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MINIMAL IMBEDDINGS OF R-SPACES

MASARU TAKEUCHI & SHOSHICHI KOBAYASHI

1. Introduction

Let G be a connected real semi-simple Lie group without center and U a
parabolic subgroup of G. The quotient space G/U is called an R-space. A
maximal compact subgroup K of G is transitive on G/U so that an R-space
is necessarily compact. Let & = & +  be a Cartan decomposition of the
Lie algebra & of G with respect to the Lie algebra & of K. The main purpose
of this paper is to construct a natural imbedding ¢ of an R-space G/U into
8 with the following properties :

(1) ¢ is K-equivariant;

(2) ¢ has minimum total curvature;

(3) If G is simple and K/K N U is a symmetric space, then ¢ is iso-
metric and ¢(G/U) is a minimal submanifold of a hypersphere in 8 in the
sense that its mean curvature normal is zero.

In general, an n-dimensional submanifold M of the hypersphere S¥(r) of
radius r about the origin in the Euclidean space R¥*! is a minimal submani-
fold if and only if

Ay":—%y‘ on Mfori=1,---,N+1,
r

where (!, - - -, ¥¥*?) is a coordinate system for R¥** and 4 is the Laplacian
of M. For many symmetric R-spaces we verify that the Laplacian 4 for
functions has no eigen-value between 0 and —n/r®>. We do not know whether
this is true or not in general for all symmetric R-spaces.
Previously, it was known that ¢ has minimum total curvature if G/U is
a Kéehlerian C-space (Kobayashi [6]) or if G/U is a symmetric space of rank
1 (Tai [15]). For a symmetric R-space G/U, the imbedding ¢ has been con-
sidered by Nagano [13], and has also been conjectured to have minimum total
curvature (Kobayashi [7]). The class of symmetric R-spaces includes
(i) all hermitian symmetric spaces of compact type;
(i) Grassmann manifolds O(p + q)/0O(p) x O(q), Sp(p + q)/Sp(p) X
Sp(q);
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(iii) the classical groups SO(m), U(m), Sp(m);

@iv) UQ@m)/Sp(m), U(m)/O(m);

(v) (SO(p + 1) x SO(g + 1))/S(O(p) X O(q)), where S(O(p) X O(q)) is
the subgroup of SO(p + 1) x SO(g + 1) consisting of matrices of the form

e 0

04 o). e==x1, 4c0w), Beco@;

OB

(This R-space is covered twice by §? x S9.)

(vi) the Cayley projective plane and three exceptional spaces.

An explicit formula for the imbedding ¢ of a symmetric R-space of classical
type in B in terms of matrices can be found in Kobayashi [7].

In §3 we recall briefly the concept of minimum imbedding without men-
tioning that of total curvature. For the latter we refer the reader to Chern
and Lashof [1], [2], Kuiper [9], [10] and references therein.

The result of this paper on the total curvature of ¢ relies heavily on the
cellular decomposition of an R-space obtained by Takeuchi [16].

Our result on minimal submanifolds of a hypersphere is somewhat related
to those of Takahashi [7] and Hsiang [4], and Proposition 5.1 on minimal
submanifolds appears in Takahashi [17].

2. Parabolic subgroups and R-spaces

Let G be a connected real semi-simple Lie group without center, and ® its
Lie algebra. Let ®, be the complexification of &, and G the connected
complex semi-simple Lie group without center generated by the Lie algebra
®c. Then we may consider G as a subgroup of G.. The complex conjuga-
tion ¢ of @, with respect to ® generates an automorphism ¢ of G, which
leaves G elementwise fixed.

A subgroup of G, is called a parabolic subgroup of G if it contains a
maximal solvable subgroup of G; it is always connected. A subgroup of G
is called a parabolic subgroup of G if it is the intersection of G and a ¢-in-
variant parabolic subgroup of G.. A parabolic subgroup of G may not be
connected, but it is still uniquely determined by its Lie algebra alone. A sub-
algebra of ® is called a parabolic subalgebra if it is the Lie algebra of a para-
bolic subgroup of G. If Z is an element of & such that ad Z is a semi-simple
endomorphism of & whose eigen-values are all real, then the direct sum U of
all eigen-spaces corresponding to the non-negative eigen-values of ad Z is a
parabolic subalgebra of &. Conversely, every parabolic subalgebra of & can
be obtained in this fashion (cf. Matsumoto [11]).

