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1. Introduction

Schwarz's lemma, as formulated by Pick, can be stated as follows: Every
holomorphic map / of the open unit disk D into itself is distance-decreasing
with respect to the Poincare-Bergman metric ds2, i.e. /*(ds2) < ds2, where
the equality holding at one point of D, implies that / is an isometry. Bochner
and Martin proved in their book [2] the following generalization of Schwarz's
lemma to higher dimensions. Let Dn be the n-dimensional open unit ball.
If / is a holomorphic map of Dm into Dn such that /(0) = 0, then f(z) < z
for all zeDm. In other words, every holomorphic map of Dm into Dn is
distance-decreasing with respect to the Bergman metric ds2

Dvι and ds2

Dn of Dm

and Dn respectively. Koranyi proved [9] that if M is a heπnitian symmetric
space of non-compact type with the Bergman metric ds2, and / is a holo-
morphic map of M into itself, then f*(ds2) < kds2, where k denotes the rank
of M. This is another generalized Schwarz's lemma. Ahlfors was the first
to generalize Schwarz's lemma by essentially considering the curvature; his
result can be stated as the following: Let M be a Riemann surface with
hermitian metric ds2

M whose Gaussian curvature is bounded above by a
negative constant — £, and D the unit disk in C with an invariant metric ds2

D

whose Gaussian curvature is a negative constant —A, then every holomorphic
A

map f:D—>M satisfies /*(<£s2) < — ds2

D. Kobayashi generalized this result
B

to higher dimensional case in his recent paper [6].
Recently Chern [5] has shown that a holomorphic map / of Dn into a n-

dimensional hermitian Einstein manifold N with scalar curvature less than
or equal to —2n(n + 1) is volume-decreasing. Kobayashi [8] generalized
the result of Chern to the case of a holomorphic mapping / from a more
generalized domain M (of dimension ή) into a more general image manifold
N (of dimension ή). This paper is devoted to a generalization of Schwarz's
lemma as well as one of Chern's results in his paper [5] concerning a
Laplacian formula for the ratio function of top volume elements between
hermitian manifolds.
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Let M and N be two heπnitian manifolds with dimensions m and n respec-
tively. The simplest metrical invariant is the ratio of distance and volume
elements. In this case, in which we have different dimensions, the ratio of
volume elements of M and N is called the ratio of the intermediate volume
elements. This ratio has an important effect on the holomorphic mappings
between M and N, and the study of these ratios will be the main topic of
this paper.

In this paper we assume some basic knowledge in hermitian geometry,
such as complex and hermitian structures on a complex manifold and the
notions of connection and curvature of a holomorphic vector bundle, which
can be found in [3], [4], or the author's dissertation [7]. In §2 we discuss
the Ricci and scalar curvatures in detail, and introduce the Laplacian on an
hermitian manifold. §§3 and 4 are devoted to defining some general ele-
mentary symmetric functions, such as the ratio function of distances, the
ratio function of intermediate volume elements and, in the case of manifolds
of the same dimension, the ratio function of top value elements, and to
deriving Laplacian formulas for those functions. These formulas are signifi-
cant because from them we find that the Laplacian of those functions will
involve connection form and curvatures only; hence they will give us the
desired geometrical result.

From the result of § 4 and by using the maximum principle, we will discuss
the properties of holomorphic mappings from a compact hermitian manifold
into an hermitian manifold with certain curvature restrictions. The main
result in the last section will be stated as follows:

Let F: Dm —> N be an holomorphic mapping, where Dm is the unit m-ball
in Cm with the standard Kaehler metric, and N is an w-dimensional her-
mitian manifold with negative constant holomorphic sectional curvature
( = — 2m(m + 1)). Then / is distance-decreasing.

2. Foundations of hermitian geometry

From now on we will fix the notations throughout this paper as follows:

1 < a, β,γ, η, al9 ,aμ < n

m+l<σ,ρ,τ<n

1 < r, s, t < μ .

In this section we will discuss curvature tensors in detail and derive a Lap-
lacian formula for a real-valued C°°-function on an hermitian manifold.

