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MINIMAL IMBEDDINGS OF R-SPACES

MASARU TAKEUCHI & SHOSHICHI KOBAYASHI

1. Introduction

Let G be a connected real semi-simple Lie group without center and U a
parabolic subgroup of G. The quotient space G/U is called an R-space. A
maximal compact subgroup K of G is transitive on G/U so that an J?-space
is necessarily compact. Let © = S + $ be a Cartan decomposition of the
Lie algebra ® of G with respect to the Lie algebra ® of K. The main purpose
of this paper is to construct a natural imbedding φ of an R-space G/U into
Sβ with the following properties:

(1) φ is K-equivariant;
(2) φ has minimum total curvature;
(3) If G is simple and K/K Π U is a symmetric space, then φ is iso-

metric and φ(G/ U) is a minimal submanifold of a hypersphere in $β in the
sense that its mean curvature normal is zero.

In general, an ^-dimensional submanifold M of the hypersphere SN(r) of
radius r about the origin in the Euclidean space RN+1 is a minimal submani-
fold if and only if

Δyι = - 4 Ϋ on M for i = 1, , W + 1 ,

where (y1, ,yN+1) is a coordinate system for RN+1 and J is the Laplacian
of M. For many symmetric jR-spaces we verify that the Laplacian Δ for
functions has no eigen-value between 0 and — n/r2. We do not know whether
this is true or not in general for all symmetric R-spaces.

Previously, it was known that φ has minimum total curvature if G/ U is
a Kaehlerian C-space (Kobayashi [6]) or if G/ U is a symmetric space of rank
1 (Tai [15]). For a symmetric jR-space G/U, the imbedding φ has been con-
sidered by Nagano [13], and has also been conjectured to have minimum total
curvature (Kobayashi [7]). The class of symmetric Λ-spaces includes

(i) all hermitian symmetric spaces of compact type
(ii) Grassmann manifolds O(p + q)/O(p) x O(q), Sp(p + q)/Sp(p) x

Sp(q);
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(iii) the classical groups SO(m), U(m), Sp(m);

(iv) U(2m)/Sp(m), £/(m)/O(m);
() (O(v) (J5O(p + 1) X SO(q + l))/S(P(p) X 6>(<?)), where 5(0(p) x O(«)) is

the subgroup of SO(p + 1) x S0(<? + 1) consisting of matrices of the form

/ ε θ \
' 0 A \

n , e = ± 1 , A* O(p), B € 0(?)ε U /
OBI

(This jR-space is covered twice by 5P x Sq.)
(vi) the Cayley projective plane and three exceptional spaces.
An explicit formula for the imbedding φ of a symmetric i*-space of classical

type in φ in terms of matrices can be found in Kobayashi [7].
In § 3 we recall briefly the concept of minimum imbedding without men-

tioning that of total curvature. For the latter we refer the reader to Chern
and Lashof [1], [2], Kuiper [9], [10] and references therein.

The result of this paper on the total curvature of φ relies heavily on the
cellular decomposition of an £-sρace obtained by Takeuchi [16].

Our result on minimal submanifolds of a hypersphere is somewhat related
to those of Takahashi [7] and Hsiang [4], and Proposition 5.1 on minimal
submanifolds appears in Takahashi [17].

2. Parabolic subgroups and Λ-spaces

Let G be a connected real semi-simple Lie group without center, and © its
Lie algebra. Let ® c be the complexification of ©, and Gc the connected
complex semi-simple Lie group without center generated by the Lie algebra
© c . Then we may consider G as a subgroup of G c . The complex conjuga-
tion σ of © c with respect to © generates an automorphism σ of Gc which
leaves G elementwise fixed.

