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RAOUL B O T T & ALBERTO S. CATTANEO 

Abstract 

This note is a sequel to our earlier paper of the same title [4] and describes 
invariants of rational homology 3-spheres associated to acyclic orthogonal 
local systems. Our work is in the spirit of the Axelrod-Singer papers [1], 
generalizes some of their results, and furnishes a new setting for the purely 
topological implications of their work. 

1. In troduct ion 

This note is an addendum to our earlier paper of the same title [4]. 
Our aim here will be to construct invariants for framed 3-dimensional 
homology spheres ( M , f ) , associated to an acyclic orthogonal local sys
tem E on M. 

Like in our earlier note, we follow the guidelines of the Axelrod-
Singer paper [1] on the asymptotics of the Chern-Simons theory, and we 
have again put aside the physics inspired aspects of the subject, concen
trating our efforts on the construction of potential configuration-space 
integral invariants of ( M , f ) . More precisely we are seeking invariants 
that depend on the diffeomorphism type of M and the homotopy class 
of the framing f. 

For simplicity we assume throughout that M is a connected, oriented 
3-dimensional homology sphere so tha t—up to conjugacy—local systems 
over M are classified by representations ofni(M;p) wherep is some fixed 
point in M. 
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Our invariants are associated to local systems E which are induced 
by an orthogonal representation PE of 7ri (M; p) on some R m, and we 
call such systems orthogonal. Furthermore, a local system E is called 
acyclic if H* (M;E) = 0. 

With this understood, our principal observation is given by the fol
lowing 

T h e o r e m 1.1. An orthogonal and acyclic local system E over M 
gives rise to a purely combinatorial graph cohomology G E, and if Y G G E 
is a connected trivalent cocycle of G E, then Y determines a numerical 
invariant Ir(M,f) of ( M , f ) . This invariant has the structural form: 

(1.1) I ( M , f ) = AT(M) + </>(T) CS(M, f ) , 

where Ar(M) denotes a sum of configuration-space integrals specified 
by Y and a fixed—but arbitrary—Riemannian structure g on M, 4>(Y) 
is a number universally associated to Y, and C S ( M , f ) stands for the 
Chern-Simons integral of M relative to f and the Levi-Civita connection 

ofg-

Combined with the invariants described in [4], where we treated the 
trivial coefficient system R—which is not acyclic—, one is therefore in 
the possession of a large number of integral invariants of (M, f ) , and it 
would be very interesting to understand their relation to the finite type 
invariants described in [5] (see also [3]) and whether in their totality 
they are in any sense exhaustive. 

The proof of Theorem 1.1, as well as the precise definition of E, will 
be brought in sections 2 and 3, and runs pretty well along the lines of our 
earlier paper [4]. In fact the acyclicity of E allows for a simplification of 
the initial step in our procedure, and we will explain this phenomenon 
here and now. 

Recall that the compactified configuration space C<2{M) is a manifold 
with boundary isomorphic to M x M with its diagonal, A, blown up. 
Thus dC2(M) = S is isomorphic to the unit sphere bundle of the tangent 
bundle of M. 

This situation therefore gives rise to the diagram below consisting of 
sections of the exact sequences associated to the pair (C2(M), S) and its 
image (M x M, A) under the natural projection n of C2(M) to M x M. 

(1.2) 

> H2(C2(M)) • H2(S) > HS(C2(M),S) • H3(C2(M)) > 

> H2(M x M) • H2(A) > H3(M x M, A ) • H3(M x M ) > 
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The vertical isomorphism in the third column of (1.2) follows from 
excision near the blow-up of A. Note also that this diagram is acted 
upon by the involution T which exchanges the factors in M x M, and 
each of the sequences therefore splits canonically into a + and — part 
corresponding to the ± 1 eigenvalues of T. In the bot tom row H*(A) is 
clearly invariant under T so that the antisymmetric part of (1.2) reduces 
to 

(1.3) 

H2_(C2(M)) > H2_(S) ^ - ^ H3_(C2(M),S) 

0 > Hl{M x M, A) ^ ^ Hl{M x M) 

Now in [4] we showed that the form rj given by half the Euler form 
of the tangent bundle along the fiber in the fibering S —> A generates 
H2(S;R) as a module over H*(A;R) and that this rj is antisymmetric: 
T*7] = —r\. In short [rj\ generates H2_(S;R). 