An R-space is, by definition, a quotient space M = G/U, where G is a
connected real semi-simple Lie group without center and U is a parabolic
subgroup of G. Given an R-space M = G/U, we choose once and for all an
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element Z ¢ ® which determines the parabolic subalgebra 11, the Lie algebra
of U, in the manner described above. (Such an element Z is not unique.)
We choose also a maximal compact subgroup K of G such that Z is per-
pendicular to the Lie algebra & of K with respect to the Killing form ( , ) of
®. In the Cartan decomposition & = & + B, Z is then contained in .
We choose a maximal abelian subalgebra % of $, which contains Z, and
introduce a linear order in the dual space of ¥ in such a way that 7(Z) > 0
for all positive roots y of & with respect to %. Let % be the direct sum of
the root spaces corresponding to the positive roots. Then %t is a nilpotent
subalgebra of . Let N be the connected subgroup of G generated by N,
and set

K,={keK; (4dK)Z = Z} .

Then we have (Takeuchi [16])

Proposition 2.1. (i) KU=G and KN U = K, so that M = K/K,; (i) If
we denote by Ng(N) (resp. Ny, (X)) the normalizer of A in K (resp. in K,),
then Ny(N)/Ng Q) is finite. If ki, - - -, k, € Nx(¥) are complete representa-
tives of Ng(A)/Ng,(N) and if o denotes the origin of G|U, then the orbits
Nk.o, - - -, Nkyo of N through k.o, - - -, k,o0 give a cellular decomposition of
M, and these cells are all cycles mod 2.

As a consequence, we have };dim H(M, Z,) = b. From (i) we see that
the mapping ¢ : M = K/K, — P defined by

o(kK) = (Adk)Z, kK, K/K,

is a K-equivariant imbedding of M into 8. The purpose of this paper is to
study geometric properties of this imbedding ¢.

Proposition 2.2. Let X be a regular element of 3. Then the number of
zero points of the vector field on M generated by X coincides with the num-
ber b of the elements in N (%) /N (¥).

Proof. We first prove

Lemma. If weset By={XeP;[Z,X]=0}, then U N P=1P,.

Proof of Lemma. From the definitions of 11 and %, we have clearly
BocUNP. Let Xell NP and write

X=XO+X+’

where [Z,X,] =0 and X, is in the direct sum of the eingen-spaces correspond-
ing to the positive eigen-values of ad Z. We wish to show X, = 0. Let z be
the involutive automorphism of & such that r|g = identity and z|p =
—identity. Then tZ = —Z and hence to(adZ) = —(ad Z) - 7. It follows
that [Z, zX] = 0 and that X, is in the direct sum of the eigen-spaces cor-
responding to the negative eigen-values of ad Z. On the other hand, since X
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is in B, we have 7 X = —X and X e U N P. Since X = =X, + X, is in
1, it follows that X, = 0. This completes the proof of the lemma.

Let X be a regular element of . For each &k € K, X and (Ad k)X generate
vector fields on M with the same number of zero points on M. Since
(Ad k)X ¢ % for a suitable k, we may assume that X is a regular element of
A. It suffices therefore to prove that, for a regular element X of ¥, the zero
points of the vector field generated by X coincide with the orbit N (N)o of
N () through the origin o of M = K/K,. Let ko (k € K) be a zero point of
the vector field generated by X. Then X e (4d k)11 and hence (4dk )X e U.
Since (Ad k™)X e B, the lemma above implies (4d k)X e R,. If we set @,
={Y e ®; [Z,Y] = 0}, then @, is a reductive Lie algebra, and &, = &, + B,
is a Cartan decomposition of ®,. Since ¥ is a maximal abelian subalgebra of
By, there exists an element &, € K, such that (Ad k;)(Adk )X e UA. If we
set k' = kk,, then (Ad k’~)X ¢ U. Since X is a regular element of A, &’ lies
in Ng(2). On the other hand, k’o = kk,0 = ko. It is easy to see the converse
that Nx()o is contained in the set of zero points of the vector field generated
by X.

3. Minimum imbeddings

Let M be a compact manifold, and # the set of C* functions f on M whose
critical points are all isolated and non-degenerate. For each f € &, we denote
by A(f) the number of the critical points of f on M. Set

g = inf A(f).
feF

Then g depends only on the differentiable structure of M, and the theory of
Morse tells us that, for any coefficient field F, the following inequality holds:

B> 2. dim HM, F) .

