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RIEMANNIAN MANIFOLDS ADMITTING A CONFORMAL
TRANSFORMATION GROUP

KENTARO YANO & SUMIO SAWAKI

1. Introduction

The purpose of the present paper is to generalize some of the known re-
sults on Riemannian manifolds with constant scalar curvature admitting a
group of nonisometric conformal transformations.

Let M be a connected Riemannian manifold of dimension n, and g,;, V;,
K", K;; = K,;;* and K = K,g%%, respectively, the positive definite funda-
mental metric tensor, the operator of covariant differentiation with respect to
the Levi-Civita connection, the curvature tensor, the Ricci tensor and the
scalar curvature of M, where and in the sequel the indices 4, i, j, k, - - - Tun
over the range 1, -- -, n.

If we put
(LD Gu=K;— Egji >
n
1.2) Zus = Kt — ——(018,~ 03800
nn—1)
we have
(1.3) Z;* =Gy, Gugt=0.

When M admits an infinitesimal transformation »*, we denote by % the
operator of Lie derivation with respect to v*. Thus, if M admits an infinites-
imal conformal transformation v*, we have

(1.4) LEi = Vﬂ-’z‘ + Vivj = 2085, Lg"*= —2pg*

for a certain scalar field p. We denote the gradient of p by p; =V ;p.
For an infinitesimal conformal transformation v* in M, we have [5]

1.5) LKy st = — 0V 500+ 03V rp: — Vip"8si + Vi0"81i s
(1.6) PKyy= —(n—2)V;0;, — dpg;i ,
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(1.7 ZK = —2(n — 1)dp — 20K ,
where
(1.8) do=gV,V,p.

Thus, in M with K = const. we have

K
(1.9) 4o = — .
o n—1 4
We also have
(1.10) _(ZGJL' = - ("—2)(Vjpt - idpgj,_) 3
n

LLiji" = — 0V ;p:+0Wipi—V 085+ V ;0" 81

(1.11) 2
+7£1p(5£‘gji — 0% .

Thus, in M with K = const. we have

(1.12) LG= = =DPp+ e om]

We denote by Cy(M) the largest connected group of conformal transforma-
tions of M and by I(M) that of isometries of M.

We first state here known results on Riemannian manifolds with K = const.
admitting a conformal transformation group, and then try to generalize them.

Theorem A (Lichnerowicz [3]). If M is a compact Riemannian manifold
of dimension n > 2, K = const., K;Ki* = const., and C(M) +# I,(M), then
M is isometric to a sphere.

Theorem B (Lichnerowicz [3], Yano & Obata [7]1). If a compact Rie-
mannian manifold M of dimension n > 2 with K = const. admits an infini-
tesimal nonisometric conformal transformation v*: £g;; = 2pg;:, p # const.,
and if one of the following conditions is satisfied, then M is isometric to a
sphere:

(1) The vector field v* is a gradient of a scalar.

(2) K*p* = kp", k being a constant.

() £K;; = agj, « being a scalar field.

Theorem C (Hsiung [11). If M is compact and of dimension n > 2,
K = const., K, ;;, Ktii* = const., and Cy(M) == I(M), then M is isometric to
a sphere.

Theorem D (Yano [6]). If M is compact orientable and of dimension
n > 2 with K = const., and admits an infinitesimal nonisometric conformal
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transformation v*: £g;; = 2pg;;, p ¥+ const., such that ijipjpidV is non-
M

negative, dV being the volume element of M, then M is isometric to a
sphere.

Theorem E (Yano [6]). If M is a compact and of dimension n > 2 with
K = const., and admits an infinitesimal nonisometric conformal transformation
vh: Lg i = 2p8;, p# const., such that L(G;;,G/?) = const. or L(Z,inZ*i*)
= const., then M is isometric to a sphere.

