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1. Introduction

The study of isolated singularities for minimal 3-dimensional vari-
eties immersed in Euclidean n-space E™ requires as a first step a charac-
terization of the tangent cone; the latter is the join of the origin 0 in R™
with a compact surface (the directrix) immersed in the unit Euclidean
(n—1)-sphere S"~! as a relatively minimal surface. Since comparatively
little is known concerning such immersions, I propose to devote this as
the first of a series of articles on the subject.

One may consider, for a start, a restricted type of singularity of
a minimal 3-variety in E", namely when this variety is topologically
a manifold; in this case the directrix surface of the tangent cone is
a 2-sphere immersed in S"~! in a locally minimal way. This article
is primarily devoted to minimal immersions of 2-spheres in Euclidean
(n — 1)-spheres. By this we mean immersions for which the total area
is stationary with respect to variation, and minimal with respect to
variation affecting sufficiently small portions of the surface at a time.
Naturally, some of the conclusions developed here (through Lemma 5.3)
apply to the minimal immersion of surfaces of positive genus as well;
results pertaining to these will be collected elsewhere. In the case of
minimal immersions of S? into the Euclidean sphere rS™~1 of radius
r, the main result (Theorem 5.5) is that, if the image under such an
immersion does not lie in any equatorial hyperplane section of rS™~1
then n is an odd integer and the area of the immersed S? is an integral

multiple of 2772, at least equal to (477?). There follow some

8
discussion and examples to indicate why the above estimate is optimal.

2. Riemannian and Riemann surfaces

We denote by X' an oriented surface, which, for the purposes of this
article, may be assumed to be compact and either real analytic or dif-
ferentiable. A differentiable Riemannian metric ds? on X together with
the given orientation defines a covering of X' by open domains with local
(complex) isothermal parameters such as w = u +iv (i = v/—1) as well
as its complex conjugate w = u — iv. These parameters are defined up
to a local holomorphic and holomorphically invertible transformation,
and characterized by the following conditions.
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A complex valued function w in a domain U C X is an isothermal
parameter, if and only if

a) The map w:U — C is a topological imbedding.

b) The metric ds? can be expressed in U by the Hermitian differ-
ential form

(2.1) ds? = 2F (w,@)(du® + dv?) = 2F (w, w)|dw|?

where! F(w, ) is a real analytic density, everywhere positive valued.

¢) The real valued, exterior 2-form
(2.2) w=2F(w,w)du A dv = iF(w, @) dw A dw

is positive with respect to the orientation of . Thus X' with its orien-
tation and Riemannian metric is equivalent to a Riemann surface with
a smoothly defined area element (2.2).

The tensor algebra bundle on X' generated by the tangent bundle
with the assigned Riemannian structure and orientation contains a com-
plete set of irreducible representations of the structure group SO(2). In
order to minimize redundancies, it is convenient to reduce this algebra
as follows. First of all we consider the tensor algebra over the complex
rather than the real field. Now let p, q be two rational numbers, un-
restricted as to sign (more generally we could be bizarre and let p and
g be complex numbers), such that p — ¢ is an integer; denote then by
EP9 the complex line bundle whose elements are equivalence classes in
the set of quadruples (U, w, p,v) where

a) U is an open domain in X' and p a point in U;

b) w is a local isothermal parameter defined in U, and v a complex
number;

¢) (U,w,p,v) is equivalent to (U’,w’, p',v’) if and only if:

(i) p=p eUNU,
29 p—q
(i) v=o|550)| (5m®)
20 ;S\ 9P
o[22 (smm)

or, if p and q are integers,

1We use the convention that a real- or complex-valued function such as F in
a domain U C C is written as F(w,w) for w € U, when it is not assumed to be
holomorphic. The same convention holds in the case of vector-valued functions.
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ow P row e
v’=v(w(p)> (%(p)> :

