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COMPLEX HYPERSURFACES OF A COMPLEX
PROJECTIVE SPACE

KOICHI OGIUE

1. Statement of results

Let M be a compact complex hypersurface of the complex projective space
Pn+i(O Then by a well known theorem of Chow, M is algebraic. We shall
prove the following theorems.

Theorem 1. Let M be a compact complex hypersurface of the complex
protective space Pn+i(C), and suppose that the Euler-Poincarέ characteristic
χ(M) of M is n + 1. Then

(1) M is a complex hyper plane Pn(C) if n is even.
(2) M is either a complex hyperplane Pn(C) or a complex hyperquadric in

P»+i(C) if n is odd.
Theorem 2. Let M be a complete complex hypersurface of the complex

projective space Pn +i(C). // every holomorphic sectional curvature of M is
greater than 1/2 with respect to the metric induced from the Fubini-Study
metric of Pn+i(C), then M is a complex hyperplane Pn(C).

It should be remarked that the referee of this paper has made the following
conjecture stronger than Theorem 2: Let M be a complete complex hypersurface
of the complex projective space Pn+ι(C). If M admits a Kaehler metric with
respect to which M is of holomorphic pinching greater than 1/2, then Mis a
complex hyperplane Pn(C).

Theorem 3. Let M be a compact complex hypersurface of the complex
projective space Pn+ι(C). If every holomorphic sectional curvature of M is
positive with respect to the metric induced from the Fubini-Study metric of
Pn+1(C)9 then M is either a complex hyperplane Pn(C) or a complex
hyperquadric in Pn+ι(C).

2. Proof of Theorem 1

Let h be the generator of ί/2(Pw+1(C), Z) corresponding to the divisor class
of a hyperplane Pn(C). Then the total Chern class c(Pn+1(C)) of Pn + 1(C) is
given by
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Let /: M -> Pn+1(C) be the imbedding, v the normal bundle of j(M) in
Pn+ι(C), and d the degree of the algebraic manifold M. Then the total Chern
class c(y) of v is given by

φ) = l + dh,

where h is the image of h under the homomorphism /*: H2(Pn+ι(C), Z)
-> #2(M, Z) induced by the imbedding /: M -• PTO+1(C). Since j*T(Pn+l(C))
= Γ(M) φ y (Whitney sum), we have

Let c*(M) be the ί-th Chern class of M. Then we have

(1 + hY+> = [1 + Cl(Aί) + . + cn(M)] (l + dh) ,

which implies that

cn(M) = [(1 - rf)w+2 - 1 + (n + 2)d]hn/d2 .

Taking the values of both sides on the fundamental cycle of Aί, we have

χ(M) = [(1 - d)»+2 - 1 + (π + 2)d]/d .

Since χ(M) = n + 1, we have (1 - d)[(l - d)n+ι - 1] = 0.

3. Proofs of Theorems 2 and 3

Let M be a complete complex hypersurface of Pn+i(C) with the induced metric
o

g = 2Σgaβdzadzβ and the fundamental 2-form Φ = —-—Σgulιdzr Λ dz^. Since
V 1

every holomorphic sectional curvature is greater than 1/2, M is compact. The
first Chern class cλ(M) of M is represented by the closed 2-form

ΣRaβdz* Adz* ,

where 5 = 2ΣRaβdzadzβ denotes the Ricci tensor of M. We denote [Φ] and
[f] to be the cohomology classes represented by Φ and γ respectively, so that

Cl(M) = [ r].
The first Chern classes c^Pn+^C)) and cλ(M) are given by

= (n + 2)Λ ,

( 1 ) Cl(M) = (n - d + 2)h .

Let Ψ be the fundamental 2-form of Pn+1(C) so that

±
O7Γ
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These, together with the fact that Φ - j*Ψ, imply

( 2 ) [Φ] = Sπh .

Let A be the tensor field of type (1,1) associated with the second fundamental
form of the imbedding, J the complex structure tensor of M, and e19 , en,
Jex, , Jen an orthonormal basis of TX(M) with respect to which the matrix
of A is of the form

0

\ -κι
Let R be the curvature tensor of M. Then the equation of Gauss is

g(R(X, Y)Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W)

+ g(JAX, W)g(JAY, Z) - g(JAX, Z)g(JAY, W)

λ[g(X, W)g(Y, Z) - g(X, Z)g(Y, W)
4

+ g(JX, W)g(JY, Z) - g(JX, Z)g{JY, W)

+ 2g(X, JY)g{JZ, W)] ,

from which it follows immediately that

S(X, Y) = JL , Y) _ 2g(AX, AY) .

Let X = ΣX°ea + ΣX'Ίe,. Then we have

g(X, X) - 2Σλl(X"X"

Let H(ea) be the holomorphic sectional curvature determined by eβ,
a = 1, , n. Then we have

H(ea) = g(R(ea, Jea)Jea, ea) = 1 - 2λ\ .

Since every holomorphic sectional curvature is greater than 1/2, we have

λl < 11 A, which, together with (3), implies S(X,X) > — g(X, X). Thus 5 - — g
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is positive definite so that cx{M) -—[φ] and therefore n ~~ + 2 [Φ] -
8τr 8τr

-H-[φ], in consequence of (1) and (2), are also positive definite. Hence we
8τr

have d < 2, that is, d = 1, which completes the proof of Theorem 2.
The proof of Theorem 3 is quite similar to that of Theorem 2. In fact, since

every holomorphic sectional curvature is positive, we have λ\ < 1/2, which,

together with (3), implies 5(Z, X) > JLZ-Lg(χ, Z ) . Thus S — ί — — g is

positive definite so that cx(M) - n ~~ 1 [Φ] and therefore " ~ ** + 2 [Φ] -
8π" 8π"

- ί ί - ^ — [ Φ ] , in consequence of (1) and (2), are also positive definite. Hence we
8ττ

have d < 3, that is, d = 1 or 2.
Remark. From the proof of Theorem 2, we have the following result: Let

Mbea compact complex hypersurface of the complex projective space Pn+ι(C).
If every eigenvalue of the second fundamental form of M is in (—1/2, 1/2),
then M is a complex hyper plane Pn(C).
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