Let ¢ be an imbedding of M into a real vector space V. Then for almost'
all linear functional u on V, the function u o ¢ belongs to the family &#. We
say that the imbedding ¢: M — V' is minimum if B = p(u o ¢) for almost all
linear functionals # on V such that uo ¢ belongs to the family &. Since
Bluog)>p > 3,dimHM,F) always, ¢ is minimum if B(uc¢) =
> dim H;(M, F) for some coefficient field F and almost all linear functionals
u such that (uo ¢) e &#.

We shall prove the following theorem :

Theorem 3.1. Let M = G/U be an R-space, and ¢ : M — $ the imbedding
defined in § 2. Then ¢ is minimum, and

1 in the sense of measure.
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B= ZiHi(M, Z) .

We shall first outline the proof. Let X be any element of P, and u, the
linear functional on § which corresponds to X under the duality defined by
the Killing form (,) of . We define a suitable Riemannian metric € , >
and show that the 1-form d(uy o ¢) corresponds to the vector field generated
by X by the duality defined by « , . Then the critical points of uyo ¢
coincide with the zero points of the vector field generated by X. Since the
singular elements of { form a set of measure zero, the theorem will then
follow immediately from Propositions 2.1 and 2.2. We now give the details
of the proof.

Let &, be the Lie algebra of K,. The Killing form (,) of ® is negative
definite on K. Let M be the orthogonal complement of &, in & with respect
to the Killing form (, ). Then I is invariant by Ad K,. As in the proof of
Lemma for Proposition 2.2, let z be the involutive automorphism of & defined
by 7|g = identity and z|p = —identity. Since 7o (adZ) = —(ad Z) - 7 as we
have shown earlier in the proof of Proposition 2.2, we have 7o (ad Z)* =
(ad Z)* o 7. Hence (ad Z)* leaves R and 3 invariant. Since ad Z leaves the
Killing form (,) invariant, (ad Z)* is a symmetric endomorphism of & with
respect to (, ). If we denote by $, the direct sum of the eigen-spaces cor-
responding to the positive eigen-values of (ad Z)*g, then B = B, + B, and
B, and B, are mutually orthogonal with respect to the Killing form (, ).
Since (ad Z)* maps &, into 0, (ad Z)* leaves I invariant. Let y,, -- -, 7, be
the set of roots y (multiplicity counted) of & with respect to ¥ such that
7(Z) > 0. Then we know (Takeuchi [16]) that there exist a basis §,, -- -, S,
for IN and a basis T, - - -, T, for §FE, such that

—(Su Sj) = 5ij ) (T‘i,s Tj) = 5“ for 1 < i,j < n,;
(*) [H, S1] = T,,(H)Tz N [H, T,,] = TZ(H)Sl fOl' He 2[ and 1 Sl S n,;
Si+ T, ell for 1 <i<n.

By setting H = Z in (x), we see that [Z, MM] = B, and [Z, BL.,.] = M and that
(ad Z)*q is a positive definite symmetric endomcrphism of It with respect to
—(,). Let ¢ be a positive definite symmetric endomorphism of I with
respect to —(, ) such that £? = (ad Z)’|;. Then {S; = 7(Z)S; for 1 <i<n.
Since (Adk)Z = Z for ke K,, we have (Ad k)X = {(Adk)X for X e M
and k € K,.

Lemmal. X +{7Z,X]ell for X e ..

Proof of Lemma 1. It suffices to verify for X = T, (1 < i < n). From (x)
we obtain

T, +CUZ,T) =T, + DS =T, + LS, =T, + S;e U,

which proves Lemma 1.
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We shall now construct K-invariant Riemannian metric € , » on M =
K/K,. Let To(M) be the tangent space of M = K/K, at the origin 0. Under
the natural identification of I with T,(M), the adjoint action of K, on I
corresponds to the linear isotropy representation of K, on To(M). We set

X, Y> = —(¢X,Y) for X, Ye.

Since (, ) is negative definite on ® and { commutes with Ad & on M for every
ke K,, it follows that « , > is a K,-invariant positive definite symmetric
bilinear form on M. Hence « , > can be extended uniquely to a K-invariant
Riemannian metric « , > on M = K/K,.

Let X ¢ B and let uy denote the linear functional on P defined by uy(Y)
= (Y, X) for Y € . Let ¢ be the imbedding of M into % defined in § 2, and
set fy = Uy o ¢. In other words, fx is defined by

fx(k0) = ((AdKk)Z,X) for keK.

Lemma 2. For every X e R, dfy is the 1-form (i.e., the covariant vector)
corresponding to the vector field (i.e., the contravariant vector) generated
by X under the duality defined by the Riemnnian metric & , >.