Theorem F (Hsiung [2]). Suppose that a compact Riemannian manifold
M of dimension n > 2 with K = const. admits an infinitesimal nonhomothetic
conformal transformation v*. If

(1.13) @A L(Zy i, Z"7) + 2a + nb)b ¥ (G;;Gi?) = const. ,
where a and b are constants such that
(1.14) c=4a"+ 2(n — 2)ab + n(n — 2)b>* >0,

then M is isometric to a sphere.

To prove and generalize these theorems, we need the following

Theorem G (Obata [4]). If a complete Riemannian manifold of dimen-
sion n > 2 admits a nonconstant function p such that

(1.15) ViVip= — Cpg;i ,

where ¢ is a positive constant, then M is isometric to a sphere of radius 1/c
in (n + 1)-dimensional Euclidean space.

We also need following integral formulas proved in [6].

If a compact orientable Riemannian manifold M of dimension n > 2 with
K = const. admits an infinitesimal nonhomothetic conformal transformation
V" L = 2p8;:, p + const., then we have

(1.16) f GuppdV = — 1 . f [2sz,in1‘ + _;_pg(cﬁcﬂ)]dv,
4 't

1.17) f GpipidV = J' [%pzz,,,i,,zw + %_pg(zk,i,,zw)]dv.
M M

2. Generalization of Theorem B, (2), (3)

Theorem 2.1. If a compact orientable M of dimension n > 2 with K
= const. admits an infinitesimal nonhomothetic conformal transformation
vt Lgii = 208, p + const., such that
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2.1 L(G1¥G;) L0,

then M is isometric to a sphere.

We need the following

Lemma 2.1. If a compact orientable M admits an infinitesimal conformal
tsansformation v*: £g,; = 2pg;;, then we have

2.2) f oFdv = — L1 f SFdV
M n M

for any function F.

Proof. Since p = %st*, we have, by Green’s theorem,

f pFdv = L f (V w*)Fdv
M n M

= — X (e Fav
n

M

=—if5deV.
n
M

Proof of the Theorem. Substituting
(2.3) g(Gjisz) = 2G”.?Gﬁ had 4pGjiGji

into integral formula (1.16), we find

2.4) [Guprorav = " {67 2G v
(4 n—2 ('3
Consequently, by Lemma 2.1 and the assumption of the theorem, we have
1 )
GpipidV = — _____-fs/ G %G,V > 0.
}[ jipjp n(n — 2) ) ( ji) =

Thus M is isometric to a sphere by Theorem D.
Remark 2.1. Since

4

(2.5) iji),_gzkjih = 2 Gji.?Gji 3

the condition (2.1) of the theorem can be replaced by

2.6) L(Z44, P2, 5") <0
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Remark 2.2. As the proof of the theorem shows, condition (2.1) can be
replaced by

@.7) LGHLG,) =1, J' 2dV <0.
M

The same remark applies to Theorems 4.1, 4.3, 5.1, 6.1, 6.2 and 6.4.
Remark 2.3. Theorem 2.1 generalizes Theorem B, (2). In fact, using
Kot = ko, V;Kit =0,V v, + V;v; = 2pg;; and V,v* = np, we have

Vj(Kjip’Ui) = Kﬂp.ﬂ)i + Kﬁijvi
= kpi'v" + -;—Kﬁp(Vj'vi+Vi'vj)

= kVi(p’v‘) - kaivi + sz
= kV:(ov®) — nkg* + Kp*,

from which, by integration,
f K — nk)gdV =0,
M

and consequently k = K/n.
Thus, from K;*p? = kp" we have

(KJC — ngi)pi =0 s
n
(K./i —_ Egji)Vjpi =0 s
n
and consequently, by virtue of (1.10),
G'“’(.?sz) = 0 .