Thus, for each (p,q), EP9 is a real analytic, complex line bundle over
X; EPY is a holomorphic line bundle, while E®? is an antiholomorphic
line bundle. The tensor product is a pairing of E”? and E*4 into
Er+Pa+d" 5o that E%O is the trivial bundle and the dual of EP4
can be naturally identified with E~P~9. Finally the weak direct sum
of all EPY is a bundle of commutative algebras under addition and
tensor multiplication, denoted by E. This algebra is bigraded by the
values of (p,q); E~1% @ E%~! is the complex tangent bundle 7¢(X) =
7(X)®g C, where 7(X) is the real tangent bundle. The bundle E admits
a (C: R)-semilinear involution (conjugation) mapping EP9 onto E9P
in the obvious way, the fixed elements of E»? @ E9P (if p # ¢) and
the elements of EPP whose fibre component v is real valued are fixed
under this conjugation and are hence called the real elements of E. For
instance the Riemannian metric (2.1) is a real analytic cross section
F, positive valued everywhere, in the bundle EV:l. It is clear that
the commutative tensor algebra thus defined is, for all computational
purposes, equivalent to the more cumbersome, classical tensor algebra,
in the sense that its irreducible spaces under the action of the structural
group SO(2) x R* = C* (R"* = multiplicative group of real numbers)
contain a complete set of irreducible representations of the group.

3. Connexions

The metric (2.1) on X enables us to define a Levi-Civita connexion, i.e.
a first order differential operator V on differentiable cross sections of E.
More precisely, the connexion is described axiomatically in terms of a
splitting V. = V' 4+ V" of the absolute derivative, where V' and V”
are of bidegree respectively (1, 0) and (0, 1) on the bigraded algebra

E =Y EP9. These operators are characterized by the following four
X
axioms:

1) The operators V' and V" are C-linear derivations; in other words:

(3.1) V(cf) = ¢V, where c € C, f a differentiable cross section in EP9
(this implies, here and below, the same relation in terms of either V’
or V");

(3.2) V(f +9) =Vf+ Vg, where f, g are cross sections in EP4;

33) V(f®g) =f®Vg+ (Vf), ® g, where f and g are cross sections,
respectively in EP? and EP 7.

2) If f is a cross section in EP?, locally described by the complex valued,
differentiable functions v = f(w, @) of local isothermal parameters
w, then

of (w, w)

(3.4) V'f=0f= oY
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3) If f is the conjugate of f, then

(3.5) V'f = (V).

4) Finally, for the special cross section F in E(\1) defining the
metric (2.1), we have the identity

(3.6) VF= 0.
It is easy to see that the six conditions (3.1) through (3.6) define
V’/,V” and hence V = V' + V” uniquely, as follows: if f is a differen-

tiable cross section in EP9, locally defined by a differentiable function
v = f(w, W) in terms of a local isothermal parameter w, then

(3.7) V'f = (6f(w,w) _ 0l Fwm) (w’w))

ow ow
and

0 log F(w,w)

(3.8) V'f= (g—; —q p : f(wﬂ)) .

The commutator of V' and V" corresponds to the Ricci identity, which
is expressed as follows:

If f(w,w) represents locally a differentiable cross section in EPY,
then

(3.9)
V., V"f =(V'V'=-V"V')f =(p-q9)f(w,)
= (q - p)KF(wam) ® f(w,@),

02 log F(w,w)
Owow

13 log F(w, )

is the Gaussian curvature
owow

where K = K(w, W) =
of the metric (2.1).

4. Isometric immersions

Consider the n-dimensional Euclidean space E". We denote by R™ the
Euclidean vector space associated with E™; thus R™ can be regarded as
the group of translations of E", or else as the fibre in the tangent bundle
of E™. In conjunction with R™ we consider the complex extension, C" =
R"™ ®r C of R"™, regarded as the fibre of the “complexified” tangent
bundle of E*. We extend the orthogonal (inner product) structure
from R"™ both to an orthogonal and a unitary structure in C" in the
following, natural way: if 2/ = (z],------ ,2p) and 2" = (2{,---,2})
are two vectors in C", then the “dot” product is the symmetric bilinear

n
form 2’-2" = Y~ z),z; moreover we denote by z’ the complex conjugate
=1

of 2/
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2’:(21’ ’Z;),

we also need the absolute value (or norm) of a vector z = (21, ,25)
to be the square root of the positive definite hermitian form z’ - z”, so
that

2l =Vz2=(D_ |z [*)7.

a=1

Thus the dot product, conjugation and norm on C" are the invari-
ants defining the real orthogonal (euclidean) group O(n) acting on C".

