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RIEMANNIAN MANIFOLDS ADMITTING A CONFORMAL

TRANSFORMATION GROUP

KENTARO YANO & SUMIO SAWAKI

1. Introduction

The purpose of the present paper is to generalize some of the known re-
sults on Riemannian manifolds with constant scalar curvature admitting a
group of nonisometric conformai transformations.

Let M be a connected Riemannian manifold of dimension n, and gJi9 Vu

Kkjί

h

y Kjt = Km* and K = KHgi\ respectively, the positive definite funda-
mental metric tensor, the operator of covariant differentiation with respect to
the Levi-Civita connection, the curvature tensor, the Ricci tensor and the
scalar curvature of M, where and in the sequel the indices h, i, j,k, run
over the range 1, , n.

If we put

(1.1) G * = X;* - - S ϋ ,
n

(1.2) Z w < * = Kkj

 K
Z w < Kkji

n(n — 1)

we have

(1.3) ZtjS^Gjt,
When M admits an infinitesimal transformation vh, we denote by if the

operator of Lie derivation with respect to vh. Thus, if M admits an infinites-
imal conformai transformation vh, we have

(1.4) segi1t = v^ + ptvj = 2pgsu

for a certain scalar field p. We denote the gradient of p by pt = Ptp.
For an infinitesimal conformai transformation vh in M, we have [5]

(1.5) seKw* = - δWjPi + dψkPί -

(1-6) JδfJfyt = - (n -
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(1.7) SeK= -2{n-\)Δp-2pK,

where

Thus, in M with K = const, we have

(1.9) Δp =--£—p.
n — 1

We also have

(1.10) <£Gn = - (n~2){fjPi - ~^

ι -Vk p%t + V)p"gki

(1.11) 2

n

Thus, in M with K = const, we have

(1.12) SPGlt = - (n - 2)[pjPt + w ( n ^ υ pgjt] .

We denote by C0(M) the largest connected group of conformal transforma-
tions of M and by I0(M) that of isometries of M.

We first state here known results on Riemannian manifolds with K = const,
admitting a conformal transformation group, and then try to generalize them.

Theorem A (Lichnerowicz [3]). // M is a compact Riemannian manifold
of dimension n > 2, K = const., KjtK

jί = const., and C0(M) Φ /0(M), then
M is isometric to a sphere.

Theorem B {Lichnerowicz [3], Yano & Obata [7]). // a compact Rie-
mannian manifold M of dimension n>2 with K = const, admits an infini-
tesimal nonisometric conformal transformation vh: Sfgji = 2pgjU p Φ const.,
and if one of the following conditions is satisfied, then M is isometric to a
sphere:

(1) The vector field vh is a gradient of a scalar.
(2) Kfp1 = kph, k being a constant.
(3) g'Kji = agjU a being a scalar field.

Theorem C {Hsiung [1]). If M is compact and of dimension n > 2,
K = const., KkjihK

kJih = const., and C0(M) Φ IQ(M), then M is isometric to
a sphere.

Theorem D {Yano [6]). // M is compact orientable and of dimension
n>2 with K == const., and admits an infinitesimal nonisometric conformal
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transformation vh: Segn — 2pgjt, p Φ const., such that [GjiptpW is non-

negative, dV being the volume element of M, then M is isometric to a
sphere.

Theorem E {Yano [6]). // M is a compact and of dimension n > 2 with
K = const., and admits an infinitesimal nonisometric conformal transformation
vh: Jfgji = 2pgji, p Φ const., such that £e(GsiG^) = const, or &(ZkJihZ

kJtk)
= const., then M is isometric to a sphere.

Theorem F (Hsiung [2]). Suppose that a compact Riemannian manifold
M of dimension n>2 with K = const, admits an infinitesimal nonhomothetic
conformal transformation vh. If

(1.13) a2&(ZkjihZ
kJiΛ) + (2a + nb)b^GjtG^) = const. ,

where a and b are constants such that

(1.14) c = 4α2 + 2(n - 2)ab 4- n{n - 2)fe3 > 0 ,

then M is isometric to a sphere.
To prove and generalize these theorems, we need the following
Theorem G (Obata [4]). // a complete Riemannian manifold of dimen-

sion n > 2 admits a nonconstant function p such that

(1.15) Pjΐip = - c*pgjt,

where c is a positive constant, then M is isometric to a sphere of radius \jc
in (n + \ydimensional Euclidean space.