Remark 2.4. Theorem 2.1 generalizes Theorem B, (3). In fact, from (1.6)
and ¥K;; = ag;; we find

—(n—=2) ;0 — dog;; = agy: ,
from which
a = —2(n— l)AP/n ’

and consequently
—(n— 2)(Vj,0i e %Apgji) =0,

that iS, ngi = 0.
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Remark 2.5. If G/*¥G;; = const., then (2.1) is automatically satisfied,
but under our assumption the constant must be zero. In fact, making use of
(1.3) and V;G’¢ = 0, from (1.10) we have

= —(n=2)F;(G¥p),

and consequently by integration over M we find

f GG, dV =0 .
M
Thus, if G/*¥G,; = const. the constant must be zero.

3. Decomposition of a conformal Killing vector

Theorem 3.1. If a compact orientable M of dimension n > 2 with K
= const. admits a conformal Killing vector field

3.1) vt =p*+q*,

where p* is a Killing vector field and q" = V*q, q # const. is a gradient
conformal Killing vector field, then M is isometric to a sphere.

Conversely, if a sphere of dimension n > 2 admits a conformal Killing
vector field v*, then v" is decomposed into the form (3.1) where p* is a Kill-
ing vector field and g* a gradient conformal Killing vector field.

Proof. Suppose that a compact orientable M with K = const. admits a
conformal Killing vector v*. Then we have

(3.2) Lgii=Vvi+Viv; = 2p8;:,
and

. do = — .
(3.3) 14 1"

We note here that K is a positive constant [6]. If v* is the sum of a Killing
vector p* and a gradient conformal Killing vector g* = F*q, substituting (3.1)
into (3.2), we find

(3.4) VV.q= o8,
from which
(3.5) dg = np .

From (3.3) and (3.5), we find
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K
T
T
from which, by Bochner’s lemma,
K
3.6 Ea—) §E tant .
(3.6) p+n(n—1)q cons
Substituting (3.6) into (3.4), we find
ViVilg+ o) = — ——K——(q + ©)8ji
nn—1)
where ¢ is a constant. Thus, g being not a constant, M is isometric to a

sphere.
Conversely, suppose that M, isometric to a sphere, admits a conformal
Killing vector »*. It is known that v* can be decomposed into

v =p"+q,
where
(3.7 V:pi=0, g ="r"q.
From
L8y =Vivi+ Viv; = 2085,
we have
(3.8) T;;=V;pi+Vip; +2V;V.q—2pg;; =0.

Forming T;;T7¢, we find
T;T9% = V;sp: + Vip)Wipt + Vip?)
(3.9) + 4(7,,7,-q - —};Aqgﬁ) (V"V"q - %Aqgf")
+ 8(Wigq)P,p) = 0.

On the other hand, we have

f(miq)(p, pIdV = f P7ig)7 ;p)dV
e 4
= f W3 ;p)dV
M
= - iji(VjQ)PidV
M

because of
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V.Vpt —V;V.p' = Ki;'p*,
or
Viv,p, = K;.p*.
Taking account of K;; = %gﬁ we then have

f(VfViQ)(VjPi)dV = — Ef(ViQ)PidV
s s

n
.S f q:p)dv
n
M
=0.

Thus from (3.9), by integration we find

f [(Vjpi + Vip)(Wipi + Pipi)

M

+ 4(PFiq —  dagy) (P7iq — — dag) [av =0,

from which
(3.10) V,p;+Vip;=0,
3.11) V;V.q= %Aqgji,

showing that p* is a Killing vector field and g* a gradient conformal Killing
vector field.

Remark 3.1. Theorem 3.1 generalizes Theorem B, (1).

Remark 3.2. We can see in the following way the fact that a sphere ad-
mits a gradient conformal Killing vector field. Let

(3.12) X4 = X4(x»), T XAXA=p

be the equations of n-dimensional sphere of radius r in an (n 4 1)-dimen-
sional Euclidean space, where A =1, ..., n+ 1.