Consider now the Grassman algebra A(C™) generated by C™ over
CIfZ=zAN--Nzand W=w; A---w, are two p-vectors in A(C")
we can extend the O(n)-invariants of C" to A(C") in the obvious way,
by defining the dot product as the Gramian determinant

Z-W= det_(Za-wp),

the conjugation map by setting
Z=2 N N%,
and the positive valued norm | Z| of Z by means of the Hermitian product
|1Z?=2-Z

With these notations, we let X : ' — E" be a differentiable map
of a surface X, as specified in §2, into the Euclidean n-space E". We
describe X' locally in terms of a local isothermal parameter w with
respect to the Riemannian structure induced on X' by X; then X can
be represented locally by an E™-valued differentiable function? X (w, w)
of w. The map is an isometric immersion, if and only if at each point

> ax ox
 Oow ow’

(4.1) F(w, @) = ‘%‘;f

0X X _

(4.2) 5% ow

0X 0X
0 implying — - — =0,
(‘mp Y8 3% w )
where F(w,w) is the coefficient of the Riemannian metric (2.1). We
can now form the successive derivatives of X with respect to w or w
either, from the local, (or analytical) standpoint

2See footnote 1.
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ortax

PIIY — —
(4.3) PHX = e

(p’ q:07152,)

or in the Levi-Civita (or geometrical) sense such as an ordered sequence
of (noncommuting) successive derivations containing, say, p times V’
and ¢ times V” in some given order; in this case we have a partial
operator of order p 4 ¢, whose principal part is 707X . In the case of
isometric immersion, several identities hold, involving dot products of
derivatives of X. For instance, considering the absolute derivatives of
both members in either (4.1) or (4.2), we obtain immediately®

(4.4) VX-VV'X=VX-V2X=V"X-V?2X =0,

showing that all second order covariant derivatives of X are orthogonal
to all first order (and thereby define the second fundamental form).

5. The main theorems

We now make the basic assumptions of the article, namely that the
isometric immersion X : ¥' — R"™ maps X into a Euclidean (n — 1)-
dimensional sphere 7S™~! of radius 7 and that the resulting surface in
the (n — 1)-sphere with the induced Riemannian structure is locally a
solution of the Plateau problem. For this purpose we identify E" with
R" by the choice of an origin 0; the sphere 7S™~! of radius r and center
0 is the set of real vectors ¢ € R™ satisfying z - z = r2.

Assumptions. We let X' be an oriented surface and X : ¥ — R"
an analytic immersion of X' satisfying the following five conditions

1) The image lies in the sphere 7S™~! of radius r, i.e.

(5.1) X - X=r? at every point of X.

2) We carry all calculations in terms of the local isothermal coordinate
systems w defined in X' by the given orientation and the Riemannian
metric induced by X.

3) The immersion of X in 7S™~! is locally minimal; this means, in terms

1 0?X
A F(w,w) owlw
F~1® V'V"X is everywhere orthogonal to 7S™~!,i.e. proportional
to the position vector X of the image.

of X as an immersion in R", that the curvature vector

4) The surface X' is homeomorphic to a 2-sphere.

3The operations of dot product and Grassmann multiplication are understood to
be naturally extended from C™ to its tensor product with the bundle E of bigraded
tensor algebras over X.
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5) Without loss of generality, the immersion X is linearly full, i,e. the
image X (X') is not contained in any Euclidean hyperplane in R".

Remarks. The analyticity of X can be deduced as a consequence
of 3), provided only that the map be of class C3. The last two main
assumptions will be used only later, and then the essential role that
these assumptions play will be emphasized.

We draw immediately a couple of elementary conclusions from the
first three of the five basic assumptions.

Lemma 5.1. The mapping X satisfies the equation

(5.2) 90X =V'V"X = —r 2FX.

Proof. From Assumption 3 we have 90X = AX for some real
valued function \; on the other hand we have also, from (5.1),

0= 5008(%) = 500(X - X) = 00X - X +0X - 0X
=AX -X+F=r’\+F,

whence A = —r—2F, as asserted.

Lemma 5.2. The complex vector subspace of C" spanned by the
k’th order jet of X, at any point p € ¥ and for any positive integer k, is
spanned by the 2k + 1 vectors X, V'*X,V"?X or equivalently X, 0?PX
and 0P X (1 < p < k) evaluated at p.