First we consider curvature tensors. Let M be a hermitian manifold of
dimension m, that is, let M be a complex manifold with a hermitian structure
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on its tangent bundle T. The hermitian metric defines an hermitian inner
product in T and a type (1,0) connection which is invariant under parallel
translation. In the following we will discuss the tangent and cotangent
bundles. We know that a unitary frame is an ordered set of m tangent vectors
{Si} with the same origin such that (si9 Sj} = δtj. The dual basis to a unitary
frame {s^} in the cotangent bundle is a unitary coframe which consists of m
complex-valued linear differential forms 6i of type (1,0) such that

(2.1) Λ5r= Σ < W .
i

Let B be the bundle of all unitary frames of M. Then the forms θι are
forms in B. It is known [6] that there exist connection forms θ) in B such
that

(2.2) dθi = £ <?' Λ θ) + θι

j

with

(2.3) θ) + θi = 0 ,

(2.4) θ* = — Σ τ%θj Λ θk .
2 j,k

The 0*'s are called torsion forms, and T^s torsion tensors.
By taking exterior derivative of (2.2) and using (2.2) again, we find ([3]

or [4])

(2.5) dθ* = Σ 0* A θ) - Σ & Λ θ) ,
j j

where

(2.6) θ) = dθ) + Σ θi Λ θ)
k

are the (1, 1) curvature forms satisfying

(2.7) θ) + θ( = 0 .

Those (1,1) forms 0} can be written as

(2.8) ΘJ = 1 Σ *W?* A 0' .
2 JM

In terms of the coefficients R)kl, the symmetry properties (2.7) can be
written as

(2.9) R%t = # « .
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The quantities R)kl are functions in B and constitute the curvature tensors of
the hermitian metric.

We define the Ricci tensors RkL as

(2.10) Rkl = Σ * ' i « = *ι*>

and the scalar curvature as

(2.11) R= Σ***,
k

where JR is a real-valued function in M.
Now we derive a Laplacian formula for a real-valued C°° function on a

hermitian manifold. Let M and N be two arbitrary hermitian manifolds with
dimensions m and n respectively. In the previous paragraphs we have already
defined

in M. Here we list the corresponding ones for N:

ω*, ω*β, Ω% Ω%, S βn, Srv, S .

Naturally all the general formulas discussed above remain valid by inserting
these quantities.

In the following we shall make no distinction between θi and θu θ) and θ^
etc., because we will select unitary fields and unitary coframe fields.

Let u be any real-valued C°° function on Λί. By choosing a local unitary
frame field and restricting ourselves to a neighborhood of M, we let

(2.12) du = Σ («A + δA)
i

Taking the exterior derivative of (2.12) we get

Σ (dui - Σ «Λi) A θi + Σ W«i - Σ M « ) A Bi
* i k

Σ Σ Σ Σ
(2 13) * k i _ k

+ Σ "Ji + Σ Mi = o.
i i

Then let

(2.14) du, - Σ ukθkt = Σ (*40* + «<

By considering the type of forms in (2.13), we have

(2.15) Σ "iA Λ ί , + Σ " A = 0 >

or

(2.16)
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From (2.12) we get

(2.17) d'u = Σ utθi .
i

Using (2.16) we have

(2.18) d'd"u = -dd'u = 2 u ^ Λ θj .

We define the Laplacian of u to be

(2.19) Jκ = 4 2 > « .
t

If w > 0 , we find

(2.20) Δ log w = —Jw - — Σ M *
U W i

Remark. Here we should emphasize that uik are the coefficients of θk in
the equation of duu and that ut are the coefficients of θι in the equation of
du. This remark will be very useful later.

3. General elementary symmetric functions

We shall now derive a formula for the Laplacian of general elementary
symmetric functions of a mapping /: M—»iV between two hermitian manifolds.
By the latter we mean a symmetric function of the eigenvalues of the linear
transformation B = A ιA where

(3.1) A=f*:T%^T%

in the linear map on the cotangent spaces induced by /.
First of all, we will discuss the algebraic situation.
Suppose V, W be two complex vector spaces of dimensions m and n

respectively. Let {e19 •• , e j be a basis for V, and {f19 , /„} a basis for
W. If μ < min{m, n}, then {(eiχ Λe ί 2 Λ Λ eiμ) 11 <iι<it< - <iμ<m)
forms a basis for AβV, and {(/Λ1Λ/σ2 Λ - Λ faμ)\ 1 <aλ<a2<' - <aμ<n}
forms a basis for AμW, where AμV, ΛμW are exterior powers of vector spaces
V and W respectively.

Let A: W—> V be a linear transformation such that

(3.2) A(jar)= Σ"ari
ei>

i

(3.3) M(eίs) = Σ amtj..
a

We repeat that 1 < r, s, t < μ. Define
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(3.4) A-A(fn Λ Λ faμ) = A(fn) Λ - Λ A(j.) .