The equations of Gauss and those of Weingarten of the shpere are, re-
spectively,

(3.13) V,BA = Lg, N1,
r

and



MANIFOLDS ADMITTING A TRANSFORMATION GROUP 169

(3.14) ;N4 = — iBj-‘
r

b

where B;4 = V', X4 and N4 are components of the unit normal to the sphere.
Considering a parallel vector field B;4u? + aN4 in the Euclidean space
along the sphere, we have

V {(B;4ut + aN4) =0,
from which

L N4 4 BAP i 4 (P,00N4 — 2B =0,
r 4

and consequently

=25, da=—Lu,,
r r
thus giving
P W= — 20,
r
that is,
1
VjV1(¥ = — —_,agﬁ .
r

4. Generalizations of Theorem E
We introduce here the notations :
4.1) f = GG, g = ZyjpZri

Theorem 4.1. If a compact orientable M of dimension n > 2 with K =
const. admits an infinitesimal nonhomothetic conformal transformation v*
such that

.‘f{k)i}oak(— i 1)"4*(%)
4.2) +iﬁk(_ ";1

k=0

)"Ak(sz'g)} <o,

| and m being nonnegative integers, and «, and B, constants such that the
i m

sums Y, «, and Y, B, are nonnegative and not both zero, then M is isometric
k=0 k=0

to a sphere.
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We need the following

Lemma 4.1. If a compact orientable M with K = const. admits an infini-
tesimal conformal transformation v*: £g;; = 2pg;;, then we have

f,,FdV f( n_l)pAFdV
@.3) -f(

) o PFAV

........

for any function F and any nonnegative integer 1.
Proof. Remembering

Klp K>0),

that is,

n—1
= — A s
14 K o

we have, for any scalar field F,

forar = f (-

) (dp)FdV

that is,

) odFdV .

forav= f-

Repeating the same process, we hence obtain (4.3).
Proof of the theorem. We have, from (1.16) and Lemma 4.1,

n—2 : =f’dV if av
3 icjiﬁpdV PtV + | o2}

- foars (-

) pAL1dV
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We also have, from (1.17) and Lemma 4.1,

ZIGjipjpidV = fp’ng + —I-fp.(fng
u u 4

- fowr s 1 (- 2 s
M M

........

=fngdv+l (— ”;1)’"p4m$ng.
” .

From these equations, we have

{n—2

2@t ot e )+ 2+ fuk +ﬁm)]fcﬁpjpidV
M

=fp2{(ao+a1+ o adf + Bot Pt e + Bu)g}dV
)4

n-—1

+ %lp{a0$f+ (- Jags+ -+ a2 L) 2oy

_n—1
K

+ 828 + i Jazg+ -

n—1\"__
+ﬁm(— = )Az’g}dV,

and consequently, by Lemma 2.1,

{n—2

Sttt a) + 2t ot ﬁm)} ijtpjp"dV

=fp2{(ao+0f;+ ot a)f+ Bot Bt e+ Budg}dV
M

—zlgju'g[a,,gmal(— "EI)A.%+---

+ az(— n—1 )ld‘z’f + Bo%e
5

K
+ﬁ(—- = lage+ -
’ K

n—1\m
| — am .
""3( K ) ‘?g}dV

Thus, if the conditions of the theorem are satisfied, we have
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M

and consequently, by Theorem D, M is isometric to a sphere.
Theorem 4.2. Suppose that a compact orientable M of dimension n > 2
with K = const. satisfies

(4.4) aof — aydf + B8 — pdg = const. ,

where a,, a,, By, B, are nonnegative constants not all zero such that, if n > 6,

8K alZ(n—6)¢0207 8K
n—1 n—1

4.5) B> (n—6)f>0.

If M admits an infinitesimal nonhomothetic conformal transformation v*:
ZLgi = 2pg;i, p F constant, then M is isometric to a sphere.