Proof. 'The linear span over C of the k’th order jet of X can be gen-
erated equivalently by X and the %k(k + 3) partial derivatives of X of

order < k, or by X and the 2+ ! —2 different Levi-Civita derivatives of
X of order < k; at the same time, in view of (5.2) any Levi-Civita deriv-
ative of X of order k in which each of V' akrnd V" appears at least once
p+q

OwPOw
p+q = k) can be expressed as a linear combination of X and derivatives
of order < k — 1; from this the conclusion follows immediately.

Until now we have not yet used assumptions 4) or 5), namely that
X is homeomorphic to a sphere, or that X is linearly full. In the next
lemma, however, Assumption 4 plays an essential role.

(or equivalently, any partial derivative with min(p,q) > 1 and

Lemma 5.3. Under the basic assumptions 1), 2), 3) and 4), the
complez subspace of C" spanned by all the derivatives V'*X(p > 1) at
any point of X is totally isotropic with respect to the dot product, and
is orthogonal to X.

Proof. We set, formally, V'eX =V'°X = X; we must prove that,
for any two nonnegative integers p,q with p+q > 1,
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V'PX.V'"X =0.

This identity, for 1 < p + g < 3, is true in the case of arbitrary im-
mersions X of any surface X' into a sphere, with no further assump-
tions; this follows easily from (4.2), (4.4) and (5.1). We shall prove it
now for higher values of p + ¢, by induction on p + q. Suppose that
V'PX .V'"4X = 0 for all p,q with 1 < p+ q < k — 1, for some integer
k > 2; to prove it for p + ¢ = k, we distinguish the case where & is even
from that where k is odd. If k£ is odd, say £ = 2m + 1(m > 1), we have

v'mX.VmtiX = %v’(V’mX -V'™X)=0
and, for any p such that 1 <p<m
v'mepx . y'mEtrtly — (_1)PV’ (lV’mX -V'mX
2

p
+ ) (-)rVmEX v’mﬂx) =0,
p=1

proving the induction step for k£ odd ; we remark that, in this case, we
do not need the assumption 4) that ¥ is homeomorphic to S2.

If k is even, say k = 2m (m > 1), let A, = V'™ X - V'™ X. Then for
p+ q = 2m and, without loss of generality, p < g,

VPX VX = (~1)" P Ay + (~1)" PV (SR (1Y EX VI m L)
= (1) P Ap.

This reduces the remainder of the proof to showing that A,, = 0.
First, we calculate V" A,,. From the definition of A,,,

V' A =2V"V'"X - V'™X.

Next, we evaluate V'V'™X; using the Ricci-identity (3.9) m —1 times,
we get

(5.3)
Vl/vlmX — Zz;—ll vlu—l(v/lvl _ V/v//)vlm—uX + Vlm = I(V”V/X)
= 2FVMmIX 4+ Y (m— p) Ve (K V'™ -k X)
=F (—r~2+ (3)K) V'™~ 1X + (a linear combination of
V,X, . ,V/m—2x),
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where K is the Gaussian curvature. From this, and using the induction
assumption, we deduce immediately that

VA, =0.

This proves that, in the absence of assumption 4), if X satisfies the
induction assumption V'?X - V/'?X = 0 for all p, ¢ < 2m, then V'™ X -
V'™X = A, is a holomorphic cross section in E?™0 j.e., a holomor-
phic differential of weight 2m. Since X is homeomorphic to S2, i.e.
a compact Riemann surface of genus zero, the only holomorphic cross
section in EP for any p > 0 is the trivial one, so that in this case
A, = 0. This completes the proof of the lemma.

Remark. The above lemma and its proof are inspired by H. Hopf’s
analogous argument [1] in the case of closed surfaces of genus 0 immersed
in R® with constant mean curvature.

In what follows, it is useful to introduce the following differential
geometric forms attached to the map X, analogous to the generalized
Wronskians for differentiable curves in E".

We denote by T; X, for any positive integer k, the following* cross
1
section in E*2:0 @c A*(C"), where ko = Ek(k +1),

(54) TIX=V'XAVZEXA---AVEX =0X NPX A---NO*X.

