COMPLEX HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE

KOICHI OGIUE

1. Statement of results

Let M be a compact complex hypersurface of the complex projective space $P_{n+1}(C)$. Then by a well known theorem of Chow, M is algebraic. We shall prove the following theorems.

Theorem 1. Let M be a compact complex hypersurface of the complex projective space $P_{n+1}(C)$, and suppose that the Euler-Poincaré characteristic $\chi(M)$ of M is $n+1$. Then
(1) $\quad M$ is a complex hyperplane $P_{n}(C)$ if n is even.
(2) M is either a complex hyperplane $P_{n}(C)$ or a complex hyperquadric in $P_{n+1}(C)$ if n is odd.

Theorem 2. Let M be a complete complex hypersurface of the complex projective space $P_{n+1}(C)$. If every holomorphic sectional curvature of M is greater than $1 / 2$ with respect to the metric induced from the Fubini-Study metric of $P_{n+1}(C)$, then M is a complex hyperplane $P_{n}(C)$.

It should be remarked that the referee of this paper has made the following conjecture stronger than Theorem 2: Let M be a complete complex hypersurface of the complex projective space $P_{n+1}(C)$. If M admits a Kaehler metric with respect to which M is of holomorphic pinching greater than $1 / 2$, then M is a complex hyperplane $P_{n}(C)$.

Theorem 3. Let M be a compact complex hypersurface of the complex projective space $P_{n+1}(C)$. If every holomorphic sectional curvature of M is positive with respect to the metric induced from the Fubini-Study metric of $P_{n+1}(C)$, then M is either a complex hyperplane $P_{n}(C)$ or a complex hyperquadric in $P_{n+1}(C)$.

2. Proof of Theorem 1

Let h be the generator of $H^{2}\left(\boldsymbol{P}_{n+1}(\boldsymbol{C}), \boldsymbol{Z}\right)$ corresponding to the divisor class of a hyperplane $P_{n}(C)$. Then the total Chern class $c\left(P_{n+1}(C)\right)$ of $P_{n+1}(C)$ is given by

$$
c\left(P_{n+1}(C)\right)=(1+h)^{n+2} .
$$

[^0]Let $j: M \rightarrow P_{n+1}(C)$ be the imbedding, ν the normal bundle of $j(M)$ in $P_{n+1}(C)$, and d the degree of the algebraic manifold M. Then the total Chern class $c(\nu)$ of ν is given by

$$
c(\nu)=1+d \tilde{h}
$$

where \tilde{h} is the image of h under the homomorphism $j^{*}: H^{2}\left(P_{n+1}(C), Z\right)$ $\rightarrow H^{2}(M, Z)$ induced by the imbedding $j: M \rightarrow P_{n+1}(C)$. Since $j^{*} T\left(P_{n+1}(C)\right)$ $=T(M) \oplus \nu$ (Whitney sum), we have

$$
j^{*} c\left(P_{n+1}(C)\right)=c(M) \cdot c(\nu)
$$

Let $c_{i}(M)$ be the i-th Chern class of M. Then we have

$$
(1+\widetilde{h})^{n+2}=\left[1+c_{1}(M)+\cdots+c_{n}(M)\right] \cdot(1+d \tilde{h})
$$

which implies that

$$
c_{n}(M)=\left[(1-d)^{n+2}-1+(n+2) d\right] \widetilde{h}^{n} / d^{2}
$$

Taking the values of both sides on the fundamental cycle of M, we have

$$
\chi(M)=\left[(1-d)^{n+2}-1+(n+2) d\right] / d
$$

Since $\chi(M)=n+1$, we have $(1-d)\left[(1-d)^{n+1}-1\right]=0$.

3. Proofs of Theorems 2 and 3

Let M be a complete complex hypersurface of $P_{n+1}(C)$ with the induced metric $g=2 \Sigma g_{\alpha \bar{\beta}} d z^{\alpha} d \bar{z}^{\beta}$ and the fundamental 2-form $\Phi=\frac{2}{\sqrt{-1}} \Sigma g_{\alpha \beta} d z^{\alpha} \wedge d \bar{z}^{\beta}$. Since every holomorphic sectional curvature is greater than $1 / 2, M$ is compact. The first Chern class $c_{1}(M)$ of M is represented by the closed 2 -form

$$
\gamma=\frac{1}{2 \pi \sqrt{-1}} \Sigma R_{\alpha \bar{\beta}} d z^{\alpha} \wedge d \bar{z}^{\beta}
$$

where $S=2 \Sigma R_{\alpha \beta} d z^{\alpha} d \bar{z}^{\bar{\beta}}$ denotes the Ricci tensor of M. We denote [Φ] and [γ] to be the cohomology classes represented by Φ and γ respectively, so that $c_{1}(M)=[\gamma]$.

