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HAUSDORFF DIMENSION AND CONFORMAL 
DYNAMICS I: 

STRONG C O N V E R G E N C E OF KLEINIAN G R O U P S 

CURTIS T. MCMULLEN 

Abstract 
This paper investigates the behavior of the Hausdorff dimensions of the limit 
sets An and A of a sequence of Kleinian groups Tn —> r , where M = H 3 / r 
is geometrically finite. We show if T n —> T strongly, then: 

(a) Mn = H ß / r n is geometrically finite for all n ^> 0, 

(b) An —s> A in the Hausdorff topology, and 

(c) H. dim(An) -> H. dim(A), if H. dim(A) > 1. 

On the other hand, we give examples showing the dimension can vary dis-
continuously under strong limits when H.dim(A) < 1. Continuity can be 
recovered by requiring that accidental parabolics converge radially. 
Similar results hold for higher-dimensional manifolds. Applications are 
given to quasifuchsian groups and their limits. 

1. Introduction 

To any complete hyperbolic manifold M one may associate a con-
formal dynamical system, by considering the action of T = 7ri(M) on 
the sphere at infinity for the universal cover, S^ = dWd+l. For 3-
manifolds one obtains in this way the classical Kleinian groups acting 
on the Riemann sphere C. 
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A fundamental invariant of M and Y is the Hausdorff dimension 
of the limit set A C S^, the set of accumulation points of any orbit 
Yx C M + 1 . When Y is geometrically finite, D = H. dim(A) coincides 
with several other invariants of Y, and is related to the bot tom of the 
spectrum of the Laplacian on M by 

X0(M)=D(d-D), 

when D > d/2. 
Moreover the limit set of a geometrically finite group supports a 

canonical conformai density of dimension D. That is, there is unique 
probability measure /z on A transforming by \j'\D under the action of 
r . In the absence of cusps, /z is simply the normalized D-dimensional 
Hausdorff measure on A. 

In this paper we study the behavior of H. dim(A) for a sequence 
of Kleinian groups. Recall that r „ —> Y geometrically if the groups 
converge in the Hausdorff topology on closed subsets of Isom(M<i+1). We 
say r „ —> Y strongly if, in addition, there are surjective homomorphisms 

xn •• r -»• r n 

converging pointwise to the identity. Equivalently, Xn tends to the in­
clusion r C Isom(Md + 1) . 

It has been conjectured that the Hausdorff dimension of the limit 
set varies continuously under strong limits (see e.g. [33, Conj. 5.6]). We 
will show this conjecture is false in general, and at the same time give 
positive theorems to guarantee continuity. 

In the 3-dimensional case we obtain the following results. 

T h e o r e m 1.1. Let Yn —> Y strongly, where M = M 3 / r is geometri­
cally finite. Then Yn is geometrically finite for all n » 0 , and the limits 
sets satisfy A„ —> A in the Hausdorff topology. 

T h e o r e m 1.2. If, in addition, H. dim(A) > 1, then 

H.dim(A n ) ^ H . d i m ( A ) ; 

and if H. dim(A) > 1 then the canonical densities satisfy \in —>• /z in the 
weak topology on measures. 

On the other hand we find new phenomena when H. dim(A) < 1: 

T h e o r e m 1.3. For any e with 0 < e < 1/2, there exist geometrically 
finite groups Y and Yn, such that Yn —> Y strongly but 

H. dim(A„) ->• 1 > H. dim(A) = 1/2 + e. 
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To recover continuity of dimension in general, one must sharpen the 
notion of convergence. Recall that r n —> V algebraically if there are iso­
morphisms Xn '• F —> Tn converging to the identity. A parabolic element 
g G r is an accidental parabolic if Xnid) is hyperbolic for infinitely many 
n. Then the complex length Ln + i6n of Xnid) tends to zero; it does so 
radially if 9n = 0(Ln), and horocyclically if # ^ / L n —> 0. 

T h e o r e m 1.4. Let M = M 3 / r be geometrically finite, and suppose 
Tn —> r algebraically. Then: 

(a) r „ —> r strongly -<=^ all accidental parabolics converge horo­
cyclically; and 

(b) H.dim(A n ) —> H.dim(A) and \in —>• ß if all accidental parabolics 
converge radially. 

The examples of Theorem 1.3 reside in the gap between horocyclic and 
radial convergence. 

Higher d imens ional manifolds . Theorems 1.1 and 1.2 generalize 
to Kleinian groups acting on 5 ^ , d > 3, if we replace H. dim(A) > 1 by 
the condition 

D = H.dim(A) > ( d - l ) / 2 . 

Since Ao(M) is sensitive to the dimension of the limit set only when 
D > d/2, we find: 

T h e o r e m 1.5. If M is a geometrically finite manifold of any di­
mension and Mn —> M strongly, then Xo(Mn) —> AQ(M). 

T a m e 3-manifolds . A hyperbolic manifold is topologically tame 
if it is homeomorphic to the interior of a compact manifold. If M = 
M3 / r is geometrically infinite but topologically tame, then H. dim(A) = 
2, and it is easy to see H. dim(Ajj) —>• H. dim(A) whenever Yn —̂  Y 
geometrically, algebraically or strongly (§7). 

On the other hand, the limit set of such a manifold generally carries 
many different conformai densities \i of dimension 2 (see §3), so the 
discussion of convergence of these measures must be reserved for the 
geometrically finite case. 