Proof of Lemma 2. We denote by the same letter X the vector field on
M generated by X. The value of X at a point ko of M will be denoted by
Xko. Similarly, for Y e IR, kYo denotes the vector at ko obtained from the
vector Yo € To(M) by a transformation k € K. Then Lemma 2 may be stated
as follows :

<(dfx)ios KYO0> = & Xko,kYo» for YeIN and keK.

We calculate the left hand side first.
L (A )eo kYO> = —:;fo((k- exp 1Y)0)|, = 7jé-«Adk- exp tY)Z, X)|,

= "%— (44 €xp tY)Z, (Ad k'l)Xlo = ([Y, Z1, (4d k~H)X)
= (Y, [Z, (Ad k~)X]) .

We decompose (Adk )X eR as follows: (Ad k)X = X, + X,, where
X,e %P, and X, ¢ B,. Then we have

<(df.’{)lco7 kYO> = (Ya [Z, X+]) .
We now calculate the right hand side.

& Xko, kYo» = «(Adk)X)o, Yo> .
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Since we have ((4d k) X)o = (—{7Y[Z, X, D)o by Lemma 1, we obtain
&Xko, kYoy» = —<(Z, X, 1, Y>» =(Z,X,]1,Y).

This completes the proof of Lemma 2.

Theorem 3.1 now follows from Propositions 2.1 and 2.2 and from Lemma
2 just proved.

Remark 1. Given an R-space M = G/U we may assume without loss of
generality that G acts effectively on M, i.e., U contains no nontrivial normal
subgroup of G. Then the minimum imbedding ¢ : M —  is substantial in the
sense that ¢(M) is not contained in any (affine) hyperplane of f; otherwise
there would exist a nonzero linear functional uy of § such that the function
fx = ux o p is constant on M. But Lemma 2 says that if dfy = 0 on M, then
the vector field on M generated by X also vanishes identically on M. Hence,
X=0.

Remark 2. Since g > 3 dim H;(M, Z,) by Morse theory, we may con-
clude that, for any R-space M = G/ U, the inequality

¥ dim H(M, Z)) > ¥, dim H(M, Z,)

holds for all prime numbers p.

4. Symmetric R-spaces and minimal submanifolds of spheres

Let G be a connected real semi-simple Lie group without center, and Z an
element of & such that ad Z is a semi-simple endomorphism of & with eigen-
values —1,0 and 1. Let @ = &_, + &, + @, be the corresponding eigen-
space decomposition, and U the parabolic subgroup of G with Lie alge-
bra I = &, + @,. Taking a Cartan decomposition @ = & + P such that
Z e, let K be the maximal compact subgroup of G generated by ®. Let
K,={keK;(adk)Z=27} and = &, + M as in §§2 and 3. Let G, be
the complexification of & and G, the complex semi-simple Lie group without
center generated by &.. Let § denote the restriction to K of the inner auto-
morphism of @, defined by exp (niZ) € G.. If we set K, = {ke K; 6k = k},
then K, lies between K, and the identity component of K,. It follows that
M = K/K, is a symmetric space defined by the involutive automorphism 4
of K. (By results of Nagano [13] (cf. also Kobayashi-Nagano [8] and Take-
uchi [16]), the converse is also true; namely, if M = G/U is an R-space such
that M = K/K, is symmetric, then U is determined by an element Z ¢ & such
that ad Z has eigen-values —1, 0, 1.) Throughout this section we shall con-
sider a symmetric R-space M = G/U = K/K,, where U is determined by
such a Z ¢ ®. The main purpose of this section is to prove that, with respect
to the imbedding ¢: M — P defined in §2, ¢(M) is a minimal submanifold
of the sphere of radius {27 in 8, where n = dim M.
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With our notations in § 3, we have y(Z) = 1for 1 <i<n and {((X) =X
for all X ¢ M. The Riemannian metric « , > on M is defined by < X, ¥'>
= —(X,Y) for X,Y e M = To(M). From the formulas (*) in §3 it follows
that the imbedding ¢: M — R is isometric with respect to the Riemannian
metric € , > and the restriction of the Killing form (, ) of & to .

From the definition of the imbedding ¢: M — P it is clear that its image
¢(M) lies on the sphere of radius (Z, Z)? with center at the origin of 8.

Proposition 4.1. For a symmetric R-space M = G|U, we have (Z,Z) =
2n, where n = dim M.