The first Chern classes $c_{1}\left(P_{n+1}(C)\right)$ and $c_{1}(M)$ are given by

$$
\begin{align*}
c_{1}\left(P_{n+1}(C)\right) & =(n+2) h \\
c_{1}(M) & =(n-d+2) \tilde{h} \tag{1}
\end{align*}
$$

Let Ψ be the fundamental 2-form of $P_{n_{+1}}(\boldsymbol{C})$ so that

$$
c_{1}\left(P_{n+1}(C)\right)=\frac{n+2}{8 \pi}[\Psi]
$$

These, together with the fact that $\Phi=j^{*} \Psi$, imply

$$
\begin{equation*}
[\Phi]=8 \pi \tilde{h} \tag{2}
\end{equation*}
$$

Let A be the tensor field of type $(1,1)$ associated with the second fundamental form of the imbedding, J the complex structure tensor of M, and e_{1}, \cdots, e_{n}, $J e_{1}, \cdots, J e_{n}$ an orthonormal basis of $T_{x}(M)$ with respect to which the matrix of A is of the form

$$
\left(\begin{array}{llllll}
\lambda_{1} & & & & \\
& \ddots & & & 0 & \\
& & \lambda_{n} & & & \\
& & & -\lambda_{1} & & \\
& 0 & & \ddots & \\
& & & & -\lambda_{n}
\end{array}\right)
$$

Let R be the curvature tensor of M. Then the equation of Gauss is

$$
\begin{aligned}
g(R(X, Y) Z, W)= & g(A X, W) g(A Y, Z)-g(A X, Z) g(A Y, W) \\
& +g(J A X, W) g(J A Y, Z)-g(J A X, Z) g(J A Y, W) \\
& +\frac{1}{4}[g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \\
& +g(J X, W) g(J Y, Z)-g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(J Z, W)]
\end{aligned}
$$

from which it follows immediately that

$$
S(X, Y)=\frac{n+1}{2} g(X, Y)-2 g(A X, A Y)
$$

Let $X=\Sigma X^{\alpha} e_{\alpha}+\Sigma X^{\alpha^{*}} J e_{\alpha}$. Then we have

$$
\begin{equation*}
S(X, X)=\frac{n+1}{2} g(X, X)-2 \Sigma \lambda_{\alpha}^{2}\left(X^{\alpha} X^{\alpha}+X^{\alpha^{*}} X^{\alpha^{*}}\right) \tag{3}
\end{equation*}
$$

Let $H\left(e_{\alpha}\right)$ be the holomorphic sectional curvature determined by e_{α}, $\alpha=1, \cdots, n$. Then we have

$$
H\left(e_{\alpha}\right)=g\left(R\left(e_{\alpha}, J e_{\alpha}\right) J e_{\alpha}, e_{\alpha}\right)=1-2 \lambda_{\alpha}^{2}
$$

Since every holomorphic sectional curvature is greater than $1 / 2$, we have $\lambda_{\alpha}^{2}<1 / 4$, which, together with (3), implies $S(X, X)>\frac{n}{2} g(X, X)$. Thus $S-\frac{n}{2} g$
is positive definite so that $c_{1}(M)-\frac{n}{8 \pi}[\Phi]$ and therefore $\frac{n-d+2}{8 \pi}[\Phi]-$ $\frac{n}{8 \pi}[\Phi]$, in consequence of (1) and (2), are also positive definite. Hence we have $d<2$, that is, $d=1$, which completes the proof of Theorem 2.

The proof of Theorem 3 is quite similar to that of Theorem 2. In fact, since every holomorphic sectional curvature is positive, we have $\lambda_{\alpha}^{2}<1 / 2$, which, together with (3), implies $S(X, X)>\frac{n-1}{2} g(X, X)$. Thus $S-\frac{n-1}{2} g$ is positive definite so that $c_{1}(M)-\frac{n-1}{8 \pi}[\Phi]$ and therefore $\frac{n-d+2}{8 \pi}[\Phi]-$ $\frac{n-1}{8 \pi}[\Phi]$, in consequence of (1) and (2), are also positive definite. Hence we have $d<3$, that is, $d=1$ or 2 .

Remark. From the proof of Theorem 2, we have the following result: Let M be a compact complex hypersurface of the complex projective space $P_{n+1}(C)$. If every eigenvalue of the second fundamental form of M is in ($-1 / 2,1 / 2$), then M is a complex hyperplane $P_{n}(C)$.

Bibliography

[1] F. Hirzebruch, Topological methods in algebraic geometry, Springer, Berlin, 1966.
[2] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967) 246-266.

[^0]: Received July 29, 1968 and, in revised forms, September 22 and November 25, 1968. The author wishes to express his sincere gratitude to Professor M. Obata for much valuable advice.