Clearly, T}, vanishes at any point p € X, ifand only if V' X, V/2X, ... ,V'kX
at p are linearly dependent over the tensor algebra E. Since, by Lemma

5.1 the subspace of C" spanned by the k vectors V' X, V/2X,--- ,V'*X

at any point of X' is totally isotropic with respect to the dot product

n
its dimensionality can not exceed 3 thus 7) X =0 as soon as k > —

Lemma 5.4. Under the basic assumptions, emphasizing here As-
sumption 5), the dimensionality n of the ambient space R™ is odd; more
precisely, n = 2m + 1, where m is the highest value for which T}, X is
not identically zero.

Proof. Let m denote the highest integer for which 7 X = 0X A

AO™X =V'X N--- AV'™X is not identically zero. We shall prove
first that n > 2m + 1. In fact, consider the exterior absolute value F),
of the (2m + 1)-vector

XAV XAV 2XA-- AV XAV XA AV'™X = XATL, XNTE X,
where T = T,. The square of Fy, can be calculated from the Gramian
determinant, which involves dot products such as X - X, X -V'?X, X -
V"X, VPX.VX, V'PX.-V"X, V'"PX .V"1X, etc., (1 < p, g <m).
Because of Lemma 5.3, this Gramian matrix splits into three blocks
along the diagonal, namely X - X & (V'?X - V"1 X) o (V'?X - V'IX).
Thus we see that

4See footnote 3.
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Fn=|X| det (VPX-V'9X)

1<p,g<m
(5.5) =r(VXAVZIXA---AV™X)- (V' XA---AV ™X)
=r|T, X%

This shows that, wherever T, X is not zero, Fy, is strictly positive; the
latter is the norm of a (2m + 1)-vector in C", showing that n > 2m+1.

We show now that, conversely, n £ 2m + 1. Since the immersion
X of ¥ is real analytic and its image is not contained in any hyper-
plane, at each point of X the linear span of the jet of X of sufficiently
high order is n-dimensional. By the definition of m, T}, , ;X is identi-
cally zero, while 7 X is not; hence at any point p € X' where T, X is
not zero, V'm+1X lies in complex m-dimensional subspace with basis
V'X,---,V'™X evaluated at p. By considering inductively the van-
ishing of V'*(T, . ;1 X)(k = 1,2,---) it follows that each V™*+*X at
p lines in the same subspace. Therefore, for any nonnegative k, the
2m+2k+1 vectors X, VPX, V' '2X (1 <p, ¢ £ m+k) are a linear com-
bination of the 2m+1 vectors X, V' X,---, V"X, V' X,---, V' ™X.
But the 2m + 2k + 1 vectors span, by Lemma 5.2, the whole (m + k)’th
order jet of X at p. Therefore this jet has, for each k, a linear span of
at most 2m + 1 dimensions. This shows that n < 2m + 1, completing
the proof.

We can state and prove now the main theorem of this article.

Theorem 5.1. Let X: X — E" be an immersion of a surface X
into E", whose image is a locally minimal surface in a sphere rS™!
of radius v, and is not contained in any hyperplane of E*. Then the
following conclusions hold;

i) The area A = A(X) of the image surface is an integer multiple of
2772,

ii) The dimension number n is odd, say n = 2m + 1 and

2 _
(5.6) A > 4nr? <m —2+- 1) = 4mr? (nTl) .

Proof.  The proof of the two conclusions depend on certain cal-
culations on the objects T} X (1 < k < m) defined in (5.4) and on the
related quantities

F. = |X| |TIX)? (@1<k<m),

introduced in (5.5) for the special value k = m. Clearly T, X is a

real analytic cross section over X in E3kkE+10 @ C‘(:), while F is a
. . k+1

nonnegative cross section in EF2%2 where ky = ( ; = zk(k +1).

It is convenient to replace Fj by its norm &, under the Riemannian

metric (2.1), since @y, is a scalar function. Thus we are led to consider

the sequence of nonnegative real valued scalars &x(k = 1,2,-- ), where

(5.7) &) = F k(D
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For the sake of conformity we also set T(;X = T(;'X identically equal
to 1 and Fp = &p equal to the constant r. The following differential
recursion formulas now hold and are easy to verify: For each k£ > 1

(5.8) VT, X =T, XAVFkix,
VT, X =VV'XAV2X A AVEX

(5’9) " ”
=7 2FXAV2XA---AV kX,

and similarly for the complex conjugates.