Quasifuchsian groups . As applications of the results above, one 
can study a sequence of quasifuchsian manifolds Mn = Q(Xn,Y) in 
Bers' model for the Teichmüller space of a surface S. Here are four 
examples, treated in detail in §9. 
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1. If Xn = Tn(Xo), where r is Dehn twist, then Mn has distinct 
algebraic and geometric limits MA and MQ as n —> oo. We find 
Mn —> MG strongly and the limit sets satisfy 

H.dim(A n ) - • H.dim(AG) > H.dim(A A ) . 

2. If Xn = (/>n(Xo), where 4> is pseudo-Anosov on S or any subsurface 
of S, then all geometric limits are geometrically infinite and 

H.dim(A„) - > 2 . 

3. If Xn is obtained by pinching a system of disjoint simple closed 
curves on XQ (in Fenchel-Nielsen coordinates), then Mn tends 
strongly to a geometrically finite manifold M and 

H.dim(A n) ->• H.dim(A) < 2. 

4. Finally consider the manifolds Mt = Q ( T * ( X ) , Y) , i G l , obtained 
by performing a Fenchel-Nielsen twist of length t about a simple 
geodesic C on X . In this case we show there is a continuous 
function ô(t), periodic under t t-ï t + £c(X), such that 

lim | H . d i m ( A t ) - £ ( i ) | = 0 . 
t—s>oo 

It seems likely that ö(t) is nonconstant, and thus H. dim(A t) os­
cillates along this twist pa th to infinity in Teichmüller space. 

This last example was inspired by a discovery of Douady, Sentenac 
and Zinsmeister in the dynamics of quadratic polynomials. These au­
thors show the Hausdorff dimension of the Julia set J(z2 + c) is also 
asymptotically periodic, and probably oscillatory, as c \ 1/4 along the 
real axis [17]. 

P l a n of the paper . In §2 and §3 we consolidate known material 
on the dimension of the limit set of a Kleinian groups. Some short 
proofs are included for ease of reference. The main results on continuity 
of dimension and Ao are obtained in §7. Examples of discontinuity, 
including Theorem 1.3, are given in §8. 

The general argument to establish continuity of dimension is to take 
a weak limit v of the canonical densities /j,n, and show v = /z. It turns 
out that / j / i / only if v is an atomic measure supported on cusps points 
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in the limit set. To rule this out, we explicitly control the concentration 
of / i n near incipient cusps. Part of the control comes from convergence 
of the convex core (§4), and part from estimates for the Poincaré series 
(§6). The theory of accidental parabolics is developed along the way 
(§5), and the applications to quasifuchsian groups are given in §9. 

N o t e s and references. The continuity of H. dim(A) was also stud­
ied independently and contemporaneously by Canary and Taylor. Using 
spectral methods, Canary and Taylor show that if Tn —> F strongly and 
M 3 = M 3 / r is not a handlebody, then H. dim(An) ->• H.dim(A) [15]. 
The condition that M 3 is not a handlebody guarantees H.dim(A) > 1, 
so when M 3 is geometrically finite their result is also covered by The­
orem 1.2. On the other hand, the theorems of this paper do provide 
continuity of H. dim(A) for geometrically finite handlebodies, so long 
as a condition such as H. dim(A) > 1 or radial convergence r „ —> F 
is assumed. Note that our counterexamples to continuity of dimension 
come from geometrically finite handlebodies with cusps (§8). 

A version of Theorem 1.1 (without continuity of A) was proved by 
Taylor [33]. See Anderson and Canary for related results on cores and 
limits [2], [3]. 

This paper belongs to a three-part series [25], [24]. Part II gives 
parallel results in the setting of iterated rational maps. The theory 
of conformai densities is available for both rational maps and Kleinian 
groups; it is in anticipation of the applications in Part II that we work 
with conformai densities here, rather than with eigenfunctions of the 
Laplacian. 

Part III presents explicit dimension calculations for families of con-
formal dynamical systems. 

For background on hyperbolic manifolds, see the texts [34], [37], [6] 
and [28]. 

N o t a t i o n . A x B means A/C < B < CB for some implicit con­
stant C; n » 0 means for all n sufficiently large. 

2. T h e basic invariants 

Let Md+1 be the hyperbolic space of constant curvature —1, and let 
S^ = R^ U {oo} denote its sphere at infinity. Let M = Ud+1/F be 
a complete hyperbolic manifold. In this section we recall the relation 
between: 
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• Ao(M), the bottom of the spectrum of the Laplacian; 

• 6(F), the critical exponent of the Poincaré series for F; 

• a(F), the minimum dimension of a r-invariant density; and 

• H. dim(Ara(j), the Hausdorff dimension of the radial limit set. 

Groups and limit sets. A Kleinian group is a discrete subgroup 
r C Isom(H + 1 ) . Every complete manifold of constant curvature —1 
can be presented as a quotient M = Md+1 /F where T is a Kleinian 
group. 

For simplicity we will generally assume that F is torsion-free and 
nonelementary, i.e. any subgroup of finite index is nonabelian. 

The limit set A of F is the subset of S^ defined for any x G Md+1 by 

A = Fx~nS^. 

It complement O = S^ — A is the domain of discontinuity. 
The radial limit set Ara(j C A consists of those y G S^ such that 

there is a sequence jnx —> y which remains within a bounded distance 
of a geodesic landing at y. Equivalently, y G Ara(j iff y corresponds to a 
recurrent geodesic on M. 

Cusps. An element 7 G F is parabolic if it has a unique fixed-point 
c G O Q Q . 