To prove the theorem, we need the following

Lemma 4.2. For a conformal Killing vector v* in M, that is, for a vector
field v* satisfying

£8i=Vwi+Vv; =208,
we heve
(4.6) NLF)=¥(4F)+2p4F —(n — 2)oW;F

for any scalar field F.
Proof. Since v* is a conformal Killing vector field, we have

4.7 g,V + KMt 4+ (n—2)p* =0,
(see [6] for example). We also have, for an arbitrary scalar field F,
(4.8) gjiVjVthF - KhiViF = Vh(AF) .
Thus we have
A(ZF) = g ;¥ ;(v*V » F)
= (g V0", F + Wivt + Vi) ;7 ;F
+ Vgl VP, F

and consequently, by using (4.7) and (4.8),

A(FF) = — K;;vWVIF — (n — 2)p"V , F

+ 2p4F + K;v/ViF + ™7 ,(4F) ,

that is,



MANIFOLDS ADMITTING A TRANSFORMATION GROUP

A(LF) = LAF + 2pAF —(n— 2)p”V;,F .

173

Lemma 4.3. For any scalar field F and a scalar field p satisfying 4p = kp,

k being a constant, in a compact orientable M we have
4.9) f oo VaFdV = — = f HAF)dV
M 2 M
4.10) f APV = 2k f FFAV + 2 f oo FV .
M M M

Proof. Integral formula (4.9) follows from
V(oW o F) = 2pp"V , F + p*4F

by integration. On the other hand, we have
f A(AF)dF = f (4pDFdV
M M
=2 f (odp + pse")FdV
M
=2k f FFAV + 2 f po'FAV
M M

which proves (4.10).
Proof of the theorem. From (1.16), (4.3), (4.6) and (4.9), we find

— 2 £ Gupip'dV
= l‘ AV + % ‘!; 0ZtdV
[ 32 s
= i v + _}‘. £ (- " 1 )p[.smf + 204f — (n — 2)p7 fldV

=fﬁde+%Ip$<— ";1 Af)dV

1([_20m—=1 ... (n—1n—2)
+ M[ x4 2K "W]dV

=£ﬁdv+%£pg(— "EIAf)dV-("_‘%(’iﬂimde.

Thus, we have
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s 2 f Gpip'dV = f HMdV + % f p2fdVv |
M M M

"2 [Gppav = [e1av + & [ oo (- 2z La)av
2 4 K
M M M
_ (n=Dn+2) f Fdfdv .
8K
M
Similarly, we find

2 f Gp'p'dV = f fedv + L f 0ZLgdV |
M M 4 M

Zij,;pjpidV= f,ﬁng + ifpg(-— n—1 Ag)dV

_ (n— (n + 2) 2 AodV
RK o dgdV .

M

From the above four equations, we obtain

{ i 2 @+a)+20+ b’)] l G0 p'dV

= [#l@+ ) + © + b)glav
(4.11)

M
+ _l_fp[_?(af— n—1 4 4 bg— =1 b’Ag)]dV
9 K K

_-1Dn+2) f @ 4f + b'dg)dV ,
8K
M
a, @', b, b’ being nonnegative constants. Now we choose a, a’, b, b’ in such a
way that we have

n—la,

-1
(4.12) @ =4a, o= X , B=0b, .31=nK b .

Then we have, from (4.4),

n—1 b’4g = c (const.)

(4.13) af — 1 - 1 waf + bg —

and
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a'df + b'dg = K (af + bg) — Ke ,
n—-1 n—1
and consequently, from (4.11),
n—2 , , i
i@+ ar+ 20+ b)}J;an’pdV
=[ pz[<a + @) + (b + by
M
_(a=1)n+2) K be) — Kc ]
3K {n—l(af+ 8= }dV’
that is,
"—2 a+a)+20b+ b’)} f G p'pidV

(4.14) x

= %!;p’[{Sa’ —(n— 6)alf + {8b' — (n — 6)blg + (n + 2)C]dV )

Now, constants
8a’ — (n — 6)a, 8b’ — (n — 6)b
are both nonnegative for n < 6. Since