A subgroup of Gc is called a parabolic subgroup of Gc if it contains a
maximal solvable subgroup of Gc it is always connected. A subgroup of G
is called a parabolic subgroup of G if it is the intersection of G and a σ-in-
variant parabolic subgroup of Gc. A parabolic subgroup of G may not be
connected, but it is still uniquely determined by its Lie algebra alone. A sub-
algebra of © is called a parabolic subalgebra if it is the Lie algebra of a para-
bolic subgroup of G. If Z is an element of © such that ad Z is a semi-simple
endomorphism of © whose eigen-values are all real, then the direct sum U of
all eigen-spaces corresponding to the non-negative eigen-values of ad Z is a
parabolic subalgebra of ©. Conversely, every parabolic subalgebra of © can
be obtained in this fashion (cf. Matsumoto [11]).

An R-space is, by definition, a quotient space M = G/U, where G is a
connected real semi-simple Lie group without center and U is a parabolic
subgroup of G. Given an JR-space M = G/ U, we choose once and for all an
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element Z € ® which determines the parabolic subalgebra 11, the Lie algebra
of £/, in the manner described above. (Such an element Z is not unique.)
We choose also a maximal compact subgroup K of G such that Z is per-
pendicular to the Lie algebra $ of K with respect to the Killing form ( , ) of
@. In the Cartan decomposition © = ® + $ , Z is then contained in φ .
We choose a maximal abelian subalgebra 21 of Sβ, which contains Z, and
introduce a linear order in the dual space of St in such a way that γ(Z) > 0
for all positive roots j-of ® with respect to Si. Let 3ϊ be the direct sum of
the root spaces corresponding to the positive roots. Then SI is a nilpotent
subalgebra of ®. Let N be the connected subgroup of G generated by 9ΐ,
and set

K0 = {kεK; (Adk)Z = Z}.

Then we have (Takeuchi [16])
Proposition 2.1. (i) KU = G and K Π U = K0so that M = K/Ko; (ii) //

we denote by ΛΓχ(Sί) (resp. NKo(W)) the normάlizer of 21 m £ (res/?, in £ 0 ) ,
then NK(%)INKQ(%) is finite. If kl9 > ,kbε N^(2i) are complete representa-
tives of Λ ^ ( 2 Ϊ ) / N A Ό ( 2 Ϊ ) and if o denotes the origin of G/U, then the orbits
Nkτo, , Nkbo of N through kxo, , kbo give a cellular decomposition of
M, and these cells are all cycles mod 2.

As a consequence, we have ΣidimHάM,Z2) = b. From (i) we see that
the mapping φ: M = K/Ko —* Sβ defined by

φ(kK0) = (Ad k)Z, kK0 e K/lfo

is a i^-equivariant imbedding of M into $. The purpose of this paper is to
study geometric properties of this imbedding ψ.

Proposition 2.2. Let X be a regular element of Sβ. Then the number of
zero points of the vector field on M generated by X coincides with the num-
ber b of the elements in # ^ ( 2 0 / ^ ( 2 0 .

Proof. We first prove
Lemma. // we set $β0 = {X € 5β; [Z, X] = 0}, then U Π $ = %.
Proof of Lemma. From the definitions of U and $ 0 we have clearly

$o C 11 Π $β. Let Z € U Π φ and write

X = Âo + ΛΓ+ ,

where [Z,X0] = 0 and X+ is in the direct sum of the eingen-spaces correspond-
ing to the positive eigen-values of adZ. We wish to show X+ = 0. Let τ be
the involutive automorphism of © such that r |a = identity and r|$β =
— identity. Then τZ = — Z and hence τ © (αί/Z) = —(adZ) o τ. It follows
that [Z, τAΓ0] = 0 and that τX+ is in the direct sum of the eigen-spaces cor-
responding to the negative eigen-values of adZ. On the other hand, since X
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is in φ , we have τX = -X and τX € U Π $. Since r Z = τZ 0 + τX+ is in
U, it follows that X+ = 0. This completes the proof of the lemma.

