SOME PROPERTY OF CLOSED HYPERSURFACES IN RIEMANNIAN MANIFOLDS

YOSIO MUTO

1. The main result of the present paper is the

Theorem. Let M^3 be a three-dimensional symmetric Riemannian manifold whose sectional curvature $K(P,\sigma)$ satisfies $(1-\delta)T \leq K(P,\sigma) \leq T$, where T is a positive constant and $0 \leq \delta < 1/2$. Let M be a closed surface in M^3 with the mean curvature H satisfying H = C, C being a positive constant, and assume that M is strictly convex, and the second fundamental form of M is positive. Let the total volume or the total area of M be denoted by V_M , and the volume of the sebset M_L of M, where the difference of the principal curvatures exceeds 2L, be denoted by V(L). If $(1-\delta)L^2 > \delta C^2$, then V(L) satisfies

(0)
$$\frac{V(L)}{V_M} \le \frac{\delta^2 C^2}{\delta (25\delta - 16)C^2 + 8(1 - \delta)(2 - 3\delta)L^2}.$$

Corollary. If M^3 is a space of constant curvature with positive scalar curvature, then the surface M of the above theorem is totally umbilical.

2. Let M^{n+1} be a Riemannian manifold of dimension n+1, K_{kjih} the curvature tensor of M^{n+1} , and M^n a hypersurface of M^{n+1} , whose equation is given by $x^h = x^h(u^a)$ locally. Throughout this paper all the indices run as follows: $h, i, j, k = 1, \dots, n+1$; $a, b, c, d = 1, \dots, n$.

We define $B_a{}^h$ as usual by $B_a{}^h = \partial_a x^h$ where $\partial_a = \partial/\partial u^a$. From $B_a{}^h$ and the unit normal vector N^h we can construct a matrix $(B_a{}^h, N^h)$ and denote its reciprocal matrix by $(B^a{}_h, N_h)$. $g_{ba} = B_b{}^i B_a{}^h g_{ih}$ is the first fundamental tensor of M^n . Using the Van der Waerden-Bortolotti operator ∇ we get $\nabla_b B_a{}^h = h_{ba}N^h, \nabla_b N^h = -h_b{}^a B_a{}^h$, where h_{ba} is the second fundamental tensor of M^n . The equation of Codazzi is

$$(1) V_c h_{ba} - V_b h_{ca} = K_{kiih} B_{cba}^{kji} N^h ,$$

and the equation of Gauss is

(2)
$$'K_{acba} = K_{kjih}B_{acba}^{kjih} + h_{cb}h_{da} - h_{db}h_{ca} ,$$

where K_{dcba} is the curvature tensor of the Riemannian manifold M^n . If M^n is a closed hypersurface, then

Communicated by K. Yano, August 5, 1968.

462 YOSIO MUTŌ

(3)
$$\int (\nabla_c h_{ba}) \nabla^c h^{ba} dV = \int (-\nabla^c \nabla_c h_{ba}) h^{ba} dV,$$

where dV is the volume element of M^n , $dV = (\det(g_{ba}))^{\frac{1}{2}} du^1 \cdots du^n$, and the integration is performed over M^n .

By virtue of (1) and the Ricci identity in M^n the second member of (3) becomes

$$\begin{split} &\int [-\nabla^c (\nabla_b h_{ca} + K_{kjih} B^{kji}_{cba} N^h)] h^{ba} dV \\ &= \int [-(\nabla_b \nabla^c h_{ca}) h^{ba} + 'K^c{}_{bce} h^e{}_a h^{ba} + 'K^c{}_{bae} h_c{}^e h^{ba} \\ &- (\nabla^l K_{kjih}) B^{ckji}_{lcba} N^h h^{ba} - K_{kjih} (h^c{}_c N^k B^{ji}_{ba} N^h \\ &+ h^c{}_b N^j B^{ki}_{ca} N^h - B^{kjih}_{cba} h^{ce}) h^{ba}] dV \;. \end{split}$$