So far our discussion involved the constant coefficient system R. 
But the sequences (1.2) and (1.3) as well as the action of T remain valid 
for a general local system E on M , provided we use the local system 
F = ir^E <g> TT^E on M x M, and -K~1F on C2(M). 

This understood, assume now that E is orthogonal and acyclic. 
The orthogonality gives rise to an arrow 

(1.4) I : R ->• E (g) E, 

defined by sending 1 to P e, (g> e ,̂ where fe^g is any orthonormal frame 
in E. We may therefore also apply I to 77 to obtain a closed form 
I{ri) ett2(S;E®E). 

Next observe that the Kunneth formula implies that 

H*(M x M; n ^ E <g> TÏ2
1E) = H*(M; E) <g> H*(M; E). 

Hence, under our acyclicity assumption, all the terms on the right 
of ö in (1.3) vanish! It follows immediately that the class of I(r/) G 
n2(S; E ® E) is in the image of a class [rj] G H2(C2(M); 7 r _ 1 F) . 

Actually we need the following slight refinement of this assertion: 

L e m m a 1.2. Under the orthogonality and acyclicity assumptions 
there exists a form fj G Q2(C2(M); •K~1F) with the following properties: 
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1. The restriction of fj to S is I{ri): i*dfj = I{rj). 

2. fj is closed under d ̂ -iF: dw-iFfj = 0. 

3. fj is antisymmetric: T*fj = —fj. 

The construction of fj proceeds precisely along the guidelines given in 

[4]-
Let U be a tubular neighborhood of A in M x M, and let p : U —> A 

be a projection which fibers U over A into discs on which T acts linearly 
as the antipodal map, and such that dU can be identified with S. Then 
U = n~lU has the structure of S x [0, e ] and hence fibers over S with 
the unit interval as fiber. We write a : U —> S for the projection onto S 
in this fibering, and note that T acts on S x [0, f ] by the antipodal map 
on S crossed with the identity on [0,1]. Now choose a smooth function 
X on [0, f] which is identically e near 0 and identically 0 near + 1 , and 
write x also for its pullback to U. It follows that the form 

e=a*I(rj)x 

on U extends by 0 to a form on all of Ci{M) with values in n~lF. It is 
also clear that e restricts to I(rj) on S, so that dn-iF e represents ö(I(rj)) 
in the upper sequence. On the other hand dn-iFre vanishes identically 
near S and so may be considered an antisymmetric form on M x M. But 
then, by the acyclicity assumption, there must exist an antisymmetric 
form a on M x M such that 

d Fa = d ^-iFfe. 

Now fj = e — ir*a has all the desired properties. 

2. T h e 0- invariant 

Using the closed form fj defined in the previous section, see Lemma 
1.2, we can define an invariant for the framed 3-dimensional homology 
sphere (M, f ) . 

First we notice that ff is a 6-form on the 6-dimensional space C2(M) 
which takes values in 7r{" we associate to each vertex 
i (i = 1,2) a homomorphism 

(2.1) Pi-.R^ E®E®E 
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which is equivariant as a module over -KI(M), then we obtain the closed 
real-valued 6-form (pip2 , 5?3)- Here (•, •) denotes the scalar product 
over E and its extensions to E®3 and to n^1E's>3 <g> n^E®3. 

R e m a r k 2 .1 . The existence of such homomorphisms depends on 
E. In some cases, the only possible choice will be the trivial one: p = 0. 

If the vector space spanned by these homomorphisms has dimension 
greater than one, then one can choose p\ and pi linearly independent. 

E x a m p l e 2 .2 . A particular case, considered in [1], occurs when E 
is the adjoint representation of a compact Lie group G. Then a natural 
choice for p is obtained by using the structure constants f abc relative to 
a left- and right-invariant inner product on the Lie algebra of G; namely, 

p(x) = x ^2 f abc e a®e b® e c. 
abc 

The equivariance under the full group G ensures the equivariance under 
the action of -KI(M). Notice that the antisymmetry of the structure 
constants implies that this homomorphism is completely antisymmetric. 

Note that if E denotes a representation of such a Lie group G, the 
equivariant homomorphisms are dual to the projections to the trivial 
representations in E (g> E (g> E. Again, the equivariance under the full 
group G ensures the equivariance under the action of -KI(M). 