Let X be a regular element of Sβ. For each kzK.X and (Adk)X generate
vector fields on M with the same number of zero points on M. Since
(Adk)X € Sί for a suitable k, we may assume that X is a regular element of
Sί. It suffices therefore to prove that, for a regular element X of Sϊ, the zero
points of the vector field generated by X coincide with the orbit Nκ(W)o of
Λ^CSί) through the origin o of M = K/Ko. Let &o (k e K) be a zero point of
the vector field generated by X. Then X e (Adk)U and hence {Adk~l)X e U.
Since ( Λ W / r 1 ) ^ Sβ, the lemma above implies (Adk-^Xe φ 0 . If we set ©0

= {Y € © [Z, Y] = 0}, then ®0 is a reductive Lie algebra, and @0 = $ 0 + $o
is a Cartan decomposition of ©0. Since SI is a maximal abelian subalgebra of
5β0, there exists an element koz Ko such that (Adk^XAdk-^XeVi. If we
set W = kk09 then (Adk'-ι)X € Sί. Since X is a regular element of Sί, A7 lies
in NK($V). On the other hand, k'o = M0o = ko. It is easy to see the converse
that NA-(Sί)o is contained in the set of zero points of the vector field generated
b y * .

3. Minimum imbeddings

Let M be a compact manifold, and & the set of C°° functions / on M whose
critical points are all isolated and non-degenerate. For each / 6 J^, we denote
by β(f) the number of the critical points of / on M. Set

β = inf β(f).

Then β depends only on the differentiable structure of M, and the theory of
Morse tells us that, for any coefficient field F, the following inequality holds:

Let φ be an imbedding of M into a real vector space V. Then for almost1

all linear functional u on V, the function u o φ belongs to the family IF. We
say that the imbedding φ: M —> V is minimum if β = β(μ o φ) for almost all
linear functional u on V such that u°φ belongs to the family 5F. Since
βiμ ° φ) > β > Σi dim Ht(M9 F) always, ψ is minimum if β(u o ^) =
2< dim Hi(M, F) for some coefficient field F and almost all linear functional
u such that (uo φ) e. $F\

We shall prove the following theorem:
Theorem 3.1. Let M = G/UbeanR-space, andφ:M-^>?βtheimbedding

defined in § 2 . Then <p is minimum, and

1 in the sense of measure.
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We shall first outline the proof. Let X be any element of Sβ, and ux the
linear functional on Sβ which corresponds to X under the duality defined by
the Killing form ( , ) of @. We define a suitable Riemannian metric < , >
and show that the 1-form d(ux o φ) corresponds to the vector field generated
by X by the duality defined by < , > . Then the critical points of ux o ψ
coincide with the zero points of the vector field generated by X. Since the
singular elements of $β form a set of measure zero, the theorem will then
follow immediately from Propositions 2.1 and 2.2. We now give the details
of the proof.

Let ®0 be the Lie algebra of Ko. The Killing form ( , ) of © is negative
definite on $ . Let 2ft be the orthogonal complement of ®0 in $ with respect
to the Killing form (, ). Then 2?ί is invariant by ΛdK0. As in the proof of
Lemma for Proposition 2.2, let τ be the involutive automorphism of © defined
by r |a = identity and τ|φ = —identity. Since τ ° (adZ) = —(adZ) o r as we
have shown earlier in the proof of Proposition 2.2, we have τo(adZy =
(adZ)2oτ. Hence (adZ)2 leaves ® and Sβ invariant. Since adZ leaves the
Killing form ( , ) invariant, {adZf is a symmetric endomorphism of © with
respect to ( , ) . If we denote by $ + the direct sum of the eigen-spaces cor-
responding to the positive eigen-values of (adZ)2$, then Sβ = Sβ0 -f Sβ+, and
$β0 and Sβ+ are mutually orthogonal with respect to the Killing form ( , ) .
Since {adZf maps ®0 into 0, (βdZf leaves 2ft invariant. Let γλ, , γn be
the set of roots γ (multiplicity counted) of ® with respect to Si such that
γ(Z) > 0. Then we know (Takeuchi [16]) that there exist a basis S19 , Sn

for 2ft and a basis Γ l f , Γn for φ + such that

~(SU Sj) = δtj, (T i5 Tj) = δtj for 1 < i, / < n;

(*) [H, SJ = nVfDTi, [H, ΓJ = ri(H)Si for H z Si and 1 <i < n;

St + Γ, € U for 1 < / < n.