Using (1) again we reduce the last member to

$$\begin{split} & \int [-(\nabla_{b}(\nabla_{a}h^{c}_{c} + K^{k}_{jih}B^{cji}_{kac}N^{h}))h^{ba} \\ & + 'K^{c}_{bce}h^{e}_{a}h^{ba} + 'K^{c}_{bae}h_{c}^{e}h^{ba} - (\nabla^{k}K_{kjih})N^{h}B^{ji}_{ba}h^{ba} \\ & + N^{l}(\nabla_{l}K_{kjih})N^{k}N^{h}B^{ji}_{ba}h^{ba} - h_{c}^{c}K_{kjih}N^{k}N^{h}B^{ji}_{ba}h^{ba} \\ & + K_{kjih}N^{k}N^{h}B^{ji}_{ba}h^{bc}h_{c}^{a} + K_{kjih}B^{kjih}_{dcba}h^{da}h^{cb}]dV \; . \end{split}$$

By (2) and

$$\begin{split} - \, & V_b(K^k{}_{jih} B^{cji}_{kac} N^h) = V_b(K_{jh} B_a{}^j N^h) \\ & = (V_k K_{jh}) B^{kj}_{ba} N^h + K_{jh} h_{ba} N^j N^h - K_{jh} B^{jh}_{ac} h_b{}^c \,, \\ & V^k K_{kjih} = V_h K_{ji} - V_i K_{jh} \,, \end{split}$$

a straightforward calculation gives

$$\int (\nabla_{c}h_{ba})\nabla^{c}h^{ba}dV
= \int [-(\nabla_{b}\nabla_{a}h_{c}^{c})h^{ba}
+ (2N^{h}\nabla_{j}K_{ih} - N^{l}\nabla_{l}K_{ji} + N^{l}N^{k}N^{h}\nabla_{l}K_{kjih})B_{ba}^{ji}h^{ba}
- h_{c}^{b}h_{b}^{a}h_{a}^{c}h_{e}^{e} + (h_{ba}h^{ba})^{2}
+ K_{kjih}N^{k}N^{h}B_{ba}^{ji}(g^{ba}h_{dc}h^{dc} - h^{ba}h_{e}^{e})
+ 2K_{kjih}B_{ach}^{kjih}(h^{da}h^{cb} - h^{ce}h_{e}^{b}g^{da})]dV .$$

If M^{n+1} is a symmetric Riemannian manifold, then

$$\int (\nabla_{e}h_{ba})\nabla^{c}h^{ba}dV$$

$$= \int [-(\nabla_{b}\nabla_{a}h_{c}^{c})h^{ba} - h_{c}^{b}h_{b}^{a}h_{a}^{c}h_{e}^{e} + (h_{ba}h^{ba})^{2}$$

$$+ K_{kjih}N^{k}N^{h}B_{ba}^{ji}(g^{ba}h_{dc}h^{dc} - h^{ba}h_{e}^{e})$$

$$+ 2K_{kjih}B_{dcba}^{kjih}(h^{da}h^{cb} - h^{ce}h_{e}^{b}g^{da})]dV.$$

3. Let us consider the case where M^{n+1} is a symmetric space and the mean curvature of the hypersurface M^n is constant, that is, $\nabla_a h_c{}^c = 0$, and at each point P of M^n take an orthonormal frame so that

$$g_{ba} = \delta_{ba}$$
, $h_{ba} = k_a \delta_{ba}$.

If we use the notation

$$T_{Na} = K_{kjih}N^kN^hB_{aa}^{ji},$$

$$T_{ba}(=T_{ab}) = K_{kjih}B_{baab}^{kjih},$$

we can write the integrand in the second member of (5) in the form

$$f = -\sum_{a} (k_{a})^{3} \sum_{b} k_{b} + \left[\sum_{a} (k_{a})^{2} \right]^{2}$$

$$+ \sum_{a} T_{Na} \sum_{b} (k_{b})^{2} - \sum_{a} T_{Na} k_{a} \sum_{b} k_{b}$$

$$+ 2 \sum_{a,b} T_{ba} k_{b} k_{a} - 2 \sum_{a,b} T_{ba} (k_{b})^{2}.$$

Hence

$$f = -\frac{1}{2} \sum_{a,b} k_b k_a (k_b - k_a)^2 + \frac{1}{2} \sum_{a,b} (T_{Na} k_b - T_{Nb} k_a) (k_b - k_a) - \sum_{a,b} T_{ba} (k_b - k_a)^2.$$