We also need following integral formulas proved in [6].
If a compact orientable Riemannian manifold M of dimension n > 2 with

K = const, admits an infinitesimal nonhomothetic conformal transformation
vh: Sέgji — 2ρgjU p Φ const., then we have

(1.16)

(1.17) J GjtptftdV = J \±

2. Generalization of Theorem B, (2), (3)

Theorem 2.1. If a compact orientable M of dimension n > 2 with K
= const, admits an infinitesimal nonhomothetic conformal transformation
vh: &2ji = 2pgjU p Φ const., such that
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(2.1) seip^seG^ < o,

then M is isometric to a sphere.
We need the following
Lemma 2.1. // a compact orientable M admits an infinitesimal conformal

tsansformation vh: S^gόi = 2ρgJi9 then we have

(2.2) JpFdV = - I

for any function F.

Proof. Since p = —Fsv
s, we have, by Green's theorem,

n

J
= - 1 (vΨsFdV

nJ
M

- - ι Γ
M

SeFdV .

Proof of the Theorem. Substituting

(2.3) XiQjtGi*)

into integral formula (1.16), we find

(2.4)

Consequently, by Lemma 2.1 and the assumption of the theorem, we have

- /

 X ^ (jfiG^GjJdV > 0 .
n\n — I) Jχ

Thus M is isometric to a sphere by Theorem D.

Remark 2.1. Since

(2.5) i
n — 2

the condition (2.1) of the theorem can be replaced by

(2.6) <?{Z^h<?Zkji

h) < 0 .
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Remark 2.2. As the proof of the theorem shows, condition (2.1) can be
replaced by

JλdV < 0 .(2.7) £f(G^SfGJt) = λ , J

The same remark applies to Theorems 4.1, 4.3, 5.1, 6.1, 6.2 and 6.4.
Remark 2.3. Theorem 2.1 generalizes Theorem B, (2). In fact, using

Kfp* = kph, PjKJ* = 0, VjVt + Fivj = 2pgjι and Ptv* — np, we have

Fj(K»pvt) = KiipjVt +

= kPiv
( +

= kFt(pv<) -

from which, by integration,

- nk)(?dV = 0

and consequently k = K/n.
Thus, from Kihpl = kph we have

and consequently, by virtue of (1.10),

= 0 .

Remark 2.4. Theorem 2.1 generalizes Theorem B, (3). In fact, from (1.6)
and SeKμ = agμ we find

- (« - 2)VjPi -

from which

a = — 2(n —

and consequently

that is, i fG^ = 0.
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Remark 2.5. If G^^Gn = const., then (2.1) is automatically satisfied,
but under our assumption the constant must be zero. In fact, making use of
(1.3) and VjG^ = 0, from (1.10) we have

and consequently by integration over M we find

/
M

Thus, if Gji&Gji = const, the constant must be zero.

3. Decomposition of a conformal Killing vector

Theorem 3.1. // a compact orientable M of dimension n>2 with K
= const, admits a conformal Killing vector field

(3.1) vh = ph + qk,

where ph is a Killing vector field and qh = Vhq, q Φ const, is a gradient
conformal Killing vector field, then M is isometric to a sphere.

Conversely, if a sphere of dimension n > 2 admits a conformal Killing
vector field vh, then vh is decomposed into the form (3.1) where ph is a Kill-
ing vector field and qh a gradient conformal Killing vector field.

Proof. Suppose that a compact orientable M with K = const, admits a
conformal Killing vector vh. Then we have

(3.2) Segn = V^vi + FiVj = 2pgji,

and

(3.3) Δp= ?—p.
n — l

We note here that K is a positive constant [6], If vh is the sum of a Killing
vector ph and a gradient conformal Killing vector qh = Vhq, substituting (3.1)
into (3.2), we find

(3.4) PjPiq = pgji,

from which

(3.5) Δq^np.

From (3.3) and (3.5), we find
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+ K q) = 0 ,
n(n — 1) /

from which, by Bochner's lemma,

(3.6) H q = constant.
n(n - 1)

Substituting (3.6) into (3.4), we find

VjVάq + c) = - K {q + c)gJt,n(w — 1)

where c is a constant. Thus, # being not a constant, Λ/ is isometric to a
sphere.