Then

(3.5) A"A(Jn A • • • A fa/) = Σ det (e e r < X Λ - Λ e , , .
iiΛ Λί/i

For the purpose of simplification, we adopt the following notations:
Let / denote (/l3 - , iμ) with 1 < iλ < i2 < < iμ < m, / denote

(al9 - , aμ) with 1 < ax < cc2 < * * < ocμ < n, and DJ

Σ denote det (aari$) where
αrr's are components of / and i/s are components of /. Then

(3.6) Λ*A(ίai A Λ /.„) = Σ DXe^ A . . Λ ^ ) ,

where the sum is over all possible Γs.
Define

(3.7) £ = A 'A .

Then

(3.8) B(eir) = Σ Σ β ^ Λ ^ i i
h <*$

The elementary symmetric function of / is defined to be the elementary
symmetric function of B, in other words, is defined to be the trace of ΛμB
which will be denoted as w. Before going further, we shall state the following
lemma in linear algebra; its proof is in [7].

Lemma. // P is any matrix with n-columns, and Q any matrix with
n-rows, then any Urowed determinant of the matrix PQ is equal to a sum of
terms, each of which is the product of a Urow determinant of P and a
Ucolumned determinant of B.

By using this lemma, we can write

(3.9) iι = lfil 'B= ΣΣ\Dί\\
I J

where

(3.10) Dί = dtt(aaris).

We shall now discuss some examples of the ratios of distance, volume
elements and intermediate volume elements.

Let {θi}, {ωa} be the unitary coframe fields of two hermitian manifolds M
and N respectively, and /: M —• N be a holomorphic mapping such that

(3.11) f*α>. = Σ * - A
i

Then

(3.12) f(β>. Λ ωa) = Σ U A Λ 0, .
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From now on we shall omit /* without fear of confusion. It is clear that the
m x m matrix

(3.13) ( M = (Σ*.A/)
a

is self-adjoint and positive semi-definite. Let λu • • , λm be its eigenvalues.
Then

(3.14) λi > 0 , for 1 <i<m,

d5» = Σ " > α δ α = λAh + ••• + λ m θ j m(3.15)

£ & + • • • + XJiθA + + θjm).

Let

(3.16) «=Σ^=Σ«.Λi

Then

(3.17) έ/sJKuέisV,

where u is a well defined function on M, and gives, by looking at (3.17), a
good control of the ratio between the distances of M and N.

By raising (3.12) to the mth power, let

/*(Σ «>α Λ ωj™
< 3 1 8 ) " = (ΣftΛW- =

where

(3.19) Z>^=det(α α i ,) .

Then t; is geometrically the ratio of intermediate volume elements.
For the special case in which m = n, v is the ratio of volume elements and

(3.20) v

where

(3.21) Z) ,

4. Holomorphic mappings of hermitian manifolds

As before, let /: M -» Λ̂  be a holomorphic map such that

f*coa = Σ β ^ € ,



306 YUNG-CHEN LU

or in short,

(4.1) ωa= Σa«A
ί

By taking exterior derivatives

(4.2) dωa = Σ (dami A θ< + aaidθx) ,
i

and making use of (2.2) and its corresponding formulas for dθu we get

(4.3) Σ (daΛi - Σ "ajθji + Σ "βi*>*β) A 9% + Σ «*& - β . = 0 .

Since the torsion terms are of type (2, 0), it allows us to put

(4.4) daai - Σ <*aS0Ji + Σ "βiVaβ = Σ "aikθ* ,

where aaik satisfies the relations

(4.5) Σ **i& Λ θ4 + Σ ajθt - β β = 0 .

Similarly, we take the exterior derivative of (4.4) and obtain

- Σ damJ Λ θji - Σ "ajMji + Σ daβi A ωaβ + Σ aβ4ωaβ
(4.6) j

 J β β
= Σ daaik A θk + Σ a«i*Mk .

k k

Using (4.4), (2.2), (2.5) and simplifying we get

Σ Wα«i*
(4.7)

Suppose that

(4.8)

(4.9) Σ a

i
where

(4.10) batkl

Then

daaih

(4.11)

•. A * •

Σ « i A + Σ «αi@

a.^

= -j(ΣX;

= Σ a«mθι

fc = Σ a*ikβk
k,l

**Ω.f =ΣK
k,l

fRjikl — Σ at

, ~ Σ a sJn

+ Σ baiklθ,,
\ f ' ΛXKlt t 5

+ Σ aPikωaβ) A θk

V /7 O
ji Zi "βiMaβ '

Λθt,

«A Λ 9t,

+ Σ aβik<ύaβ

which will be useful in proving
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Theorem 4.1. Let f:M-+N be a holomorphic mapping as in (4.1), and
u the junction on M defined in (3.16). Then

λju = 2 2 \aaik\> + Σ WajRji
(4.12) 2 «,*,* «,*,/

— Σ ΣΣ
or

(4.13) I j l o g K = 2 ( Σ WajRji - Σ Σ άaiaβiarkavkSaβ7V) .