From the above, we can calculate formally the absolute differentials

of each &y, (using k2 as an abbreviation for <k ; 1) = 1k(k +1)),

V'@, =rF~ %V (T, X - T, X)
=rF*"VTX T, X +T,X -VT,X).

Because of (5.8), (5.9), and since X, by Lemma 5.3, is orthogonal to
each VPX, T, X - V T;, X = 0 identically; thus

(5.10) 0B, =V & =rF 5 (T, _ X AV*T1X). T, X

and similarly 8¢, = V'®, = rF~5T, X . (T, _ X AV ¥+1X). We
calculate now 00P;, = V”V/@k = V’V"(Dk as follows:
80®), = TF (V" (T, _ X AV T1X). T, X + |V T, X|?}

= rF 5T, _ X AV'V*HIX). T X +rF~ % |T, _ X AV*+t1X]2,

We apply the Ricci identity (3.9) in evaluating the term with V' V' +1X,
as it was done in (5.3) for the case V' V ™X; we get then

T, XAV VX = F(— r 2 + kKT, X .
Thus we have

0Py, = rF1~%(— =2 4 kyK)Fy + rF~%2|V'T, X |?

(5.11) ) )
=F(—r 2+ kK)®p +rF 5 |T,_ X AVEF1X|2

We now recall the algebraic identity (Lagrange)

T X AVEXP|T, _ X AVE+H1X]?
—(Tp X AVHEHIX) (T _ X AVFX)
® (Th 1 XAV X) (T _ X AV E+1X)
=T X (X AV*XAVEHIXP? = B 1Fiq
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and apply it in conjunction with (5.10) and (5.11); one obtains the
following equation

B1,00B), — 08,00y, = F(—172 + ko K)02 + F~ 2R F _ 1 Fy 41
= F(——'r“2 + sz)@% + F®p _ 1Pk 41

or, if & # 0, we obtain the recursion formula
(5.12)

5 <¢k-1¢k+1

89(log &y,) = F e k2K> (o =&y =) .
k

Since each of the functions @ is real analytic and nonnegative, we see
that either & is identically zero, or else, by considering any locally
defined, real valued, analytic function ¢ whose Laplacian satisfies

Ap = %854& =2(ko K —1r7?)

we see that log @ — ¢ is subharmonic; in particular, the zeros of @, can
be at most isolated and, analytically, of (finite) even order. Let 2j,(,k)
denote the real analytic order of the zero of & at any p € X and, if
Py, is not identically zero, set Ny = Xp . & j,(,k). We can represent Ny
analytically as a sum of the residues of the logarithmic singularities of

log @, by the potential theoretic formula

— 27Ny = —;— lin})/(A log &)w ,
Ze

where w = iF dw A dw is the element of area, and Y. denotes the
complement in X of an e-neighborhood of all points where @, becomes
Zero.

Thus we have, in view of (5.12),

Dr 1Pk 41

w>0.
?;

lim [ (r72 — ke K)w — 27 Ng = lim
e—0 e—0
X Ze

According to the Gauss-Bonnet formula, f Kw = 4m, so that, evaluat-

x
ing the above integrals and taking the limits as € — 0, we obtain the
following estimate for the area A = [ w of the images X (X) :
b

D 1Pk 41

1 .
A= (k2+ §Nk)47rr + gl_l’r(l)/ 2
e

> (kg + %Nk)47r7‘2 s
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equality holding if and only if @), is not identically zero, while @ 41

vanishes everywhere; this happens, as we showed, precisely for k£ =
n—1

m= , according to Lemma 5.4. Thus we have proved the formula

for the area A of X' induced by the immersion X,

1)+ N, 21
(5.13) A= <M_2)+—m) dmr? =2 5 72 4 20 N2,

where 2N, is the total multiplicity of zeros of &,,. This completes the
proof of the theorem.

