

We first give two preliminary definitions, and then two relevant theorems.
If v19 , vι are in g~\ we define gk

{Όu...iVl) = {X\Xzgk, [X, vt] = 0, Ϊ = 1,
. . . ,/} . We also define δv.(X) = [X, v j .

Theorem 4. // there exists a basis vx, ,vtfor g^1 such that

then Hk>ι(gM) = 0,k>0.
Theorem 5. Let (N, N°), (P, P°) be TILA, and suppose that

(b) 4 0 induces an isomorphism g^1 —> g~\

Then there exists an algebra homomorphism i: (N, N°) —> (P, P°) with i =
ik, modpk.

In the case where P is the real contact algebra which we shall denote by Q,
{[d/dz], [d/dx1 + yld/dz\, [d/dy1 + xιd/dz\}, where [•] denotes coset with
respect to Q°, is a basis satisfying the conditions of Theorem 4. If P = g0, the
graded algebra of Q, then {d/dz, d/dx\ d/dy1} form a basis satisfying the con-
ditions of Theorem 4.

We will show that for any N such that gN = gQ, we can choose one of the
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above algebras Q oτ gQ, and for k = 0 we get an ik: (TV, N°) -* (P, P°) satisfy-
ing Theorem 5.

Let N+ be a complement to N° in iV, assume P — gQ, and let P* be the
complement {d/dz, 3/3JC*, d/dy*} to P°, and α be the isomorphism of gN to gQ.
Then α - 1 : N/Λf° -» P/P°, a0: ΛW1 -> P 7 P 1 . Define β: N -* P as follows:

0 ί iV* ts induced by N* -> Λf/Λί0 - ^ > P/P° — P* ,

β \ N° is any lifting of αr0 .

We have [β(X)9 β(Y)] - β[X, Y] e P° for XeN0,YεN. Thus 0 defines a map
γ:N/N°ΛN/NQ^P/P° by r(κ Λ v) = [β(XJ, β(Xv)] - β[Xu,Xυ], where
Xu, XveN^, Xu modN° = w, ̂ υ mod N° = v.

If we can find a f: N^ —> P° such that

[ f ( Z J , # * , ) ] - [f(Xv), β(XJ mod P° = γ(u A v) ,

then set £ f N° = 0 and define β' = /3 + f. Hence

, ^(Z,) ] - /3ΊZ,, Z J mod P° = 0 , 0' = i0

for application of Theorem 5.
The question then is: can such a ξ be found? Finding such a ξ amounts to

to finding a coboundary for a cocycle in g^1 ® AXgq1). The cocycle in question
is γoazl = ω^: ^(gρ 1) —> g^1. In fact the cohomology class of ωβ is invariant
under the action of g°Q. Hence what we want to show is that every invariant
cohomology class in H~ι>\gq) is 0. This is not true, that is, we will not always
be able to find a ξ with the desired property. However, if β is such that ωβ does

n

not bound, then ωβ differs from some real multiple of 3/3z <g) Σ (dy1 Λ dxι) by
1

a boundary. In other words, there are exactly two invariant cohomology classes
in H-^2(gQ), namely, [0] and [d/dz® Σ dy* Λ Λc*].

1

When ωβ does not bound, we can find a ξ: N* -> P° such that it β' = β + ξ,
then ω ,̂ = ^3/3z (8) Σ ( ^ Λ rfjc*). Let 3/3JC* = β'-Kdjdx1), d\dyι = β'-Kd/dy*),
d/dz = β'-Kd/dz) Span {3/3Jc*, 3/3^, 3/32 }̂ and form a compact to Λ̂ °. Then
the basis vectors have the same bracket relations as 3/3JC* + y^/dz, djdy1 —
xty/dz, d/dz. In this case we can find a homomorphism ί0: (N, N°) —> ( β , Q°)
such that the conditions of Theorem 5 are satisfied. Thus, if gM = gQ, then
M is either flat or the real contact algebra. Since M (x) C is not flat, M must
be the real contact algebra, i.e., real vector fields preserving the form

ω = dz - Σ (y'dx* ~ x'dy')
i

up to a function multiple.
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We now know the following possible real simple TILA in D(V),V being a
real vector space:

1. Complex vector fields with respect to some complex structure on V.
2. Complex vector fields of divergence 0.
3. Complex Hamiltonian vector fields.
4. Complex contact vector fields.
5. Real vector fields = D(V).
6. Real vector fields of zero divergence.
7. Real Hamiltonian vector fields.
8. Real contact vector fields.