By setting H = Z in (*), we see that [Z, 9K] = $ + and [Z, φ + j = 2ft and that
(adZ)2\w is a positive definite symmetric endomorphism of 2ft with respect to
— ( , ) . Let ζ be a positive definite symmetric endomorphism of 2ft with
respect to - ( , ) such that ζ2 = (adZ)2\m. Then ζSt = γi(Z)Si for 1 < i < n.
Since (Adk)Z = Z for keKQ, we have (Adk)ζX = ζ(Adk)X for *€2ft
and k € Ko.

Lemma 1. Z + ζ-*[Z, Z] € U /or X € φ + .
Froo/ of Lemma 1. It suffices to verify for X = Tt (1 < / < « ) . From (*)

we obtain

Γ t + C"ι[Z, ΓJ = Γ4 + C ^ n ί Z ^ i = Tt + ζ-XSt = Tt + Sf € U ,

which proves Lemma 1.
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We shall now construct i^-invariant Riemannian metric < , > on M =
K/KQ. Let T0(M) be the tangent space of M = K/Ko at the origin o. Under
the natural identification of 9W with T0(M), the adjoint action of Ko on 9ft
corresponds to the linear isotropy representation of Ko on T0(M). We set

<z, y» = -(car, n for x, Y e m.

Since ( , ) is negative definite on ® and ζ commutes with Ad k on 2ft for every
& € £0, it follows that < , > is a ^-invariant positive definite symmetric
bilinear form on 9ft. Hence < , > can be extended uniquely to a iC-invariant
Riemannian metric « , > on M = K/Ko.

Let X € Sβ and let wjr denote the linear functional on Sβ defined by uΎ(Y)
= (Y, Z) for Y € φ. Let 9 be the imbedding of M into φ defined in § 2, and
set /^ = ux o £>. In other words, fx is defined by

) for £ e £ .

Lemma 2. For every Jif € Sβ, ̂  z'5 ίΛe l-form (i.e., the covariant vector)
corresponding to the vector field (i.e., the contravariant vector) generated
by X under the duality defined by the Riemnnian metric < , > .

Proof of Lemma 2. We denote by the same letter X the vector field on
Λf generated by X. The value of I at a point ko of M will be denoted by
Xko. Similarly, for Y e 9ft, kYo denotes the vector at ko obtained from the
vector Yo e T0(M) by a transformation kzK. Then Lemma 2 may be stated
as follows:

<(dh)k0, kYo> == <£Xko, kYoy for Ye 9ft and keK.

We calculate the left hand side first.

<(df A , , kYo> = A k((* . exp tY)o)\0 = A ((Λd k exp ί7)Z,
dt at

= A- {(Ad exp tY)Z, (Ad k-^Xl, = ({Y, Z], (Ad k^
at

= (Y,[Z,(Adk-ί)X]).

We decompose (Adk-^Xz^ as follows: (Adk~")X = ΛΓ0 + X+, where
Xo € φ0 and Z + e Sβ+. Then we have

0, kYo> =(Y,[Z,XΛ).

We now calculate the right hand side.
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Since we have ((Adk'^X^ = ( - ζ - ^ Z , X+])o by Lemma 1, we obtain

- <c-2[z, * j , y> = ([z, * j , r).

This completes the proof of Lemma 2.
Theorem 3.1 now follows from Propositions 2.1 and 2.2 and from Lemma

2 just proved.
Remark 1. Given an R-space M = G/U we may assume without loss of

generality that G acts effectively on M, i.e., U contains no nontrivial normal
subgroup of G. Then the minimum imbedding φ: M —• Sβ is substantial in the
sense that φ{M) is not contained in any (affine) hyperplane of $ otherwise
there would exist a nonzero linear functional ux of $ such that the function
fx = w^ o p is constant on M. But Lemma 2 says that if <%- = 0 on M, then
the vector field on M generated by X also vanishes identically on M. Hence,
X = 0.