Corollary. Under the same assumptions of the theorem there exists
a
nonempty open set of X where the Gaussian curvature K satisfies

2

(5.14) S

Proof. Since the area A of the image of ¥ is at least 4mmor? =

2rm(m + 1)r? and, by the Gauss-Bonnet formula,

/Kw:47r,
=

the conclusion follows immediately.

The only explicit examples known of minimal immersions of 2-sphere
X into rS™! are those where the Gaussian curvature of the induced
metric on X' is constant.

Theorem 5.2. Let X be a 2-sphere with a Riemannian metric with
constant curvature K, and let X : ¥ — rs" ! C E*(n=2m+1 > 3)
be an isometric, minimal immersion of X, such that the image is not
contained in any hyperplane of E*. Then

i) The value of K is uniquely determined at the value,

2
5.15 K=—°" .
(5.15) m(m + 1)r?
ii) The immersion X is uniquely determined up to a rigid rota-
tion of rS™!, and the n components of the vector X are a suitably
normalized basis for the spherical harmonics of order m on X.

Proof. If K is constant and X : ¥ — 7S™! an isometric, minimal
immersion, the functions @x(k = 0,1,---) can be calculated explicitly
in a simple way: from the initial data &9 = #; = r and the recursion
formula (5.12), we see that each @y is constant, and hence
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i —o k(k+1) )\
@k+1 = dsk_l (7‘ ——Q—K),

n—1
since each &y is then a positive constant for k < m = 7 and

D, +1 = 0, we see immediately that the determination (5.15) of the
value of K is both necessary and sufficient. Therefore there exists an
isothermal parameter w defined on all of X except for one point, such
that

F(w,w) = m(m + 1)r2(1 + ww) ™2 .

The immersion function X : ¥ — rS"~! satisfies the equation 80X =
—r~2F X, or equivalently, in terms of the Laplace operator A = 2F~190,

AX = -2r2X

thus each component of X is an eigenfunction of A (spherical harmonic)
corresponding to the eigenvalue —2r~2. It is known that on the 2-sphere
with constant curvature K as in (5.15) the eigenvalues of A are

_ k(k+1)  2k(k4+1) _
Ak = K — m(m+1)r? (k=0,1,2,-)

and the eigenspace corresponding to each \i is (2k+1)-dimensional and
generated as follows: map X' isometrically onto the Euclidean sphere

7052 C R? with rg = K% = mr and consider the 2k + 1

linearly independent, homogeneous polynomials of degree k in the 3
Cartesian coordinates of R, that satisfy Laplace’s equation. Their
restriction to r9S? are the spherical harmonics of order k. Letting now
k = m, we pick an orthogonal basis for all of them, and verify that the
sum of their squares evaluated at each point of 7952 is constant; hence
they can be normalized so that the sum of their squares is 72; these
are then the 2m + 1 components of the imbedding function X. This
completes the proof of the theorem.

It is natural to ask whether the example given above represents the
only type of minimal immersion® of X into S™~!. This, however, has
not yet been settled, except in the trivial case m =1 (n = 3). Even a
simplifying assumption that the area A of the image attains its lowest
possible value 2m(m + 1) - 772, which is equivalent to saying &,, > 0
everywhere, and hence also each @, > 0 for £ < m, and 9,41 = 0 does
not seem to help. To show the difficulty, more explicitly, we consider
the apparently easiest, nontrivial case, m = 2 (corresponding to n = 5).
Since $9 = $; = r, we apply (5.12) to calculate each Py, by the induction
formula

5 Added in proof. Since the completion of this paper, this question has been
answered negatively; the details are to appear in a sequel.
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2
@k
k—1

B 1. 5 1

Thus @, = r(r~2 — K) (implying, incidentally, the condition K < r~2
which, for other reasons as well is necessary), and

O3 =r(r~2 - K)Q(%A log (r™? — K)+r7? - 3K).

Thus a metric on S? is compatible with a linearly full, minimal immer-
sion in S84, only if K < r~2 everywhere, but with equality not holding
identically, and

(5.16) A log(r~? — K) = 6K — 2r~2 wherever K < 12,

the strict inequality K < r~2 would then be satisfied everywhere, if and
only if the total area of the immersed surface is 127r2. For m = 2, the
problem is equivalent to the question whether there are any Riemannian
metrics that satisfy (5.16) other than the special case with constant
curvature K = 1/(3r?).
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