E x a m p l e 2 .3 . If E j denotes the irreducible representation of spin 
j G Z / 2 of SU(2), then the Clebsch-Gordan formula, 

j+k 

E j0E k= 0 E l 
l=\j-k\ 

implies that 

j 3j 

E j®E j®E j= 0 {2k + l)E k@ 0 (3j-k + l)E k. 
k=j-[j\ k=j+l 

So E ^ contains no trivial representations if j is a half-integer and one 
trivial representation if j is an integer. In the case j = 1 we recover 
the choice of example 2.2. Notice that this projection is obtained by 
selecting the representation of spin j in E j (g> E j , then by tensoring by 
the last copy of E j , and finally by projecting on the trivial representa
tion. Therefore, all these projections (and the corresponding homomor
phisms) are completely antisymmetric. 
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E x a m p l e 2 .4 . Wi th the notation of the previous example, con
sider E = Ei 12 ® Ei. It turns out that E®3 contains three copies of 
the trivial representation: the first is obtained by choosing the trivial 
representation in Ef ; the second by choosing the trivial representation 
in Ei/2 <8> Ei/2 <8> Ei, and the other two by cyclic rotations of the second. 
Notice that the second projection is obtained by selecting the represen
tation of spin 1 in Eij2 <8> Ei/2, then by tensoring by Ei, and finally 
by projecting on the trivial representation. Therefore, this projection is 
symmetric with respect to the exchange of the spin-(1/2) components. 

Integrating the closed form we have obtained over C2(M) yields the 
number 

(2-2) A ( e ) P l ) P 2 ) = Z (pip2,tf), 
C2(M) 

which is our first potential invariant. We recall, see [4], that the defi
nition of n relies on the choice of a metric on M and of a compatible 
connection; moreover, the construction of fj requires the choice of a 
function x and of a 2-form a as explained after Lemma 1.2. An in
variant must be independent of all these choices. Actually, we have the 
following 

T h e o r e m 2.5 . Given a section f of the orthonormal frame bundle, 

the combination 

(2.3) I ( e ) P l ) P 2 ) (M, f ) = A ( e , P l ) P 2 ) (M) - ^ ^ C S ( M , f ) , 

is independent of all the choices involved (except for the framing). Here 

CS(M,f) = - - ^ Z f*Tr(ede + le3 

8 ? H M 3 
(2.4) 

1 1 
4 7 r 2 M 0i d6i--eijkfi ^ek 

is the Chern-Simons integral of the same metric connection used to 

define n. 

Thus, I(-0)Pl)P2-)(M,f) is an invariant for the framed rational homol

ogy sphere (M, f ) . 

R e m a r k 2.6. In the case discussed in example 2.2, we have 

(Pi , P2) = ^2 f abc f abc = ~v d i m G , 
abc 

where c v is the Casimir of the adjoint representation of G. 
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Proof. As in [4], we introduce the unit interval I as a parameter 
space, and recall that , as shown there, letting 6 vary on I corresponds 
to defining on S x I a form—which we still denote by rj—given by half 
the Euler form of the tangent bundle along the fiber in the fibering 
SxI->AxI. 

Then all the arguments contained in section 1 are still true if we 
multiply by I each space involved (say, M, M x M , A, C2(M) and 
S), since H n(I) = öno IR. In particular, we have a form—which we keep 
denoting by fj—which satisfies the properties of Lemma 1.2 with C2(M) 
replaced by C ̂ iM) x I . (To be precise, by n now we mean the projection 
C2(M) x I ->• M x M x I.) 

If we denote by a the projection C2(M) x I —> I, then 

A(e,Pl,P2),T = 0-* (pip2 , fj3) 

is a function depending on the parameter r G I , in whose variations we 
are interested. 

To do so, we recall that , given two spaces M\ and M2 and projections 
•Ki : M\ x Mi —> M i, Stokes' theorem can be rewritten as 

(2.5) d i*u) = 7ri„dw - ( - l ) d e g ^ w Ti&W, 

where ixf^ denotes integration along the boundary of M2 and vice versa. 
(Notice that the signs in (2.5) are correct if integration acts from the 
right.) 

Since {p\p2 , r/3) is a closed form, we simply have 

dA(Q,PuP*),T = a* (P^PÎ ' ^ 3 ) = (Pi ' Pî> a*rl3' 

the last identity following from property 1 in Lemma 1.2. 
Now we recall that in [4] (see Lemma 3.15 there) we proved that 

8 ì -1 
K*V = - p i , 

where nd is the projection S x I —> A x I , and p\ is the first Pontrjagin 
form on A x I = M x I . 