Proof. (Z,Z) = Tr(ad Z) = ﬁl 12 + é(_n(znz =2n.

Theorem 4.2. Let M = G/U = K/K,;, be a symmetric R-space with G
simple. Then o(M) is a minimal submanifold of the sphere of radius 2n
about the origin in B, where n = dim M.

Proof. We identify (M) with M. Let S denote the sphere of radius 2n
about the origin in P, and « be the second fundamental form of M in S; at
each point x € M, it defines a symmetric bilinear mapping 7.(M) x T.(M)
— T+, where T} denotes the normal space to M in S at x. Choosing an
orthonormal basis e,, - - -, e, for T (M), we define the mean curvature normal
& by

£ = ;; ale;, e,) .

Then &, is independent of the choice of e, - - -, e,. The submanifold M is
minimal if and only if £, = 0 at every point x of M. In the present case,
since the imbedding ¢ is K-equivariant, the field & of mean curvature normals
is invariant by the adjoint action of K in 8. It suffices therefore to prove that
& vanishes at the origin o of M. The tangent space T,(M) is parallel to [Z, IM]
= P, in P (cf. formulas () in §3). Since Z is normal to the sphere S at o,
&o is perpendicular to Z as well as to .. Hence &, can be identified with
an element of P, which is perpendicular to Z and is invariant by the adjoint
action of K, in $,. The proof of the theorem is now reduced to that of the
following lemma.

Lemma. Let M = G/U be a symmetric R-space with G simple. Then the
space {X € B,; (Ad k)X = X for all k e K} is spanned by Z.

Proof of Lemma. Consider first the case where the complexification &,
of & is not simple. In this case, & is compact and simple, and & admits a
complex structure J such that $ = JR and B, = J®,. Moreover, &, has center
of dimension 1 (cf. Helgason [3]). Our lemma is clearly true in this case.

Consider now the case where @, is simple. In this case, the center of &,
is spanned by Z (cf. Kobayashi-Nagano [8] and Takeuchi [16]). Let &} =
[&,, ®] and B; = &; N P,. Then &; = K, + P, is a Cartan decomposition
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of a semi-simple Lie algebra &;. It follows that no nonzero element of %, is
invariant by &, (cf. Helgason [3]). Since the center of ®, is spanned by Z,
we have B, = B} + {Z}z.

Remark. The lemma above may be derived also from Frobenius reci-
procity and the theorem of E. Cartan to the effect that every complex irreduci-
ble representation of K appears with multiplicity at most 1 in the regular
representation of K on K/K,.

5. Eigen-values of the Laplacian

Let RV*! be a Euclidean space of dimension N + 1 with natural coordinate
system y = (3%, - - -, y¥*}). Let S¥(r) be the sphere of radius r about the
origin of RV+!, M an n-dimensional submanifold of $¥(r) with local coordinate
system x%, - - -, x", and

.V=.V(x1a ..,’xn)

the local equation defining M. At each point of M, we choose an orthonormal
system of unit vectors &, &;, - - -, §x_, such that &, is normal to S¥(r) and
&, - -+, &y_, are tangent to S¥(r) but normal to M. Then

az : a N=-n
%.;_(_)Lx; =TI _a_;;’; + X b, + bbo

If we set g, = (aixy_f-’ ':_yk‘) and denote by (g/*) the inverse matrix of (g;i),
X

then the Laplacian of y = (3%, - - -, y¥*!) as a system of functions on M is
given by

dy = 3 gV Viy = 3 g7*bhé, + 2 87%b%é&, ,
Ik 0.k Ik

where I7; denotes the covariant differentiation with respect to 3/3x7. The first
term on the right hand side is nothing but the so-called mean curvature
normal on M as a submanifold of S¥(r). Hence, M is a minimal submanifold
of $¥(r) if and only if

dy = 3, g7 b%&, .
7.k
To simplify the right hand side, we note that

=r, (% )—o
y.y=r, (axj,y =0,

¥y ) (ﬂ -ai)—o
(axfax“’y + ax! T axe) T
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Since y = r&, on M, the last equality above may be rewritten as follows :

rb% + g4 =0.

Hence, }, g/*b%4, = —% y. We may now conclude
Jk
Proposition 5.1. A submanifold M of S¥(r) is a minimal submanifold of
S¥(r) if and only if

Ay=— Yo

n
]
where n = dim M.