If the sectional curvature $K(P, \sigma)$ satisfies

$$(1-\delta)T < K(P,\sigma) < T,$$

where T > 0, $0 \le \delta \le 1$, and if $k_a \ge 0$, then

(8)
$$f \leq -\frac{1}{2} \sum_{a,b} k_b k_a (k_b - k_a)^2 + T \sum_{b>a} (k_b - (1 - \delta)k_a)(k_b - k_a) - (1 - \delta)T \sum_{a,b} (k_b - k_a)^2$$

$$= -\frac{1}{2} \sum_{a,b} k_b k_a (k_b - k_a)^2 + \delta T \sum_{b>a} k_b (k_b - k_a)^2 -\frac{1}{2} (1 - \delta) T \sum_{a,b} (k_b - k_a)^2 ,$$

where the principal curvatures are arranged in the order

$$0 \leq k_1 \leq k_2 \leq \cdots \leq k_n .$$

4. Now let us consider the case n = 2, $0 < k_1 \le k_2$. Then f satisfies

$$f \leq -k_1 k_2 (k_2 - k_1)^2 - (1 - \delta) T(k_2 - k_1)^2 + \delta T k_2 (k_2 - k_1).$$

Let us put $k_2 - k_1 = 2x$. Then, since we have $k_1 + k_2 = 2C$, we get

(9)
$$k_1 = C - x$$
, $k_2 = C + x$, $0 \le x < C$.

Now define g(x) by

(10)
$$g(x) = -4(C^2 - x^2)x^2 - 4(1 - \delta)Tx^2 + 2\delta Tx(C + x).$$

If P is a point of M^2 such that at P the principal curvatures satisfy (9) for a given number x, then we have

$$(11) f(P) < g(x) .$$

Hence, if g(x) satisfies $g(x) \le G$ for $0 \le x < C$, we get $f \le G$ on M^2 .

Let the total volume of M^2 be V_M , and A any positive number, and denote by V_A the volume of the subset of M^2 on which $x = \frac{1}{2}(k_2 - k_1)$ satisfies $g(x) \le -A$. Then we have

$$0 \leq \int (\nabla_c h_{ba}) \nabla^c h^{ba} dV = \int f dV \leq G(V_M - V_A) - AV_A ,$$

and can conclude

$$\frac{V_A}{V_M} \le \frac{G}{G+A} .$$

Let us now estimate G. If we put

$$\varphi(x) = -4(1-\delta)Tx^2 + 2\delta Tx(C+x) ,$$

we have $f(P) \le \varphi(x)$, and the maximum M_{φ} of $\varphi(x)$ for $0 \le x \le C$ is given by

$$M_{\varphi} = \frac{\delta^2 C^2 T}{2(2-3\delta)}$$
, if $\delta \leq \frac{4}{7}$,

$$M_{\varphi} = 4(2\delta - 1)C^2T$$
, if $\delta \geq 4/7$.

We take M_{φ} for G, although a better estimate will be possible when C^2 is large compared with T.

Now we suppose $\delta < \frac{1}{2}$, and let L be a positive number such that

$$C > L > \left(\frac{\delta}{1-\delta}\right)^{\frac{1}{2}}C$$
.

If x satisfies $C \ge x \ge L$, then g(x) satisfies

$$g(x) \leq \varphi(x) \leq -4T((1-\delta)L^2 - \delta C^2) .$$

Hence we can put

$$A = 4T((1 - \delta)L^2 - \delta C^2), \quad G = \frac{\delta^2 C^2 T}{2(2 - 3\delta)},$$

so that (0) holds.

Example. If $\delta = 0.2$ and L = 0.75C, we have

$$\frac{V(L)}{V_M} \leq \frac{1}{71} .$$

YOKOHAMA NATIONAL UNIVERSITY