Proc?/. By taking exterior derivative of (3.16) and using (4.4),

du = 2 3 β i (Σ Λ.iA + Σ β«y^i - Σ
(4 14) ••* * * β

+ Σ *ΛΣ a.*A + Σ a.A< -
«,i J i /5

Since we select unitary coframes, we have

(4.15) ft, + * * = 0,
ωβ^ + ωβ^ = 0 .

By interchanging appropriate indices, i into / and a into β9 and using (4.15)
we get

(4.16) du= Σ

Comparing (4.16) with (2.20) we have

(4.17) uj= Σ*.A<i

Remark. We should realize that (4.17) is obvious even without using (4.15),
since u and uό are functions on M, and 0 ι i 5 ωaβ9 etc. are pull-back forms of
the principal bundle, which should cancel out each other automatically. Then
by considering the remark at the end of §2 and comparing (4.16) with (2.2),
(4.17) can be written out in one step.

Now making use of the remark at the end of §2, and (4.10), (4.11), and
applying the above technique to

(4.18) duj = Σ "aidaaij + Σ *«ijdaai,

we get

(4.19) ujk = Σ aaijάaik +

It follows that

Σ
i
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(4-20)

«** = Σ Ki*l2 + Σ

— -X- Σ
2 ί,Λ,r,7

From (2.27) and (2.28) we have (4.12) and (4.13), since

(4.21) 5 **» = * * •

« Σ Kiic? - Σ "*«* = o
a,i,k k

In general, we can prove
Theorem 4.2. Let f:Aί-*N be a holomorphic mapping as in (4.1), and

u the general elementary symmetric junction of f as in (3.10). Then

(4.22) \Δu = E + R(ξ, ξ) - S(f, f ) ,

E is a non-negative quantity, R(ξ, ξ) and S(ξ, ξ) are sums of Ricci
tensors of M and curvature tensors of N respectively as given by (4.32) and
(4.33).

Proof. In this case u = £ Σ \DίP Define
/ J

(4.23) «/ = DID} ,

(4.24) D/ i t = Σ Σ «δ::ίjβfc«1

(4.25) D/,i£ = Σ Σ «&::£?>**

where β^^ and bβsiskl are defined in (7.4) and (7.10). Further define

(4.26) [DWf = Σ «ft:::ίsβ#Λ K , ) ahu -

(4.27) [Df]i> = Σ « % : : : ^ M («.ίs) «M.

Using the same technique as in Theorem 4.1, it is easy to see

2 Σ W..P +15

-DίΣΣ {Σ

or

I j i i = 2 Σ Σ I^,*P + Σ {^/ Σ
(4 29) ^ 7 ) J * J lJr f f /

- 5/ Σ (Σ

±Auϊ = 2 Σ W..P +15? Σ Σ
(4.28) 2
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Letting

(4.30) * = 2
1,J k

(4.31) R{ξ, ξ) = Σ {Dί Σ

(4.32) S(ξ, ξ) = Σ Φί Σ (Σ

we can then see that (4.29) gives exactly what we need. q.e.d.

If we define

(4.33) D*,t = Σ Σ βfi:::feβ» («*«) **,..,

(4.34) [zy]j

(4.35) [D-qji = Σ «ίi:::fyω (««) <*>n

then we have
Corollary 4.3. For the function v defined in (3.18),

(4.36) J Λ = Σ Σ I *>V + ̂ - Σ ^ ( Σ (Σ
k J J fc i

Proof. By looking at (4.29) we only have to explain the second term on
the right hand side. In this case we can easily see that

(4.37) Σ ^ Σ uyy^t = Σ &D*R = VR .
J ij J

By substituting (4.37) in (4.29) and changing D/'s into Z>J's, (4.36) is then
obvious.

Corollary 4.4. For the function v, defined in (3.19), which is the ratio
of volume elements of M and N in the case m = n,

(4.38) λ-Δv = Σ D*D* + -ς-CR - Σ «.AA,) ,
4 * 2 «,Λ*

(4.39) z)4 = Σ ^::::;^« («.,*) «in»

Proo/. By the same reason as that for deriving (4.37),

D Σ Σ [DVJSaβrΛ*** = Σ DDSrvarkά^

Then (4.38) is obvious, and is the formula proved by Chern in [5].
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5. Applications

So far what we have derived is the general Laplacian formula for symmetric
functions. In this section we use (4.36) and (4.12) to prove some geometrical
conclusions. The first conclusion will be a generalization of a theorem in
Chern's paper [5], and another one is a theorem, in a different form from
that appearing in Kobayashi's recent paper [6], concerning distance-decreas-
ing mappings.