We say c G S^ is a cusp point, and its stabilizer L C F is a parabolic 
subgroup, if L contains a parabolic element. Then L contains a subgroup 
of finite index LQ = Z r , r > 0; and we say c and 1/ belong to a cusp 0/ 
ranA; r (compare [37, §4]). All cusp points belong to the limit set, and 
all elements of L — {id} are parabolic. 

Invariants. The bottom of the spectrum of the Laplacian is defined 
by 

(2.1) Ao(M) = i n f j i j ^ p ! : /GC7 0 - (M)} 

(2.2) = sup{A > 0 : 3 / > 0 o n M with A / = A/}. 

Here A denotes the positive Laplacian; for example Xo(Md+1) = <i2/4. 
The equivalence of the two definitions above on any Riemannian man­
ifold) is shown in [16]. 
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The Poincaré series is defined for x G Md+1 U O by 

E 7 er e-^'T*) iî x e Md+1, 

E 7 G r W(x)\s i f^ef i -

Here and below |7 ' | is measured in the spherical metric. The critical 
exponent is given by 

Æ(T) = inî{s > 0 : Ps(F,x) < oo}; 

it is independent of the choice of x. 
A Y -invariant conformai density of dimension a is a positive mea­

sure /i on S^ç such that 

(2.3) ß(jE)= [ W\adß 
E 

for every Borei set E and 7 G T. A density is normalized if ^(S^) = 1. 
From a more functorial point of view, a conformai density of dimen­

sion a is a map 

/i : (conformai metrics p(z)|d;z| on S^) —> (measures on S^) 

such that 

dß(pi) = (PA" 

dß(p2) p2 

Conformai maps act on densities in a natural way, and (2.3) says 7*(/z) = 
/i. We implicitly identify /z with the measure ß(a) where 

a = 2\dx\/(l + \x\2) 

is the spherical metric. 
The critical dimension of T is given by 

(2.4) a ( r ) = inf{a > 0 : 3 a T-invariant density of dimension a}. 

In (2.2) and (2.4) it is easy to see that the inf and sup are achieved: 
there exist a positive eigenfunction with eigenvalue XQ(M), and a l'­
invariant density of dimension a(T). In particular we have a(T) > 0, 
because A has no T-invariant measure. 

^(r, 
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The Hausdorff dimension of the radial limit set, denoted H. dim(Ara(i), 
is the infimum of those ö > 0 such that Ara(j admits coverings {Bj) with 
XXdiamBi^-X). 

Combining the results of Sullivan and Bishop-Jones, namely [29, 
Cor. 4], [32, Thm. 2.17] and [8, Thm 1.1] (generalized to arbitrary d), 
we may now state: 

Theorem 2.1. Any nonelementary complete hyperbolic manifold 

M = Ud+1/T satisfies 

H.dim(Arad) =ô(T)=a(T) 

and 

A (M) = id2/4 ifS(T)<d/2, 
°[ o(T)(d-ô(T)) ifô(T)>d/2. 

For later use we record: 

Corollary 2.2. If Y has a cusp of rank r, then ö(T) > r /2 . 

Proof Let c G S£, be a cusp point whose stabilizer contains a 
subgroup L = 17. Change coordinates so c = oo in S^ = W^ U {oo}, 
and so L acts by translations on W C M^,. (In general L can rotate the 
planes Rd~r orthogonal to W.) Then g i->- g(0) embeds L as a discrete 
lattice in W. 

Choose a ball B = B(0,s) C JR^ with //(S) > 0, where ß is an 
invariant density of dimension S = S(T). Then we have 

J > ( 9 J B ) X 5 > ' ( 0 ) | * < O C , 
geL 

where \g'\a is measured in the spherical metric a = 2\dx\/l + \x\2). 
Since 

2 - 5 

the above integral converges, and thus ö > r/2. D 

Here is another useful criterion for the critical exponent [29, Cor. 
20]: 

Theorem 2.3. If /z is a T-invariant density of dimension a, and /z 
gives positive measure to the radial limit set, then a = ô(T). 
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We also note: 

T h e o r e m 2.4. If the Poincaré series diverges at the critical expo­
nent, then any invariant density /z of dimension Æ(Y) is supported on 
the limit set. 

Proof. Let F C f2(r) be a fundamental domain for the action of I \ 
Then 

Y^^F) = E I W(x)\ìdv(x) = I Ps(x)d^(x) < v(Si) < oc; 
P T F F 

since Pg(T,x) = oo for x G f î ( r ) , we have ß{F) = 0 . D 

3. Geometr ica l ly finite groups 

To obtain more precise results, it is useful to impose geometric con­
ditions on the hyperbolic manifold M = Md+1 /Y. 

The convex core K(M) is the quotient by T of the smallest convex 
set in Md+1 containing all geodesies with both endpoints in the limit 
set. The manifold M and the group T are said to be geometrically finite 
if the convex core meets the Margulis thick part of M in a compact 
set. For such a manifold, A — Ara(j is equal to the countable set of cusp 
points (fixed-points of parabolic elements of T). If T is geometrically 
finite without cusps, then K(M) is compact, A = Ara(j and we say T is 
convex cocompact. 

By [31] and Theorem 2.4 we have: 

T h e o r e m 3 . 1 . If M = Md+1 /T is geometrically finite, then 

H. dim(A r a d) = H. dim(A). 

Moreover, the sphere carries a unique Y-invariant density \i of dimen­
sion Æ(r) and total mass one; \i is nonatomic and supported on A; and 
the Poincaré series diverges at the critical exponent. 