Denoting by a M the projection M x I—>•I, we finally get 

(Pi , P2I 
dA(0,Pl,p2),T — 7 &M*pl, 

from which the theorem follows. q.e.d. 
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3. T h e higher invariants 

Using the natural projections Tij : C n(M) —> C<2{M) we can pull 
back the form T) defined in section 1. We will write 

and by property 3 of Lemma 1.2 we have 

'lij = ~'1ji-

These forms on C n(M) allow for writing other invariants of the 3-
dimensional homology sphere M associated to cocycles in an appropriate 
graph cohomology (depending on the bundle E). 

Defini t ion 3 . 1 . We call a decorated graph a graph with oriented 
and numbered edges and numbered vertices (by convention we start 
the enumeration by 1). We require edges always to connect distinct 
vertices. If two vertices are connected by exactly one edge, we call that 
edge regular. 

The edge numbering induces a numbering of the i i half-edges at 
each vertex i, corresponding to which we attach a homomorphism 

which is equivariant as a module over -KI(M). 

Denoting by V the number of vertices and by E the number of edges, 
we grade the collection of decorated graphs by 

, , ordT = E-V, 
3.1 

degT = 2E-3V. 

R e m a r k 3 .2 . Compared with the decorated graphs we introduced 
in [4], this definition adds two further decorations: the numbering of 
the edges and the equivariant homomorphisms attached to the vertices. 

R e m a r k 3 .3 . A trivalent diagram has degree zero, and its order is 
given by m = V/2 = E/3. 

We thank S. Garoufalidis for pointing out that our choice of the 
words "order" and "degree" is a bit unfortunate, for people working 
with finite type invariants call m the degree (instead of the order) of a 
trivalent graph. 

However, we prefer to stick to our old notation [4] since the term 
degree is consistent with the cohomology defined by the coboundary 
operator ö (see Proposition 3.4). 
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Denoting by v(T) the set of vertices and by e(T) the ordered set of 
oriented edges in T, we can associate to the 3-dimensional homology 
sphere M and to the trivalent decorated graph V the number 

(3.2) AT(M)= U Pi, I l i j > 
C n(M) iev^ (ij)ee(r) 

where n = 2 o r d T is the number of vertices, and (ij) denotes the edge 
connecting the vertex i to the vertex j . 

Next we give the collection of decorated graphs the structure of an 
algebra over Q (the product simply being the disjoint union of graphs). 
We will denote this algebra by G E and will extend (3.2) by linearity. 

In view of the definition of Ar(M), we introduce the following equiv
alence relation on G E- if two decorated graphs Y and r" differ only by a 
permutation of order p in the vertex numbering and by l edge-orientation 
reversals, we set 

(3.3) r = ( - 1 ) ( p + l ) r ' . 

Notice that to equivalent graphs we associate the same number Ar(M). 
We will denote by G E the algebra of graphs modulo the above equiva
lence relation. 

Then we introduce an operator 6 on G E that acts by contracting a 
regular edge one at a time in V, followed by a consistent renumbering 
of edges and vertices. To the contraction of the regular edge connecting 
the vertex i to the vertex j we associate a sign a(i,j) defined by 

(3-4) o{i,j i + 1 

i j ifj>i, 

l)i+1 ifj<i. 

Assuming that this edge corresponds to the kth of the v i half-edges at i 
and to the lth of the v j half-edges at j , we attach to the vertex obtained 
after contraction the equivariant homomorphism 

Pi :R^ E®<-v i+j-2) 

defined by 

Pi = m k,v i+l(pi ®Pj), 

where m rs denotes the scalar product between the r t h and the s th terms 
in the tensor product. 
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Notice that the homomorphism attached to a vertex after contract
ing two different (regular) edges starting from it does not depend on 
the order of the contractions. Therefore, the argument we gave in [4] is 
enough to prove the following 

Proposition 3.4. The operator ö descends to G E and satisfies ö2 = 
0 there. Moreover, if we denote by G E;n,t the (equivalence classes of) 
decorated graphs of order n and degree t, we have 

Ô '• G E;n,t —> G E;n,t+l-

We call a cocycle an element of the kernel of S in G E- Notice that 
the action of 6 can be restricted to the algebra of (equivalence classes 
of) decorated connected graphs. Now we are in a position to prove 
Theorem 1.1. 