Now we assume /: M —* N is a holomorphic mapping between hermitian
manifolds with dimensions m and n respectively.

Definition 5.1. / is degenerate at a point p in M if u vanishes at p, where
u = Σ \DJ\2 ι s tk e r a t i° function of intermediate volume elements as in (3.18).

Geometrically, / degenerate means that the induced linear map /* on the
tangent space at p is not univalent.

Definition 5.2. /is totally degenerate if u vanishes identically.
Definition 5.3. An Einstein manifold M of dimension m has K-exhaustion

property if M is exhausted by a sequence of open submanifolds

(5.1) M x c M 2 c ••• C M ,

whose closures Ma are compact and such that
( 1 ) to each a = 1, 2, there is a C°° function va > 0, defined in Ma,

satisfying the inequality

(5.2) ±Jva<JL + KcxVva,
Z m

where K is a given positive constant;
(2 ) va(pb) —> oo if pb is a divergent sequence of points in Ma (an infinite

sequence of points pb in Ma is called divergent, if every compact open set of
Ma contains only a finite number of points of the sequence).

This kind of manifold is not uncommon because all bounded symmetric
domains and especially the /n-dimensional unit ball have this property.

Now we proceed to establish the main theorems of this section.
Theorem 5.1. For compact M, let R be the scalar curvature of M, and

Saβrη the curvature tensor of N.
( 1 ) // JR > 0 and the curvature transformations are non-positive on all

kinds of tensors, then f is totally degenerate.
( 2 ) // R < 0 and the curvature transformations are non-negative on all

kinds of tensors, then f is degenerate at some point of M.
Proof. (1) Since M is compact, u attains its maximum at a point p0 in M.

If u is not identically zero, u(p0) > 0. Since DJ is a function on M, covariant
differentiation is the same as the usual one and hence DJ

 k is zero at a
maximum point, i.e. DJ

k(p0) = 0. With our hypothesis and formula (4.36)
it is clear that
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(5.3) (Δu)Po > 0 .

However, since pQ is the maximum point of w, we have

(5.4)

which is a contradiction.
Assertion (2) is proved similarly by the consideration of the minimum of u.
Theorem 5.2. Let f: M-+N be a holomorphic mapping, where M is an

Einstein manifold of dimension m with K-exhaustion property, and N is an
hermitian manifold of dimension n with negative constant holomorphic sec-
tional curvatures ( = —K, for some positive constant K). Then

(5.5) v = log u < va ,

where u = Σ aaiaai as in (3.16).

Proof, Let E be the open set defined by E = {x e M \ v > va}. In £ we
have M = Σ fl«Ai ^ 0 From (4.31) we have

α,i

(5.6) i-J log u = 1 [ Σ ϋAίR,, - Σ Σ a«ί«*fl>ΛAfcJ

The condition for M to be Einsteinian is

(5.7) Λ î = δji,
m

in which case (5.6) reduces to

(5.8) ±Jt, = A _ ± Σ 2 ajiβfirJbS.to
2 m n i,k α,/8,r>9

The condition for N to have negative constant holomorphic sectional curvature
( = -JO is

Σ Σ άaiaβiaτkάηJβaβrη
ύk βf,/s,r,7

= - * Σ (Σ άaiaak)(Σ Wβ*) <

which reduces (5.8) to

(5.9) \Δv>— + Kexpv.
2 m

From (5.2) and (5.9) we have

(5.10) ^-Δ{v - va) > K(txp v - exp va).
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Since the exponential function is increasing, Δ(v — va) > 0 in £, and v — va

cannot have a maximum in E. Hence v — va must approach its least upper
bound on a sequence of points pl9 p29 tending to the boundary of E.
This sequence cannot have a limit point p0 in Mα, for otherwise at the point
Po> v — va > 0, and p0 would belong to £ and be a maximum for v — va. It
cannot be divergent either, for otherwise va --* oo and i; is bounded. These
show that E is empty, and hence v < va. q.e.d.

In Chern's paper [5] we know that the unit ball Dm is an Einstein manifold
with 2n(n + l)-exhaustion property such that

(5.11) M - . . * - «

where 0 < r < p < 1. As p —> 1, vp --> 0 giving us
Theorem 5.3. Lei f:Dm-*N be a holomόrphic mapping, where Dm is

the unit m-ball in Cm with the standard Kaehler metric, and N is a n-dimen-
sional hermitian manifold with negative constant holomorphic sectional curva-
ture ( = — 2m(m + 1)). Then f is distance-decreasing.
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