Remark 2 Since β> Σ dim Ht(M9 Zp) by Morse theory, we may con-
clude that, for any 2£-space Λf = G/U, the inequality

Σ dim HAM, Z2) > Σ dim JΪ€(Λf, Z,)

holds for all prime numbers p.

4. Symmetric R-spaces and minimal sαbmanifolds of spheres

Let G be a connected real semi-simple Lie group without center, and Z an
element of ® such that ad Z is a semi-simple endomorphism of ® with eigen-
values — 1, 0 and 1. Let ® = ©_! + ©0 + ©i be the corresponding eigen-
space decomposition, and U the parabolic subgroup of G with Lie alge-
bra 11 = ©0 + @lβ Taking a Cartan decomposition @ = ^ + φ such that
Zeψ, let JK be the maximal compact subgroup of G generated by ®. Let
Ko = {k 6 £ ; (αd*)Z = Z} and Λ = ^ 0 + 3K as in §§ 2 and 3. Let © c be
the complexification of © and Gc the complex semi-simple Lie group without
center generated by © c . Let θ denote the restriction to K of the inner auto-
morphism of © c defined by exp (πiZ) $GC. If we set K9 — {k € K; θk = k},
then KQ lies between Ko and the identity component of Kθ. It follows that
M = K/Ko is a symmetric space defined by the involutive automorphism θ
of K. (By results of Nagano [13] (cf. also Kobayashi-Nagano [8] and Take-
uchi [16]), the converse is also true; namely, if M = Gj U is an 2?-sρace such
that M = K/Ko is symmetric, then U is determined by an element Z € ® such
that adZ has eigen-values — 1, 0, 1.) Throughout this section we shall con-
sider a symmetric K-space M = G/U = K/KQ, where t/ is determined by
such a Z € ®. The main purpose of this section is to prove that, with respect
to the imbedding ψ: M -* $ defined in § 2, φ(M) is a minimal submanifold
of the sphere of radius Nl2n in Sβ, where n = dim M.
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With our notations in § 3, we have ^(Z) = 1 for 1 < i < n and ζ(X) = X
for all X s 3ft. The Riemannian metric « , » on M is defined by < Z , Y >
= - ( X , Y) for Z , 7 <= 3ft = T0(M). From the formulas (*) in § 3 it follows
that the imbedding φ:M-+9β is isometric with respect to the Riemannian
metric < , > and the restriction of the Killing form ( , ) of © to Sβ.

From the definition of the imbedding φ: M —• Sβ it is clear that its image
φ(M) lies on the sphere of radius (Z, Z)i with center at the origin of Sβ.

Proposition 4.1. For a symmetric R-space M = G/U, we have (Z, Z) =
2n, where n = dimM.

Proof. (Z, Z) = Tr(αί/Z)2 = ± Γ i(Z)2 + 2 (- r i (Z)) 2 = 2*.

Theorem 4.2. Let M = G/U = K/Ko be a symmetric R-space with G
simple. Then φ(M) is a minimal submanijold of the sphere of radius i2n
about the origin in Sβ, where n = dimM.