Corollary 3 .2 . / / the limit set of a geometrically finite group is not 
the whole sphere, then H. dim(A) < d. 

Proof. Otherwise Lebesgue measure on the sphere would be a 
second invariant density of dimension Æ(r) = d. D 

Corollary 3 .3 . Any normalized T-invariant density supported on 
the limit set of a geometrically finite group T is either: 
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• the canonical density of dimension ô(T), or 

• an atomic measure supported on the cusp points in A and of di­
mension a > 6(F). 

Proof. If the dimension a of /z is more than 6(F), then /z(Ara(i) = 0 
by Theorem 2.3, so ß is supported on the countable set of cusps. D 

If r has cusps then these atomic measures actually exist for any 
a > 0(F) [32, Thm 2.19]. 

Corollary 3 .4 . The limit set of a convex cocompact group supports 
a unique normalized F-invariant density. 

Recall M = rf+1/r is topologically tame if it is homeomorphic to 
the interior of a compact (d + l)-manifold. 

T h e o r e m 3 .5 . If M = H 3 / r is geometrically infinite but topologi­
cally tame, then 

H. dim(A r a d) = H. dim(A) = 2. 

Proof. In [13] it is shown that Xo(M) = 0 when M is geometrically 
infinite but topologically tame. Since Ao = 8(2 — 8) and 8 > 0, the result 
follows from Theorem 2.1. D 

N o n - u n i q u e n e s s of// for topological ly t a m e manifolds . When 
M 3 = M 3 / r is topologically tame but geometrically infinite, there may 
be more than one normalized invariant density fi in the critical dimen­
sion <S(r) = 2. 

To sketch an example, we start with any compact, acylindrical, 
atoroidal 3-manifold N such that dN has 3 components. By Thurston's 
hyperbolization theorem, N admits convex hyperbolic structures 
M(X, Y, Z) parameterized by conformai structures (X, Y, Z) on the 
pieces of dN. (See, e.g. [26, §5].) 

Let (f> and ip be pseudo-Anosov mapping classes, and let M be any 
algebraic limit of Mn = M(<f)n (X), ipn (Y), Z) (such limits exist by com­
pactness of AH(N) [35]). Then M = M 3 / r has two geometrically infi­
nite and asymptotically period ends E\ and E2, as well as a geometri­
cally finite end corresponding to Z. (Compare [23, §3].) 

Let gn : M —>• (0, 00] be the Green's with a pole at pn —> 00 in E\, 
scaled so gn(*) = 1 at a fixed basepoint. By Harnack's principle there is 
a convergent subsequence, with limit a positive harmonic function h\. 
The function h\ tends to infinity in the end E\, is bounded in E<i and 
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tends to zero at Z (compare [30]). There is a similar positive harmonic 
function /i2 tending to infinity in E% and bounded in E\. Then h\ and 
]%2 are linearly independent, and at infinity they determine mutually 
singular invariant densities ß\ and ß2 of dimension two. 

It seems likely that for topologically tame hyperbolic 3-manifolds, 
the space of invariant densities is finite-dimensional and its dimension 
is controlled by the number of ends of M. 

N o t e s and references. 

1. The unique density guaranteed in Theorem 3.1 can be related 
to the Hausdorff measure or packing measure of the limit set in 
dimension 8(Y) [31]. 

2. Some papers we cite define geometric finiteness in terms of a con­
vex fundamental polyhedron. This definition agrees with ours 
when dim(M) < 3, and the results we quote remain valid with 
the present definition. See [10] for a discussion of the definition of 
geometric finiteness. 

3. It is conjectured that M = M 3 / r is topologically tame whenever 
r is finitely generated, and tameness is known in many cases [9], 
[14]. So Theorem 3.5 suggests: 

Conjecture 3.6. For any finitely generated Kleinian group 
r C Isom(M3) ; we have H.dim(A r a d ) = H. dim(A). 

Any counterexample to this conjecture must have a limit set of 
positive area [8, Thm 1.7]. 

1. See also [5], [27], and [38] for results treated in this section. 

4. Cores and geometr ic l imits 

In this section we introduce the algebraic, geometric and strong 
topologies on the space of all Kleinian groups. The main result is the 
following criterion for the limit set and the truncated convex core to 
move continuously. 

T h e o r e m 4.1 (Convergence of cores). Suppose Tn —> V strongly, 
where T is geometrically finite. Then: 

1. The manifold Mn = Ud+1 /T n is geometrically finite for all n > 0 , 
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2. The limit sets satisfy A„ —> A in the Hausdorff topology, and 

3. The truncated convex cores of the quotient manifolds satisfy 
Ke(Mn) ->• Ke(M) strongly, for all e > 0. 

Here is a criterion to promote algebraic convergence to strong conver­
gence: 

Theorem 4.2. Let Fn —> FA algebraically, where FA is geometri­
cally finite. Then Fn —> FA strongly if and only if Ln —> LA geometri­
cally for each maximal parabolic subgroup LA C TA-

In the statement above, Ln = XU(LA) are the subgroups of Tn cor­
responding algebraically to LA-

Corollary 4.3. If FA is convex cocompact, then algebraic conver­
gence implies strong convergence. 

Algebraic and geometric limits. Let Fn C Isom(M<i+1) be a 
sequence of Kleinian groups. There are several possible notions of con­
vergence of the sequence Fn. We say Fn —> F G geometrically if we have 
convergence in the Hausdorff topology on closed subsets of Isom(M<i+1). 
We say Fn —> FA algebraically if there exist isomorphisms Xn '• TA —> Fn 

such that Xn(g) -^ 9 for each g G FA-
A sequence Fn has at most one geometric limit FQ, but it may have 

many algebraic limits FA (coming from different 'markings' of Fn). If 
the geometric limit exists, then it contains all the algebraic limits. 