From Theorem 4.2 and Proposition 5.1 we obtain

Theorem 5.2. Lei M =G/U = K/K, be a symmetric R-space with G
simple, and ¢ : M — B the imbedding defined in § 2. For each linear functional
u of B, we set f =uoq. Then with respect to the metric £ ,> on M, f
satisfies Af = — &f.

Remark. The fact that 4f = Af for some 2 (independent of f) may be
derived from the theorem of Cartan quoted in the remark at the end of §4.
We can then verify 2 = —1/2 using the special function f; = u o ¢.

We wish to relate this eigen-value —1/2 with the scalar curvature of M.
We denote by (, ) and (, )s the Killing forms of & and ®, respectively.
The curvature tensor R of the symmetric space M = K/K| is given by

RV, X)Y = —[[V,X],Y] for V,X,YeR;
its Ricci tensor S is given by

S(X, Y) = trace of the map V — R(V, X)Y
= trace of the map V — —[[V, X], Y].
= —trace ((ad Y)(ad X))y, .
If we construct an orthonormal basis for & with respect to —(, )g by choos-

ing first an orthonormal basis for &, and then one for N, ad X acting on &
is given by a matrix of the form

(ot )
—tAX) 0 /-
Hence, (ad Y)(ad X) acting on & is given by a matrix of the form

(—A(Y)‘A(X) 0 ) )
0 —'A(Y)A(X)

1t follows that
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(X, Y)q = trace (ad Y)(ad X)|p = —2(trace ‘A(Y)A(X))
= 2trace (ad Y)(@ad X)j;m = —25(X,Y).

Proposition 5.3. The Ricci tensor S of a symmetric space M = K/K, is
given by

SX,Y)= —3X,Y)a for X, Yet.

It we multiply the metric tensor of M by a positive constant a, then both
the scalar curvature ¢ of M and the Laplacian 4 of M are multiplied by 1/a.
It is therefore desirable to express the eigen-values of 4 in terms of c. Now
we calculate ¢ for some R-spaces. If there exists a positive number x such
that

X, V)e=pX,Y)g for X,YeQ,
then the scalar curvature c is given by
c=inp (n=dmM).

In fact, for X, Y € It , we have
SX, Y) = —%(X, Ve =L X Vo= —-L<X, V>,

and hence ¢ = inpu. For the following six classes of symmetric spaces, this
method enables us to calculate the scalar curvature ¢. (For calculation of g,
we refer the reader to Iwahori [5].)

(1) Irreducible hermitian symmetric space of compact type:

1 n
= —, C=—.
k=3 4
(2) Real Grassmann manifold of non-oriented p-planes in R?*9,
@+49>2):

p+tg—2  _paP+q-2
2(p + 9 4r + 9

(3) Quaternionic Grassmann manifold of p-planes in quaternionic vector
space of dimension p + g:

#:

P+g+1 c=PdP+g+ 1)

b

200 + 9 Pp+gq
(4) Group manifold SO(m), (m > 2):

lj:
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= ._m_-—__z_. C = i
C2m -2’ 8
(5) Group manifold Sp(m):

_ m+1
2m +1°

m(m — 2) .

1
= — 1).
c 2m(m-*-)

(6) n-sphere, (n > 1):

1
= N c=—(n-—1).
7 5 ( )

By calculating the eigen-values of the Casimir operator, Nagano [12]
determined the eigen-values of the Laplacian 4 acting on the space of func-
tions on a compact symmetric space K/K, with K simple and K/K, simply
connected (with respect to the invariant Riemannian metric induced from the
Killing form of ®). From Nagano’s table we see that, for (1), (3) and (6),
there is no eigen-value of 4 between 0 and — (= —c/(np)). Every eigen-value
of 4 for functions on the Grassmann manifold of non-oriented p-planes in
Rr*? appears as an eigen-value of 4 for functions on the Grassmann mani-
fold of oriented p-planes in R?*¢, but not vice versa. From Nagano’s table
we see that the Laplacian 4 for functions on the Grassmann manifold of
non-oriented p-planes in RP*? has no eigen-value between O and
_1 ___.___2_c(&q_)__) at least if p >3 and > 17. But we

2=~ rees pimipraz o
not know if this is true for all p and g. By the same method we can verify
that the Laplacian acting on the space of functions on the group manifold

SO(m) (resp. Sp(m)) has no eigen-value between 0 and — 1 (= - L)
2 m(m — 2)
(resp. 0 and _1 (: — ——C—-—)) For eigen-values of the Laplacian for
2 m@m + 1)

the spaces (1) and (6), see also Obata [14].
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