8K

'—m—6b=-3K g _(n—
8 — (1~ 6)b = ———p, — (n = 6)f,

8a' — (n — 6)a= a, — (n — 6)ay,

they are nonnegative also for n > 6 by virtue of the assumption.
Moreover, we have, from (4.13),

affdv+bfng=cde,
P’ 4 M

and consequently ¢ is nonnegative.
Thus we have, from (4.14),

f GupiodV >0,
M

and consequently, by Theorem D, M is isometric to a sphere.
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Theorem 4.3. If a compact orientable M of dimension n > 2 with K
= const. admits an infinitesimal nonhomothetic conformal transformation v*
such that

(4.15) LL(af + adf + Bg + pidg) <0,
Qg 0y, Bo, Py being constants not all zero such that

4(n —~1)

— B>+ 6)5=>0,

4(n—1)
(4.16) %

ay >+ 6)a; >0,

then M is isometric to a sphere.

To prove this theorem, we need the following

Lemma 4.4. If a compact orientable M of dimension n > 2 with K
= const. admits an infinitesimal nonhomothetic conformal transformation v*,
then

n—2f . n+6f n—lf
Giplp'dV = fav — £ AfdV

4.17)
2(G,pipidv = 16 2dV—n—1 L AgdV
f #ee 4 f"g iK f” &
(4.18) M

_-Dr+2) 5
U f o'gdV .

Proof. From (1.16), we have

—2 J; G ip'0'dV =£fde + %!pfde-

Substituting p = — n—1 dp into the last term of the second member of

this equation, we find

n—2 - n—1
G, plpidV = f AdV — (dp)£1dV

- J; GV — ”4}1 J: pA(&PAV

and consequently, by (4.6),
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n—2

f GupipdV = f Fdv
M M

n—1

[oteat+2081—(n—207 prav .

K

n —

Thus by (4.9) and (4.10) with kK = — , we find

n—1

= [av — (p.smf = 2 p’Af)dV
J.’g X

= [otav - 2L [ oz sfav

_n=Dr+2) (_
8K

_n-f-6j‘2 _n—l v
= 220 [piav — 2~ f 02 Afd

(n - 1)(” + 2) fp Pide

-i)dV

We can similarly prove (4.18).
Proof of the theorem. We first write down (1.16), (4.17), (1.17) and
(4.18):

n—-2

f GpipidV = f Fdv + % f p 21V
""chﬂpzpidv— ”+6f Hay — "‘lf LAMfdV

(= 1)(" + z)f oV,

2 f GuppidV = f Fgdv + L f o LgdV
M M 4 M

2fGﬁpJ‘pde = ﬁiﬁfngdv —
M 4 M

_h=1D=n+2) iodV
4K “[Pip g ’

n—lf
F AgdV
K )

from which we obtain
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{n-—2
2

(@—a)+20b— b')} f Gp'pidV

=L{da— (n + 6)a} f AV + —{4b (n + 6)b} f FgdV

N

+ % f % (af + —I;——a’Af +bg+ 2 b’Ag)dV
M

(n—l)(n+2)f ‘(o
ST AT A o0t b'g)dV ,
+ ik ”pp(af+ 8)
or by Lemma 2.1,

{n—-2

(@a—a)+ 20 — b')} ij,pjp‘dV

1 n 2 /
= S{4a—(n+ 6)a}fpde+—{4b (n+6)b}fp'ng

- el "

y =D+ 2) f @t + b'g)dv
M

(4.19)
a’Af +bg+ 2

b'Ag)dV

4K

a,d’, b, b’ being constants. Now we choose these constants so as to have

—1 ’ —1 ’
(4.20) a,=4a, a1=n—ﬁ—a, B=>b, ﬁlan b .