Conversely, suppose that M, isometric to a sphere, admits a conformal
Killing vector vh. It is known that vh can be decomposed into

where

(3.7) ViV1 = 0 , ςΛ = FΛg .

From

^ u = ϊ 7 ^* + ί7 .̂/ = 2pgH ,

we have

(3.8) Γ f; = F ^ , + FiP, + 2VόVLq - 2 ^ / : = 0 .

Forming Γ^Γ'*, we find

(3.9) 4- 4 (F, ί7^ - ~

+ WV*qW,Pt) = 0 .

On the other hand, we have

because of
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or

PΨjPi = KJtp<.

K.
Taking account of Kόi = — gjt we then have

n

= - — ϊ
M

= o.
Thus from (3.9), by integration we find

( J jj«ϋ) ( « qgή^V = 0

from which

(3.10)

(3.11) ^

showing that pΛ is a Killing vector field and qh a gradient confoπnal Killing
vector field.

Remark 3.1. Theorem 3.1 generalizes Theorem B, (1).
Remark 3.2. We can see in the following way the fact that a sphere ad-

mits a gradient confoπnal Killing vector field. Let

(3.12) XΛ = XA{xh) , ΣχΛχA = r2

be the equations of Λ-dimensional sphere of radius r in an (n + ^-dimen-
sional Euclidean space, where A = 1, - - -, n + 1.

The equations of Gauss and those of Weingarten of the shpere are, re-
spectively,

(3.13) PjBS = -gjiN-\
r

and
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(3.14) FjN* = - - £ / ,

where Bt

A = VtX
A and NA are components of the unit normal to the sphere.

Considering a parallel vector field Bfu1 + ocNA in the Euclidean space
along the sphere, we have

Fj&Su* + aNA) = 0 ,

from which

i- UjNA + B̂ FjW* + (Pja)NA - — 5 / = 0 ,

and consequently

thus giving

I

r

that is,

4. Generalizations of Theorem E

We introduce here the notations:

(4.1) f = GJiG», g = ZkHhZ*i»' .

Theorem 4.1. // a compact orientable M of dimension n > 2 with K =
const, admits an infinitesimal nonhomothetic conjormal transformation vh

such that

(4.2)

/ and m being nonnegative integers, and ak and βk constants such that the
I m

sums 2 cck and 2 βt are nonnegative and not both zero, then M is isometric

to a sphere.
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We need the following
Lemma 4.1. // a compact orientable M with K = const, admits an infini-

tesimal conformal transformation vh: Sfgμ = 2ρgjU then we have

(4.3)

for any function F and any nonnegative integer L
Proof. Remembering

Λ - 1 r

that is,

n - 1

we have, for any scalar field F,

that is,

Repeating the same process, we hence obtain (4.3).
Proof of the theorem. We have, from (1.16) and Lemma 4.1,

X
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We also have, from (1.17) and Lemma 4.1,

jtptp'dV = jp2gdV + j
M

M

From these equations, we have

+ 4-,

and consequently, by Lemma 2.1,

2(β0 + β1+ ... + βj

+ (βo + βί+ ... + βm)g)dV

Thus, if the conditions of the theorem are satisfied, we have
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3JiptptdV > 0 ,

and consequently, by Theorem D, M is isometric to a sphere.
Theorem 4.2. Suppose that a compact orientable M of dimension n > 2

with K = co/wί. satisfies

(4.4)

wΛtfre <*0, α l 9 β0, β1 are nonnegative constants not all zero such that, if n > 6,

(4.5) _i*L~ J ^
Λ 1

> ( * 6 K > 0 , ^ f t ^
Λ — 1 n — 1

// Λf admits an infinitesimal nonhomothetic conformal transformation vh:
J&gn = 2 ^ i 9 |0 f̂c constant, then M is isometric to a sphere.

To prove the theorem, we need the following
Lemma 4.2. For a conformal Killing vector vh in M, that is, for a vector

field vh satisfying

n j +

we heve

(4.6) Δ(SeF)^se(ΔF) + 2pΔF^n - 2)pΨiF

for any scalar field F.