II. Der* (g°M ® g~M

λ) for these TILA (M, M°)

Now we want to determine the structure of Der* (g^1 ® g°M) for M among
the preceding algebras.

Consider the case when g°M is semisimple or semisimple plus center. Then
deΌQT^(g°M®gM

1) can be represented in matrix form:

d=(dl «
\dl d\

d\: g°M - > *Sr, d\\ gM - > g~M\ e t c . , d\ = 0 ,

Φ
since gM

x is preserved. Now g°M = Der (g°M) if g°M is semisimple, and g°M ^ Der (g°M)

if g°M is semisimple plus center, where φ is described as follows:

φ(B + λI)(A + μl) = [A, B] + λμl ,

where A, B e [g°M, g°M], and λ, μ are linear maps of center into itself. Hence
d\(A + μΐ) = [A,Bd] + λdμl.

We will prove λd — 0 when g°M is semisimple plus center. Note that
d2

2[A, v] = [d\A, v] + [A, d\v\. Substituting A == / we find d\v = λdv + d\v,
and hence ^ = 0. If C = d\ € End fc1), then d*[A, v] = [dj^4, v] + U , d2^]
show that [[A,v],C] = [[A,Bd],v] + [A,[v,C]], which is the same as
[[A, Bd], v] - [A, [C, v]] + [C, [A, v]] = 0, or [[4, fld - C], v] = 0 for all
v. Thus C — Bd — λdl, where λd is a linear map of the center into itself, and
hence d\v = [v, λdl + Bd]. Since d\[A, B] = \d\A, B] + [A, d*B] is a cocycle
condition, d\A = [A, vd]. Hence we conclude

b(A + v) = [A + v, Bd + λdl + vd] ,

and

{8M ® 8M\ if 8M is semisimple plus center ,
Der

* + GO ®gΪ£, if 8°M is semisimple ,
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A similar argument show that Der* (g°M ® g^) = g°M + (I) ® gi\ when

III. The possible primitive TILA (L, L°), whose first two graded

components are the appropriate spaces of derivations of the

first two graded components of the (M, M°) above

Now we must determine the TILA (L, L°) such that g°L ® gl1 C Der* (g°M ® g~M

ι)
and such that (M, M°) is an ideal in (L, L°). We consider each (M, M°) enume-
rated in § I separately.

1. M is the complex algebra D(V), where V is a complex vector space
Der* ( ^ ® ^ i 1) = g°M ® g-\ ^ = g°M, gi1 = g~M\ and g\ is contained in the
space of real prolongations of g°L. Are there any elements T of g\ such that there
exists aveV = gx1 for which T(iv) Φ iT(v)Ί We know that T(iv)u = T(u)iv
= ίT(u)v, because T(ύ) e g°L which consists of complex linear maps. Also
T(u)v = T(v)u, so that T(iv)u = ίT(v)u for all u, v e V. Thus g\ consists
entirely of complex prolongations, and since gλ

M is the full complex prolon-
gation space, g\ = gx

M. Repeating this reasoning we find gι

L = gι

M, and conclude
L = M.

2. Der* (g°M ® g^) = g°M + center ® g~M\ In this case, & c g°M + (/). But
gM is an ideal in gL, so that g\ must bracket g^1 into g°M. This shows that g\ is
included in the space of real prolongations of g°M. The argument in case 1 shows
that g\ consists only of complex prolongations. Thus we conclude gL ci gM +
(/). Since M is flat, / is a derivation, and hence M CZ L cz M + (/).

3. By the same reasoning as above, M C L c: M + (/).
4. In this case, L = M since L c: M + (/) and / is not a derivation of M.
5. As in case 1, L = M.
6. 7. As in case 2 a n d 3 , M C L C M + (/).
8. As in case 4, L = M.
One easily verifies that all of the above algebras are primitive, and the com-

plete list of real primitive TILA follows:
1. D(V), V being a complex vector space.
2. Algebra of complex vector fields of divergence zero.
3. Algebra of complex vector fields with divergence on some real line in C.
4. Algebra of vector fields of complex constant divergence.
5. Algebra of complex Hamiltonian vector fields.
6. Algebra of vector fields preserving a Hamiltonian form up to constant

lying on a real line in C.
7. Algebra of vector fields preserving a Hamiltonian form up to a complex

constant.
8. Complex contact algebra.
9. D(y), V being a real vector space.
10. Algebra of real vector fields of divergence 0.
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11. Algebra of real vector fields of constant divergence.
12. Algebra of real Hamiltonian vector fields.
13. Algebra of real vector fields preserving a Hamilonian form up to a

constant multiple.
14. Real contact algebra.
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