Then from (4.16) we find
4aA-(n+6)a’20, a >0,
4b — (n + 6)b’ >0, >0,
and
4da—-a)y=@m+2a 20,
4b—-b)=(n+2)b'>0,
and consequently

n—2

5 (@—a)+2(b—-5)20,

the equality sign occurring when and only when a =4’ = b = b’ =0, that
iS, ao=a1=ﬁo=ﬁl=o.
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Thus from the assumption and (4.19), we have
fGﬁpjpidV Z O s
M

and consequently, by theorem D, M is isometric to a sphere.
Remark 4.1. If

ZL(aof + a,df + pog + P14g) = constant,

179

then (4.15) is automatically satisfied. But if #4 = constant for a scalar field
h in a compact space, the constant must be zero, because / attains an ex-
treme value at a certain point of the space at which #h = vi/;h = 0. The

same remark applies to Theorems E, 4.1, 5.1, 6.1, 6.2 and 6.4.

5. A theorem similar to that of Hsiung
To obtain Theorem F, Hsiung [2] used the tensor
aZisin + b8inGii s

but we would like to use here the tensor

(5.1) Wiy = aZijin + n—i_i (2cnG i — 851Gri + Gin8si — Gngid)

a and b being constants.
It is easily seen that

(5.2 Wisin** = (a + b)Gy: ,
and that, whena + b =0,

(5.3) Wijin = @Cyjin
where

ijih, = Kkjih. - -n~ —1—'2 (gthji - gthkz‘ + Kkhgji — th.gki)

(5.9 .
+ m(‘g”‘gﬁ — &;jn8ki)

is the covariant Weyl conformal curvature tensor.
In general, we have



180 KENTARO YANO & SUMIO SAWAKI

(5.5) ijinW“i" = azzkahZ"”" + ____4(20 +2b)b GiiGﬁ ’
n —

and for the case a + b = 0 we have

(5.6) ijthkjih' = a’CkﬂhC"”h .

Using the tensor W, defined above we can obtain

Theorem 5.1. Suppose that a compact orientable M of dimension n > 2
with K = const. admits an infinitesimal nonhomothetic conformal transform-
ation v*. If

(CN))] LYLWjuWhiin) <0,
or equivalently,
(5.8) (n—2)a?LL(Zy;nZ"") + 4Q2a + L L(G;,G') <0,

a and b being constants such that a + b % 0, M is isometric to a sphere.

To prove this theorem, we need the following

Lemma 5.1. For an infinitesimal conformal transformation v* in M : £g;;
= 2pg;;, we have

LW jin = 20pZ 500 + nzipz (8:rGji — 8inGri + Gin8ji — Gjnges)
5.9 — (a + b)gurV ;00 — gV ikp: + Vipn8si — V ;00811
+ wdp(gkhgji — &8s -

Proof. This follows from (1.10), (1.11) and
(5.10) LZijin = L(Zsi8n) = (LZ1;i)8in + 20Z1in -

Lemma 5.2. For an infinitesimal conformal transformation v* in M : £g;,
= 2pg;:, we have

(5.11) (gWgﬂh)ijih' = 2‘0ijthkjik - 4(a + b)sziVjpi .

Proof. This follows from (5.5) and (5.9).
Lemma 5.3. For an infinitesimal conformal transformation v* in M, we

have
(5.12) LW, ;Writhy = — 4oW Wit — 8(a + bY'G;Fip* .
Proof. This follows from (5.11) and
LW jinWhith) = 2(EW i) Whith — 8pW i, WEIHH |
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Lemma 5.4. For an infinitesimal conformal transformation v* in M with
K = constant, we have

8(a + BYW4(G pp)

5.13
¢ ) = 8(a + b)sziP’Pi— 4P2W/cjtnwkﬂh—P-?(ijinwk”h) .

Proof. This follows from V/G;, = 0 and (5.12).

Lemma 5.5. If a compact orientable M of dimension n > 2 with K
= const. admits an infinitesimal nonhomothetic conformal transformation v*,
then we have

8(a + b)? f G ip'o'dV
M
(5.14) =4 f W WY f o LW s WEIR)AV
M M
= 4fpszﬂh_ijih'dV hand ljgg(ijthkjih)dV .
n
M M

Proof. This follows from (5.13) by integrating both sides over M and
using Lemma 2.1.