Proof. We identify φ(M) with M. Let S denote the sphere of radius 42n
about the origin in Sβ, and a be the second fundamental form of M in S; at
each point x € M, it defines a symmetric bilinear mapping TX(M) x TX(M)
—»Γ£? where T£ denotes the normal space to M in 5 at JC. Choosing an
orthonormal basis et, , en for TX(M), we define the mean curvature normal

ζx — Lx «l et> e%) -

Then ξx is independent of the choice of ex, , en. The submanifold M is
minimal if and only if ξx = 0 at every point x of M. In the present case,
since the imbedding φ is £-equivariant, the field ξ of mean curvature normals
is invariant by the adjoint action of K in Sβ. It suffices therefore to prove that
ξ vanishes at the origin o of M. The tangent space T0(M) is parallel to [Z, 3ft]
= φ + in $β (cf. formulas (*) in § 3). Since Z is normal to the sphere S at o,
ξ0 is perpendicular to Z as well as to $β+. Hence ξ0 can be identified with
an element of Sβ0 which is perpendicular to Z and is invariant by the adjoint
action of Ko in Vβ0. The proof of the theorem is now reduced to that of the
following lemma.

Lemma. Let M = G/U be a symmetric R-space with G simple. Then the
space {X e Sβ0; (Ad k)X = X for all k e KQ} is spanned by Z.

Proof of Lemma. Consider first the case where the complexification ® c

of © is not simple. In this case, $ is compact and simple, and © admits a
complex structure / such that Sβ = ffl and Sβ0 = Jfto Moreover, ®0 has center
of dimension 1 (cf. Helgason [3]). Our lemma is clearly true in this case.

Consider now the case where © c is simple. In this case, the center of ©0

is spanned by Z (cf. Kobayashi-Nagano [8] and Takeuchi [16]). Let ©£ =
[®o, ®0] and φj = ®5 Π φ 0 . Then ©J = ®0 + ψ0 is a Cartan decomposition
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of a semi-simple Lie algebra ©$. It follows that no nonzero element of ψ0 is
invariant by St0 (cf. Helgason [3]). Since the center of ®0 is spanned by Z,
we have φ o = Ψo + {£}*•

Remark. The lemma above may be derived also from Frobenius reci-
procity and the theorem of E. Cartan to the effect that every complex irreduci-
ble representation of K appears with multiplicity at most 1 in the regular
representation of K on K/Ko.

5. Eigen-values of the Laplacian

Let RN+1 be a Euclidean space of dimension N + 1 with natural coordinate
system y = (y\ -,yN+1). Let SN(r) be the sphere of radius r about the
origin of RN+1, M an n-dimensional submanifold of SN(r) with local coordinate
system x1, , xn, and

the local equation defining M. At each point of M, we choose an orthonormal
system of unit vectors ξ0, ξl9 - - , ξN_n such that ξ0 is normal to SN(r) and
Si> * * > fy-« a r e tangent to Ŝ Or) but normal to M. Then

Σ

If we set gifc = ί-JL, -JL] and denote by (g^*) the inverse matrix of
\dχi dxk I

then the Laplacian of y = (v1, , y^+1) as a system of functions on M is
given by

Δy =

where Fj denotes the covariant differentiation with respect to d/dxj. The first
term on the right hand side is nothing but the so-called mean curvature
normal on M as a submanifold of SN(r). Hence, M is a minimal submanifold
of SN(r) if and only if

Σ

To simplify the right hand side, we note that

(,.,)-,.. (&.,)_ 0,
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Since y = rξ0 on M, the last equality above may be rewritten as follows:

rb% + gj* = 0 .

Hence, £ g;*&°t£0 = — — Y We may now conclude
j,fc r 2

Proposition 5.1. Λ( submanifold M of SN(r) is a minimal submanifold of
SN(r) if and only if

where n = dimM.
From Theorem 4.2 and Proposition 5.1 we obtain
Theorem 5.2. Let M — G/U = K/Ko be a symmetric R-space with G

simple, and φ:M-^?$the imbedding defined in § 2. For each linear functional
u of Sβ, we set f = u o ̂ ?. TTiew with respect to the metric < , > on M,f
satisfies Δf = — £/.

Remark. The fact that J/ = λf for some A (independent of /) may be
derived from the theorem of Cartan quoted in the remark at the end of §4.
We can then verify λ = —1/2 using the special function fz = u o φ.