Here is a description of geometric convergence from the point of view 
of quotient manifolds. By choosing a standard baseframe at one point 
in Md+1, we obtain a bijective correspondence between (torsion-free) 
Kleinian groups and baseframed hyperbolic manifolds (M, u>). Then 

(Mn ,w„)->(M,w) 

geometrically if and only if, for each compact submanifold K C M 
containing LO, there are smooth embeddings <f>n '• K —>• Mn for n 3> 0 
such that 4>n sends LO to un and 4>n tends to an isometry in the C°° 
topology. (See [6, Thm. E.1.13].) 

Strong convergence. We say Fn —> F$ strongly if 

(a) r n —> Fs geometrically, and 

(b) for n > 0 there exist surjective homomorphisms 

Xn • TS ->• r „ 
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such that Xn(g) —> 9 for all g G T$-

If r „ converges to r both geometrically and algebraically, then it con­
verges strongly. However strong convergence is more general, since we 
require only a surjection (instead of an isomorphism) in (b). This gen­
erality accommodates situations like Dehn filling in 3-manifolds. 

Note that when T$ is finitely generated, any two choices for Xn m 

(b) agree for all n 3> 0. 

L e m m a 4.4 . Suppose Fn has algebraic and geometric limits 
YA C r G ; and MG = Wd+1 /F Q is topologically tame. Then Yn —> YQ 
strongly. 

Proof. By tameness there is a compact submanifold K C MQ such 
that the inclusion induces an isomorphism on m. Then we may identify 
•ÏÏI(K) with FQ. Geometric convergence provides nearly isometric em-
beddings 4>n : K —>• Mn = H^"1"1/!^ for n > 0; on the level of 7ri, these 
give homomorphisms Xn '• ^G —> T n converging to the identity. 

By algebraic convergence, there are also isomorphisms x'n '• ^A —> Yn 

converging to the identity. Since Y A C YQ and XÎI |TA = x'n for a n ^ ^ 0, 
the maps Xn are surjective. D 

L e m m a 4.5 . Let Fn —> FA algebraically. Then Fn —> FA strongly 
iff for all sequences gn in FA, 

(4.1) (gn ->• oo in FA) => (Xn{9n) -+ oo in Isom(EId+1)) 

where Xn '• ^A —> Yn are isomorphisms converging to the identity. 

Remark . We say xn —> oo in X if {xn} n K is finite for every 
compact K C X. 

Proof. Assume (4.1), and consider any h G Isoni(IHI + 1 ) on which 
r n accumulates. Then passing to a subsequence we can write h = 
HmXniOn) G r „ . By (4.1) gn returns infinitely often to a compact 
(hence finite) subset of FA, SO gn equals some fixed g for infinitely many 
n. Then h = l imx n (g) = 9, and therefore FQ = FA-

Conversely, suppose Fn converges geometrically to FA- Consider any 
gn G FU such that Xn(9n) -» oo- Then Xn(9n) —> h along a subsequence, 
so ft £ r ^ and Xn(h~1gn) —> id. Therefore gn = h for all n 3> 0 and 
gn -» oo, as required by 4.1). D 

T h e t runca ted convex core. We now turn to an analysis of 
convergence when the limiting manifold is geometrically finite. 
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Given a hyperbolic manifold M, let K{M) denote its convex core, 
and for e > 0 let M < e denote the e-thin part of M (where the injectivity 
radius is less than e). The truncated core is defined by 

Ke(M) = K{M) -M<e. 

Note that M is geometrically finite iff Ke(M) is compact when e is the 
Margulis constant. If M is geometrically finite, and e is less than both 
the Margulis constant and the length of the shortest geodesic on M, 
then there is a retraction 

p:M^ Ke(M). 

(First take the nearest point projection to K(M), and then use the 
product structure in the cusps.) 

Proof of Theorem 1^.2. Clearly strong convergence of Tn to TA im­
plies strong convergence of parabolic subgroups. 

Now assume Ln —y LA for each maximal parabolic subgroup 
LA C Y A- We will show Yn —> FA geometrically, and hence strongly. 

Pass to any subsequence such that the geometric limit YQ of Tn 

exists. Then TA is a subgroup of YQ, SO on the level of quotient manifolds 
we have the diagram: 

MA 

IT 

where n is a covering map and 4>n are nearly isometric embeddings 
defined on larger and larger compact submanifolds of MQ (as suggested 
by the notation cpn : MQ —•> Mn). Each manifold is equipped with a 
baseframe, chosen for simplicity in its convex core, and the maps above 
preserve baseframes. 

The convex cocompact case. To give the idea of the proof, 
first consider the case where TA is convex cocompact. Then K(MA) 
is compact and homotopy equivalent to MA- The composition (f>n Æ n 
is C°° close to a (local) isometry on K(MA) for all n 3> 0, and the 
isomorphisms 

Xn • T A 
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converging to the identity are the same as the maps on fundamental 
group 

(4>n O TT)* : TTICK^MA), *) - • 7Tl(Mn, *) 

defined for all n 3> 0. 
Let gn —> oo in TA, and let 7„ C K(MA) be the geodesic paths be­

ginning and ending at the basepoint and representing gn G TTI(MA,*)-

Then j ' n = (f>n o 7r(7n) has small geodesic curvature and length compa­
rable to 7„, so the geodesic representative of 7^ is also long. Therefore 
XnÌ9n) —> 00 in Isom(Mrf+1). By Lemma 4.5 above, Yn —> TA geometri­
cally, and hence strongly. 