Proof of the theorem. If LL(W,;, We/**) <0, and a + b 3= 0, then
from (5.14) we have

f GpipdV > 0.
M
Thus by Theorem D, M is isometric to a sphere.

6. Characterizations of conformally flat spaces

Theorem 6.1. If a compact orientable M of dimension n > 3 admits an
infinitesimal conformal transformation v": £g;; = 2pg;; such that p does not
vanish on any n-dimensional domain and

6.1) LLh <0, h = CpjCrith
then M is conformally flat.

Proof. Multiplying (5.12), with a + b = 0, by p and integrating the re-
sulting equation over M, we find

0= 4fp’th +fp.<fhdv,
M M

or by Lemma 2.1,
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6.2) 0= 4fp2th - if.sf.sﬂth .
M h M
(6.2) implies
f #hdV <0,
M

from which p*h = 0, or by the assumption of the theorem, 2 = 0, that is,
Cyjin = 0, which shows that M is conformally flat.

Remark 6.1. If #h = constant in a compact space, we have £h = 0.
On the other hand, f YA =0 in a general Riemannian space, from
ZLh + 4ph =0 we find h = 0, which shows that the space is conformally flat.

Theorem 6.2. Under the same assumptions as in Theorem 6.1, if K =
const. and (6.1) is replaced by

6.3) .«z’{ﬁ a,‘(— h ! )"Ak(yh)} <o,

k=0

1
| being a nonnegative integer and o, constants such that ¥, a, > 0, then M
k=0
is conformally flat.

Proof. Similarly, as in the proof of Theorem 4.1 we can obtain

0=4[(@+a+- + a)hdV
M

A
M
n —

+ a;(— - 1)‘Al(gh)}dv,

or, by virtue of Lemma 2.1,

0=4f(ao+oz1+ o a)pdV
M

6.4) —%f.?{aoﬁé’h+a1(— "El)d(th

+ a,(— e 1)‘Al(.sfh)}dv,

1
&, @y, - - -, @, being constants such that 3] «; > 0. Thus by (6.3), we have
k=0

f @¢hdV = 0, from which A = 0 and consequently Cy;jir = 0.

X
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Theorem 6.3. Under the same assumptions as in Theorem 6.1, if K =
const. and (6.1) is replaced by

(6.5) ash — ay,dh = c (constant),

o, and a, being positive constants such that

(6.6) n8K1a1>(n—6)a020, for n>6,

then M is conformally flat.
Proof. Similarly, as in the proof of Theorem 4.2 we can obtain

6.7) 0= f A8 — (n — 6)a}h + (n + 2)cldV .

Now, the constant 8a’ — (n — 6)a is positive for n < 6. Since

8K

8 — (n — 6)a= a, — (n — 6),,

by (6.6) this constant is also positive for n > 6.
On the other hand, from (6.5) we have

aoith=c£dV,

which shows that ¢ is a nonnegative constant.

Thus from (6.7) we see that 2 = 0 and consequently C,;;, = 0.

Theorem 6.4. Under the same assumption as in Theorem 6.1, if K =
const. and (6.1) is replaced by

(6.8) LF(ah +adh) <0,
a, and o, being constants such that

6.9) 4n—1)

K a0>(n+6)a120a

then M is conformally flat.
Proof. Similarly, as in the proof of Theorem 4.3 we can obtain

1 n—1
= {4a — N\ chdV — = 4 1%
0={4a — (n + 6)a }fp hd f&”.ﬁ” (ah + aAh)d
(6.10) u x

("l - 1)(” + 2) if !
+ ———K——:‘[pip (@m)dv ,
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a and a’ being constants. Now we choose these constants such that

(6.11) w=a, a="2"lg.

K

Then from (6.9) we have

4a — (n + 6)a’ = 4oy — (n + 6) o, >0.

n—1

We also have

g(ah + = 1 a’Ah) — Z(ah + aydh) = constant .

Thus, from (6.10), we have 2 = 0 and consequently C;;;;, = 0.
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