We wish to relate this eigen-value —1/2 with the scalar curvature of M.
We denote by (, )© and (, )& the Killing forms of ® and S, respectively.
The curvature tensor JR of the symmetric space M = K/Ko is given by

R(V,X)Y= - [ [ F , X], 7] for K5 Z , r<=Sft;

its Ricci tensor 5 is given by

£ ( * , Y) = trace of the map V — Λ(F, Z ) 7

= trace of the map V -+ - [ [ F , Λ1, y] .

= -trace «ad Y)(ad X))y •

If we construct an orthonormal basis for ® with respect to — ( , )© by choos-
ing first an orthonormal basis for $ 0 and then one for 2W, ad X acting on ®
is given by a matrix of the form

/ 0 A(X)\

0 /

Hence, (ad Y)(ad X) acting on ® is given by a matrix of the form

I-A{YYA(X) 0 \
\ 0 -^(lO^ίίZ)/ *

It follows that
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(X, Y)Λ = trace (ad Y)(ad X)|a = -2(trace tA(Y)A(X))

= 2 trace (ad Y)(ad X) |s* = -2S(AΓ, 7) .

Proposition 5.3. TVie JRicci tensor S of a symmetric space M = K/Ko is
given by

S(X, Y) = - « * , Y)ft /or Z, Y € S i .

It we multiply the metric tensor of M by a positive constant a, then both
the scalar curvature c of Λf and the Laplacian Δ of M are multiplied by I/a.
It is therefore desirable to express the eigen-values of Δ in terms of c. Now
we calculate c for some /^-spaces. If there exists a positive number μ such
that

* for * , Y €

then the scalar curvature c is given by

c = \nμ (n = dim M).

In fact, for X, Y € 2)1, we have

s(x, Y) = - 1 (AΓ, Y)Λ = — I (*, Y)© = - f

and hence c = iw/ί. For the following six classes of symmetric spaces, this
method enables us to calculate the scalar curvature c. (For calculation of μ,
we refer the reader to Iwahori [5].)

(1) Irreducible hermitian symmetric space of compact type:

(2) Real Grassmann manifold of non-oriented p-planes in Rp+q,
(p + q > 2):

P + q-2 _ pq(p + q-2)
μ 2( ) ' 4( )

(3) Quaternionic Grassmann manifold of /?-planes in quaternionic vector
space of dimension p + q:

P + q+ 1 c = P^(P 4- q
2(p + <?) p + ^

(4) Group manifold 5O(m), (m > 2):
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(5) Group manifold Sρ(m):

μ= m + 1 l ( + l)
μ 2m + 1

(6) n-sphere, (n > 1):

c=λ(n-l).

By calculating the eigen-values of the Casimir operator, Nagano [12]
determined the eigen-values of the Laplacian Δ acting on the space of func-
tions on a compact symmetric space K/Ko with K simple and K/Ko simply
connected (with respect to the invariant Riemannian metric induced from the
Killing form of $ ) . From Nagano's table we see that, for (1), (3) and (6),
there is no eigen-value of Δ between 0 and — £(= —c/(nμ)). Every eigen-value
of Δ for functions on the Grassmann manifold of non-oriented p-planes in
Rp+q appears as an eigen-value of Δ for functions on the Grassmann mani-
fold of oriented p-planes in Rp+q

9 but not vice versa. From Nagano's table
we see that the Laplacian Δ for functions on the Grassmann manifold of
non-oriented p-planes in Rp+q has no eigen-value between 0 and

- JL ( = 2c(j) + q)—) at least if p > 3 and p + q > 17. But we do
2 \ pq(p + q - 2) /

not know if this is true for all p and q. By the same method we can verify
that the Laplacian acting on the space of functions on the group manifold

1 / Ac \
SO(m) (resp. Spirn)) has no eigen-value between 0 and = —

2 \ m(ra — 2)1

[resp. 0 and f = — ] I. For eigen-values of the Laplacian for
V 2 \ m(m + 1) / /

the spaces (1) and (6), see also Obata [14].
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