The geometrically finite case. Now suppose only that TA is 
geometrically finite. Choose e > 0 less than both the Margulis constant 
and the length of the shortest geodesic on MA- AS noted above, there 
is a smooth retraction 

p : MA -+ Ke(MA) 

from the manifold to its truncated core. 
Consider again the geodesic representatives 7„ C MA of a sequence 

gn —> 00 in r ^ . Focusing attention on a particular n » 0 , write 

(4.2) 7n = Æ u e i U - - - U & , 

where Æ = 7 fi K€(MA), and the {£j} are geodesic segments in M^f. 
These segments account for excursions of 7„ into the cusps of MA- Mod­
ify this decomposition slightly by absorbing into Æ any short £j (say of 
length less than 1). 

Let Æ' = (f>n o 7r(Æ), and define ^ C Mn by first retracting £j to the 
truncated core K€(MA), then straightening (pn0^°p(^i) rei its endpoints. 
Then 

7; = Æ ' u e i u - - - u ^ 
is a based piecewise geodesic segment representing the homotopy class 
Xn(gn) in Mn. See Figure 1. 

Strong convergence of cusps (the condition Ln —> LA geometrically) 
implies the length of ^ tends to infinity as the length of £j tends to 
infinity, by Lemma 4.5. 

We claim 7^ is nearly a geodesic. More precisely, the geodesic seg­
ments making up 7^ have definite length and meet in small angles, and 
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MA In 

KÂMA) ^ O T T 

Mn 

in 

F I G U R E 1. A piecewise-geodesic representative of 7„ in Mn. 

these angles tend to zero as n —> oo. Indeed, if one such segment £j is 
very long, then ^ is also very long, so ^ and 8' are both nearly perpen­
dicular to the boundary of the thin part, hence nearly parallel. On the 
other hand, if £j has only moderate length, then £j is within a compact 
neighborhood OÎK€{MA)- Hence ^Uö' is close to (/>no7r(^U<5), so there 
is a small angle in this case too. 

Now as n —> oo, we have £(^n) —> oo, so in the decomposition (4.2) 
we either have a large number of segments or a long individual segment. 
In either case the same is true of 7^, so ^(7^) —> 00. Therefore XniOn) ~^ 
00 and we have again established strong convergence by Lemma 4.5. 

D 

Convergence of cores. Next we explain the condition on cores in 
the statement of Theorem 4.1. Suppose (Mn,u)n) —> (M,LO) geometri­
cally, and (f>n : M —» Mn are almost-isometries defined on larger and 
larger compact submanifolds. If Kn C Mn, K C M are compact sets, 
we say Kn —> K strongly if: 

(i) Kn is contained in a unit neighborhood of (pn(K) for all n » 0 , 
and 

(ii) (f)~l(Kn) —> K in the Hausdorff topology on compact subsets of 
M. 
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Note that (i) prevents any part of Kn from disappearing in the limit 
by tending to infinity. An equivalent formulation is that the Hausdorff 
distance between Kn and <f)n{K) tends to zero. 

For later reference we quote [23, Prop. 2.4]: 

Propos i t i on 4 .6 . If Fn —> F geometrically, and the injectivity ra­
dius of the quotient manifold Mn in its convex core K(Mn) is bounded 
above, independent of n, then 

A(r„) -• A(r) 

in the Hausdorff topology. 

Proof of Theorem, 4-1 (Convergence of cores). We first show 
Ke(Mn) —T- Ke(M) strongly. The argument is very similar to the proof 
of Theorem 4.2. 

Consider any e > 0 less than the Margulis constant and the length 
of the shortest geodesic on M. As before there is a retraction 

p:M^Ke(M), 

and we can identify F with ni(K€(M)). By strong convergence, the 
nearly isometric embedding 

4>n : Ke{M) -+ Mn 

determines a surjective homomorphism 

Xn '• 1 ^ n 

for all n 3> 0. Moreover, cf)n sends the thin part into the thin part, 
so geodesies passing through the thick part of Mn are represented by 
geodesies on M. 

Consider any closed geodesic 7„ passing through the e-thick part of 
Mn. Let 7 be the shortest closed geodesic in M such that (pn(p(l)) is 
homotopic to 7„. As before, we can write 

7 = £ u ei u • • • u es, 
where ô = "ynKe(M), and the {£,} are geodesic segments in M - e . Then 
7„ is homotopic to the broken geodesic 

-y'n = S'U^U---uC 
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where 8' = 4>n(ô) and ^ is obtained by straightening cf)n o p(Çi) while 
holding its endpoints fixed. 

Now we claim ^ is long whenever ^ is long. Indeed, for any R > 0 
there exists an N(R) such that 0„ is defined and nearly isometric on an 
R-neighborhood of Ke(M) when n > N(R). For such n, the straight­
ened segment ^ is longer than R/2 whenever ^ is longer than R; oth­
erwise we could replace £j with (/)nl(^i) a n d shorten our representative 
7 while keeping (pnil) homotopic to 7„. 

Thus one can repeat the proof of Theorem 4.2 to conclude that "fn 

is nearly a geodesic, and therefore: 

(*) The loops 7^ and 7„ are Cl-close in the thick part M^€, 
with a bound depending only on n and tending to zero as 
n —> oo. 