Proof. Since vΛ is a conformal Killing vector field, we have

(4.7) giψjViV*- + KW + {n - 2)p* = 0 ,

(see [6] for example). We also have, for an arbitrary scalar field F,

(4.8) g^V5ViVhF - KkΨtF = Fh{ΔF).

Thus we have

Δ(&F) =

and consequently, by using (4.7) and (4.8),

• - ( n .

that is,



MANIFOLDS ADMITTING A TRANSFORMATION GROUP 173

J(jS?F) = &ΔF + 2pΔF - (Λ - 2)pΨhF .

Lemma 4.3. For any scalar field F and a scalar field p satisfying Δp = kp,
k being a constant, in a compact orientable M we have

(4.9) CppΨkFdV = - ±
J Z

M M

(4.10) Cp%ΔF)dV = 2kCPΨdV +
M M M

Proof. Integral formula (4.9) follows from

VKp*VhF) = 2ppΨhF + p2ΔF

by integration. On the other hand, we have

jp\ΔF)dF = J(Δp2)FdV
M M

= 2J(pΔp + pip^FdV
M

= 2k f (?FdV + 2 Γ pφΨdV ,
J J

AT ΛΓ

which proves (4.10).
Proof of the theorem. From (1.16), (4.3), (4.6) and (4.9), we find

n-2

2
 M

Thus, we have
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n —

2

n —

2

Similarly,

<

2 Γ

M

2 C

•i -"

we find

M

/»

If
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ipW - J^/dF + l fptffdV ,
M M

itfάV \ p2fdV -\- ΓρS£\ n~
M M

iV = fp'gdV + IJpSfgdV ,
M X

X M

X

From the above four equations, we obtain

(4.11) *

- bg-^Lb'Δg\\dV
M

(n _ ! ) (« + 2 ) C»lnlΛ4^ V /

8/s:
-fpXa'Jf + b'Δg)dV,

a, a', b, b' being nonnegative constants. Now we choose α, a', b, b' in such a
way that we have

(4.12) ao a, «x

Then we have, from (4.4),

(4.13) af - ILzA-a'Δf + bg - w ~ 2 ^^g = c (const.)

and
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a'Δf + b'Δg = —±—(af + bg) - - ~ — ,
n — 1 n — 1

and consequently, from (4.11),

j z ! _ ( a + a') + 2(6 + ί

a')f +(b + b')g

( α / + , g )
OΛ 1/2 — 1 Λ — 1

that is,

(4.14)

$P2[{*a' ( n 6)α}/ + {86' - (n - 6)ft}* + (π

Now, constants

8α' - (n - 6)a , δfc7 - (n - 6)6

are both nonnegative for n < 6. Since

8α' - (n - 6)α = δ A

 Λ l - (n - 6)α0,
w — 1

8d' - (R - 6)fr = - M _ ft - (« - 6)^0,
/I — I

they are nonnegative also for n :> 6 by virtue of the assumption.
Moreover, we have, from (4.13),

ajfdV + bjgdV = cjdV ,

and consequently c is nonnegative.
Thus we have, from (4.14),

M

and consequently, by Theorem D, M is isometric to a sphere.
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Theorem 4.3. // a compact orientable M of dimension n > 2 with K
— const, admits an infinitesimal nonhomothetic conformal transformation vh

such that

(4.15) XXiaj + ctjf + βog + β.Δg) < 0 ,

<*OJ ocl9 β0, β1 being constants not all zero such that

(4.16) 4(n~1)a0>(n + 6)a1>0, 4 ( n ~ l ) β0 > (n + 6)ft > 0 ?

K. K.

then hi is isometric to a sphere.
To prove this theorem, we need the following
Lemma 4.4. // a compact orientable M of dimension n > 2 with K

= const, admits an infinitesimal nonhomothetic conformal transformation vh,
then

(4.17) 2

fp>fdV - JL=j-L

(4.18) *

Proof. From (1.16), we have

π - 2
2 >

1
Substituting p = — — — — J/? into the last term of the second member of

K.
this equation, we find

*7

4K

if

and consequently, by (4.6),
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- -5-^Λ Γ
M

Thus by (4.9) and (4.10) with k = - — , we find
n — 1

=Jp*fdV - ±^L

We can similarly prove (4.18).
Proo/ of the theorem. We first write down (1.16), (4.17), (1.17) and