Proof of Theorem 1.1. As in the proof of Theorem 2.5 we introduce 
the unit interval I as a parameter space, and define fj as a form on 
C n(M) x I. Denoting by a the projection C n(M) x I - > C n(M), we 
define 

ATiT{M) = oJ Yl Pi, J ! »ij)> 
iev(T) (ij)ee(T) 

and consider its change as r varies on I. 
Since the integrand form is closed, equation (2.5) implies that dA, T (M) 

is given by boundary contributions only. 
But on the boundary fj reduces to I{rj)—see Lemma 1.2—so we can 

use essentially the same arguments as in the trivial coefficient case [4]. 
Therefore, we will only give a brief sketch of the proof here and refer to 
[4] for further details. 

First recall that the face in dC n(M) corresponding to the collapse of 
q points has the structure of a fibering over C n_q+i, with the (3q — 4)-
dimensional fiber isomorphic to C q(M) modulo translations and scalings. 

If we denote by e the number of edges connecting two collapsing 
vertices, we see that the vertical form-degree is given by 2e. Moreover, 
since we are considering trivalent graphs, we have the relation 2e + eo = 
3q, where eo denotes the number of edges connecting a collapsing vertex 
with a noncollapsing one. Therefore, the push-forward along the fiber 
of the form associated to the edges connecting collapsing vertices yields 
a form of degree 4 — eo if eo < 4, and zero otherwise. 
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By a theorem due to Axelrod and Singer [1]—which we have recast 
in [4] in a form suitable to our construction—this form must be the 
pullback of a multiple of a characteristic form on M x I , namely, the 
constant function or the first Pontrjagin fo rmp i . 

The former case corresponds to eo = 4, and it can be shown that 
the only case when the integral does not vanish is when this is given by 
the collapse of just two vertices. These boundary terms are then taken 
care of by the requirement that T be a co cycle. 

The latter case corresponds to eo = 0, that is, to the case where all 
points collapse since we assume the diagrams to be connected. These 
terms are then taken care of by the correction 4>(F) CS. q.e.d. 

R e m a r k 3 .5 . It is clear from the above proof that (f)(F) is linear. 
Moreover, if V is a decorated graph, we can write 

0(r)=p(r)0o(r), 

where p(F) is a purely algebraic factor obtained from the homomor-
phisms pi by associating a scalar product to each edge in V, while (/>o(r) 
is given by the boundary integral involving the forms n, and so it is the 
same as in the trivial coefficient case. 

If o r d r is even, there exists an orientation reversing involution under 
which the integrand form turns out to be odd (see [1] or [4]). Therefore, 
in this case, (/>o(r) vanishes, and so does (f)(F). 

From the above remark and from Theorems 1.1 and 2.5, we get the 
following 

Corollary 3 .6 . If F is a connected trivalent cocycle of G E, and pi 
and p2 are equivariant homomorphisms such that (p\ , p^) ^ 0 ; then the 
quantity 

Jr;Pl,P2(M) = AT(M) + 4 0 ( r )A(e , P l , P 2 ) (M) 
\Pl ) P2/ 

is an invariant for the rational homology 3-sphere M. Moreover, if 
ordT is even, then (f)(F) = 0. 

4. Discuss ion 

The graph cohomology introduced in the previous section is in prin
ciple more general than those introduced in [1] and [4] and might give 
rise to more general invariants. 
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In the case where E is the adjoint bundle of a Lie group G, we 
can choose all the equivariant homomorphisms associated to a triva
lent graph to be determined by the structure constants, as explained 
in example 2.2. The cocycles in this case are those studied in [1] and 
come naturally from perturbative Chern-Simons theory. Antisymme
try of the structure constants implies that it is enough to give a cyclic 
order of the three half-edges at each vertex. The Jacobi identity then 
implies that the cocycles satisfy the so-called IHX relation (see [2]). It 
is a non-trivial fact (and we thank S. Garoufalidis for pointing this out) 
that these cocycles are in one-to-one correspondence with the cocycles 
of the trivial coefficient case. 

If Ei/2 © E\ (where E y 2 and E\ denote the representation of SU(2) 
with spin 1/2 and 1) is an orthogonal and acyclic local system, we can 
choose each homomorphism as the dual of the second projection consid
ered in example 2.4. In this case we can think of the diagram as carrying 
spin 1/2 over two of the three half-edges at each vertex and spin 1 over 
the last half-edge. Since each of these homomorphisms is symmetric 
with respect to the exchange of the two spin-1/2 representations, the 
diagram is symmetric under the exchange of the corrresponding half-
edges. 

It would be interesting to see if this or more general choices of the 
bundle E and of the equivariant homomorphisms give rise to new in-
equivalent cocycles. 
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