Now any x G Ke(Mn) lies in the image of an ideal simplex 5" C 
Md+1 = Mn with vertices in the limit set. Approximating the edges of 
S by lifts of long closed geodesies and applying (*), we conclude that x 
lies close to (pn(Kf(M)). 

In particular Ke(Mn) is compact, so Mn is geometrically finite. The 
same reasoning shows any x G Ke(M) is close to (p~1(Ke(Mn)), so the 
truncated cores converge strongly. 

By convergence of cores, the injectivity radius in K{Mn) is uniformly 
bounded above for all n » 0 . Thus Proposition 4.6 shows A„ —> A. D 

Another proof of Theorem 4.1(a), similar in spirit and with many 
details, can be found in [33]. 

5. Acc identa l parabol ics 

Cusps play a central role in the theory of deformations of geomet­
rically finite manifolds. In this section we discuss the ways in which a 
closed geodesic can shrink to form a cusp in the algebraic limit of a se­
quence of hyperbolic 3-manifolds. This shrinking governs the difference 
between algebraic and strong convergence, and we will prove: 

T h e o r e m 5 .1 . Let Yn C Isom(M3) converge algebraically to a ge­
ometrically finite group TA- Then Tn —> FA strongly iff all accidental 
parabolics converge horocyclically. 

On the other hand, we will see in §7 and §8 that the stronger con­
dition of radial convergence is required to obtain convergence of the 
dimension of the limit set. 
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1 1 

F I G U R E 2. Radial and horocyclic convergence of multipliers. 

Radial and horocycl ical ly convergence . Consider a sequence 
tn = iLn + 9n in the upper half-plane M C C with tn —> 0. We say 
tn —> 0 radially if there exists an M such that 

\en\/Ln < M 

for all n, while tn —> 0 horocyclically if 

02jLn -+ 0. 

Radial convergence means tn remains within a bounded hyperbolic dis­
tance of a geodesic converging to t = 0, while horocyclic convergence 
means any horoball resting on t = 0 contains tn for all n » 0 . 

Now suppose An —> 1 in C* and |An| > 1. We say A„ —> 1 radially or 
horocyclically if t n = i log A„ —> 0 radially or horocyclically in BL See 
Figure 2. Radial convergence is equivalent to the condition 

|A„ - 1| < M| |A n | - 1| 

for some M. 

The complex length of a hyperbolic element g G Isom+ (M3 ) is given 

by 

C(g) =L + iO = \og A, 

where the multiplier A = g'(x) is the derivative of g at its repelling 
fixed-point. The real part L is the length of the core geodesic of the 
solid torus M3/{g}, and 6 is the torsion of parallel t ransport around this 
geodesic. When g is nearly parabolic (A is close to 1) there is a natural 
choice of 9 close to 0. 

Now suppose TJJ —y r^4 algebraically, with isomorphisms \ n : Y A —̂  
r n converging to the identity. An accidental parabolic g G TA is a 
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parabolic element such that gn = Xnid) is hyperbolic for infinitely many 
n. The complex lengths of these gn satisfy 

iC{gn) ^ 0 in M. 

If the convergence above is radial (or horocyclic), we say all accidental 
parabolico converge radially (or horocyclically). (For TA Çt Isom+(M3) 
we apply the condition to its orientation preserving subgroup.) 

Proof of Theorem 5.1. Suppose Tn —> FA algebraically. By Lemma 
4.5, r n —> TA strongly iff Ln —> LA geometrically for each maximal 
parabolic subgroup LA C TA, where Ln = XU(LA)-

If Ln is a parabolic subgroup for all n ^> 0, then it is conjugate to a 
group of translations on C, and geometric convergence is easily verified 
(cf. Theorem 6.2 below). 

Otherwise Ln is hyperbolic for infinitely many n, so LA is of rank-
1 and generated by an accidental parabolic. Pass to the subsequence 
where Ln is hyperbolic, and let Xn —> I denote the multiplier of a 
generator of Ln. To analyze the geometric limit in this case, consider 
the quotient torus 

Xn = Sl{Ln)/Ln = C* j \ \ =* C/(Z2ni © Z log A) 

and the quotient cylinder 

XA = n(LA)/LA = C/Z. 

Suppose Xn —> I horocyclically. Then tn = i(log\)/2n —> 0 horo­
cyclically in EL But this means [Xn] —> oo in the moduli space of 
complex tori Mi = H / S i ^ Z ) , since horoballs resting on z = 0 form 
neighborhoods of the cusp of the modular surface. Thus Xn becomes 
long and thin as n —> oo, so it converges geometrically (as a surface with 
a complex aÆne structure) to the cylinder XA- Therefore Ln —> LA ge­
ometrically as well. 

On the other hand, if the convergence is not horocyclic, then after 
passing to a subsequence the tori [Xn] converge to a torus XQ G M.\-
Thus Ln converges geometrically to a rank-2 parabolic subgroup LQ, 
with 

XG = n(LG)/LG. 

Hence LQ ^ LA and strong convergence fails whenever horocyclic con­
vergence fails. D 
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6. Cusps and Poincaré series 

In this section we continue our study of cusps from a more analytical 
point of view. We consider a single parabolic group L and a deformation 
given by a family of representations Xn '• L —ï Ln converging to the 
identity. The results we develop control the Poincaré series for Ln as 
n —> oo. 

This control will be applied in the next section to establish continuity 
of the Hausdorff dimension of the limit set. 