(4.18):

=f(?fdV + λ
M

J
= fp*gdV + λ

M

from which we obtain
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!L=jL(a _ a') + 2(b - b')\ [G^pipHV
2 ) J

= l{4a - {n + 6)a'} \ fidV +l{4b-(n + 6)b'}
4 J 4

or by Lemma 2.1,

= l{4α - (n + 6)α'} JV/dK + 1{46 - (« + 6)6'}
(4.19) *

je#af + ^ Δ i + bg

α, α', b, bf being constants. Now we choose these constants so as to have

(4.20) aQ = a, * 1 = .ZL=J-β', β0 = b , βl = lLZ_±b'.

Then from (4.16) we find

4a ~ (w + 6)Λ' > 0 , ^ > 0 ,

4̂ , _ (W + 6)^r > 0 , Z?r > 0 ,

and

4(α - a') > (π + 2 K > 0 ,

4(fe - *0 > (Λ + 2W > 0 ,

and consequently

n - 2 (β - aΠ + 2(* - 60 > 0 ,

the equality sign occurring when and only when a = a! = b = 6' = 0, that
is, α0 = α i = ft = ft = 0.
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Thus from the assumption and (4.19), we have

jipiptdV > 0 ,

and consequently, by theorem D, M is isometric to a sphere.
Remark 4.1. If

&{.cctS + a^f + βog + β1Jg) = constant,

then (4.15) is automatically satisfied. But if S£h = constant for a scalar field
h in a compact space, the constant must be zero, because h attains an ex-
treme value at a certain point of the space at which Jί?h = vΨJi = 0. The
same remark applies to Theorems E, 4.1, 5.1, 6.1, 6.2 and 6.4.

5. A theorem similar to that of Hsiαng

To obtain Theorem F, Hsiung [2] used the tensor

but we would like to use here the tensor

(5.1) Wkjih = aZkjih + _ * _ ( g A Λ σ i 4 - gjh.Gki + Gkh8ji - Gjh8ki)
n — 2

a and b being constants.
It is easily seen that

(5.2) » W * * = <α + b)Gμ ,

and that, when a + b = 0,

(5.3) Wkjih = aCkm ,

where

2

+

 ( H _ i χ w _ 2 )

is the covariant Weyl conformal curvature tensor.
In general, we have
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(5.5) WkWw = c?ZZw + 4 ( 2 a

n — 2

and for the case a + b = 0 we have

(5.6) Wt

Using the tensor Wkjίh defined above we can obtain
Theorem 5.1. Suppose that a compact orientable M of dimension n>2

with K = const, admits an infinitesimal nonhomothetic conjormal transform-
ation vh. If

(5.7) XX(W*iihWW) < 0 ,

or equivalently,

(5.8) (n - 2)a*&&{ZkjihZW) + 4(2a + tybXXiPjiG'*) < 0 ,

a and b being constants such that a + b =£ 0, M is isometric to a sphere.
To prove this theorem, we need the following
Lemma 5.1. For an infinitesimal conformal transformation vh in M:

= 2ρgjU we have

h = 2apZkjUι + £— {gkhGji — gjhGki + Gkhgji — Gjhgki)
n — 2

(5.9) - (Λ

+ 2(α + b)
n

Proof. This follows from (1.10), (1.11) and

(5.10) &Zkjih = X{Zkji'gιh) = <jeZkif)gih + 2pZkjih .

Lemma 5.2. For an infinitesimal conformal transformation vh in M:
= 2pgJU we have

(5.11) (&Wkίih}wVih = 2pWkJihW*'« - 4(a + bfG

Proof. This follows from (5.5) and (5.9).
Lemma 5.3. For an infinitesimal conformal transformation vh in M, we

have

(5.12) &{WkΛthWW*) = - 4pWkHhWW* - 8(α

Proof. This follows from (5.11) and

- SpWkJihW**ih .
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Lemma 5.4. Tor an infinitesimal conformal transformation vh in M with
K = constant, we have

(5 13) 8 ( α

= 8(α

Proof. This follows from VjGjt = 0 and (5.12).
Lemma 5.5. // a compact orientable M of dimension n > 2 with K

= const, admits an infinitesimal nonhomothetic conformal transformation vh,
then we have

(5.14)

M

Proof. This follows from (5.13) by integrating both sides over M and
using Lemma 2.1.

Proof of the theorem. If &&QVkJihW**ih) < 0, and a + b Φ 0, then
from (5.14) we have

> 0 .

Thus by Theorem D, M is isometric to a sphere.

6. Characterizations of conformaliy flat spaces

Theorem 6.1. // a compact orientable M of dimension n > 3 admits an
infinitesimal conformal transformation vh: &gji = 2pgji such that p does not
vanish on any n-dimensional domain and

(6.1) se<eh < o, h = ckjihc^ih,

then M is conformaliy fiat.
Proof. Multiplying (5.12), with a + b = 0, by p and integrating the re-

sulting equation over M, we find

0 = 4 Cp2hdV + Jp&hdV ,
id H

or by Lemma 2.1,
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(6.2)

(6.2) implies

0
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= 4 Cffhdv - — [sesehdv.
J n J
M M

JfhdV < 0,
M

from which p2h = 0, or by the assumption of the theorem, h = 0, that is,
Ckjih = 0, which shows that M is conformally fiat.

Remark 6.1. If S£h = constant in a compact space, we have &h = 0.
On the other hand, if S£h = 0 in a general Riemannian space, from
S£h H- 4ph = 0 we find h = 0, which shows that the space is conformally flat.

Theorem 6.2. Under the same assumptions as in Theorem 6.1, // K =
const, and (6.1) is replaced by

(6.3) 2\zak(- -5LJZ-L)kΔK&h)j < 0 ,

22

ing α nonnegative integer and ak constants such that 2 ak > 0, ίΛen M
fe conformally flat.

Proof. Similarly, as in the proof of Theorem 4.1 we can obtain

0 = 4 Γ(α0 + ax + - + adfhdV

or, by virtue of Lemma 2.1,

0 = 4 j(a0 + «!

(6.4) - 1 J\s?(ob^A + «i(- iZ-L) J(^A) +

α0, «!,•••»«« b e i n S constants such that 2 αΛ > 0. Thus by (6.3), we have
fc-0

Γ' ffhdV = 0, from which h = 0 and consequently C Λ j i Λ = 0.
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Theorem 6.3. Under the same assumptions as in Theorem 6.1, // K =
const, and (6.1) is replaced by

(6.5) aoh — axΔh — c (constant),

<x0 and ax being positive constants such that

(6.6) - ^ r *i X " - 6M> > 0 , for n > 6 ,
w — 1

//ze« M w conformally flat.
Proof. Similarly, as in the proof of Theorem 4.2 we can obtain

(6.7) 0 = JV[{8α" - (n - 6)α}/z + (π + 2)c]rfK .
M

Now, the constant 8a7 — (n — 6)α is positive for Λ < 6. Since

8α' - (Λ - 6)α = - ^ - ^ - (it - 6 K ,
n — 1

by (6.6) this constant is also positive for n > 6.
On the other hand, from (6.5) we have

aΛhdV = c\dV,

which shows that c is a nonnegative constant.
Thus from (6.7) we see that h = 0 and consequently CkjiIι = 0.
Theorem 6.4. Under the same assumption as in Theorem 6.1, if K =

const, and (6.1) is replaced by

(6.8) XSedxJi + α Jft) < 0 ,

α0 and <*! being constants such that

(6.9) 4(n~ Ό «0 >(ιi + 6)Λ l > 0 ,

then M is conformally flat.
Proof. Similarly, as in the proof of Theorem 4.3 we can obtain

0 = {4a - (it + 6)α'} (fhdV - — [sestiah + n ~ 1 a'Δh\dV
(6.10) * n ί X K I

+ ( " - ^ W + 2)JPiP<(a>h)dV ,
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a and a! being constants. Now we choose these constants such that

(6.11) cco = a, aι = ILz±a'.
K

Then from (6.9) we have

4a - (n + 6)a' = 4α0 - (π + 6) K ax > 0 .
n — 1

We also have

Waft + / ϊ " 1 , a'Δh\ = Sf(ajι + MA) = constant.

Thus, from (6.10), we have h = 0 and consequently Ckjih = 0.
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