Deformat ions of cusps . Let L be an elementary Kleinian group. 
Then L is a finite extension of a free abelian group Z r , and we set 
rank(I/) = r . We say L is hyperbolic if it contains a hyperbolic element; 
in this case rank(L) = 1. Otherwise L is parabolic, its elements share a 
common fixed-point c, |</(c)| = 1 for all g G L and 0 < rank(I/) < d. 

Now consider a deformation given by a sequence of representations 
Xn '• L —> Ln, and a sequence of real numbers Æn, satisfying the following 
conditions: 

1. Ln and L are elementary Kleinian groups fixing a common point 
c £ ^ooi 

2. L is parabolic, with rank(I/) > 1; 

3. Xn '• L —> Ln is a surjective homomorphism, converging pointwise 
to the identity; and 

4. Æ ->• Æ > rank(L)/2 . 

Example : D e h n filling. As a typical example, these conditions 
arise naturally when one performs (pm qn) Dehn-filling on a rank two 
parabolic subgroup L of a Kleinian group Y [34, Ch. 4], [6, E.5-E.6]. In 
the filled group TJJ? the cusp becomes a short geodesic with stabilizer 
Ln = Ì9n)ì a n d there is a surjective filling homomorphism Xn '• L —> 
Ln. This example shows we can have rank(L n ) < rank(L) for all n. 
In addition, Ln need not have any algebraic limit; if pn and qn tend 
to infinity, then gn —> oo in Isom(M3) (although Ln converges to L 
geometrically). In our applications the exponents will be given by Æn = 

Æ(r„). 
Uni form convergence of Poincaré series. Recall that for 

r C Isom(M r f+1), x G S^Q and Æ > 0, the absolute Poincaré series is 
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defined by 

Ps(T,x) = 5>'(*)l^ 

where the derivative is measured in the spherical metric a. To study 
the rate of convergence we define for any open set U the sub-sum 

Ps(T,U,x) = J2 \^x)t 
g(x)eU 

Let us say the Poincaré series for (Ln,8n) converge uniformly if for 
any compact set K C S^ — {c} and e > 0, there is a neighborhood U 
of c such that 

PSn{Ln,U,x) <e 

for all n 3> 0 and all x G K. This means the tail of the series can be 
made small, independent of n, by choosing U small enough. 

We will establish uniform convergence under the following 3 condi­
tions. 

Theorem 6 .1 . If Ln —>• L geometrically and 

g > h ifd = 2,or 

(rf- l) /2 ifd + % 

then the Poincaré series for (Ln,ön) converge uniformly. 

Theorem 6.2. If Ln is parabolic with rank(Ln) > d — 1 for all n, 
then Ln —>• L strongly and the Poincaré series converge uniformly. 

Theorem 6.3. If Ln —>• L C Isom(M3) algebraically, Ln are hy­
perbolic and all accidental parabolics converge radially, then Ln —>• L 
strongly and the Poincaré series converge uniformly. 

Cusps in high-dimensional manifolds. We remark that the 
conclusion of Theorem 6.2 holds for all cusps in the case of hyperbolic 
3-manifolds (since d = 2), but it fails for cusps of low rank in high-
dimensional hyperbolic manifolds (d > 2). A related fact is that the 
rank of a cusp can increase in the geometric limit. 

For a standard example, let Rn be the isometry of Mĵ  given by 
rotating angle l-njn about the line (x = 0, y = n); let Tn(x,y,z) = 
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(x, y, z+l/n); and let gn = TnoRn. Then Ln = (gn) is a rank 1 parabolic 
group, converging geometrically to the rank 2 cusp LQ = (g, h) where 

g(x, y, z) = \imgn(x, y, z) = (x + 2vr, y, z), 

h(x,y,z) = limg%(x,y,z) = {x,y,z + l). 

The algebraic limit L = (g) also exists and with the obvious isomor­
phism Xn '• L —> Ln and 8n = 6 = 1/2 + e we have the setup for Theorem 
6.2, except rank(L n ) = d — 2. But Ln does not converge strongly to L 
(because L ^ LQ), and the Poincaré series do not converge uniformly 
(because P$(LG,X) = oo). 

Proof of Theorem 6.1. For simplicity, assume K = {p} is a single 
point; the case of a general compact set is similar. 

Normalize coordinates on S^ = W^ U { o o } so c = 0 and 
Lp C ffi^j. Since L is parabolic, it acts freely and properly discon-
tinuously on S^ — {c}. Thus we can choose a ball B = B(p, r ) , r <C \p\, 
such that its translates L • B are bounded and disjoint. Since Ln —>• L 
geometrically, we can also arrange that the balls Ln • B are bounded and 
disjoint for all n 3> 0. 

To give the main idea of the proof, we first treat the case where we 
have ö > d/2 and Ln is parabolic for all n. Then all Ln act isometrically 
with respect to the metric 

\dx\ 
P = T~i2 

\x\ 

obtained by pulling back the Euclidean metric \dx\ under an inversion 
sending the cusp point c to oo. Consequently diam(g_B) x d(0,gB)2. 
Thus 

PS(L,P) =j2W(p)\i ~J2d'mm(sB)0 = E d i a m ^ ) " d i a m ^ ) 5 "" 
L 

x V [ \x\^-d^ \dx\d = f \x\^-d^ \dx\d < oo, 
gB [JgB 

because 
2(0 -d)> 2(d/2 - d) = -d, 

and —d is the critical exponent for integrability of the singularity \x\a 

o n I d . 
To obtain uniform convergence, choose a such that 

2(ôn - d) > a > -d 



494 CURTIS T. MCMULLEN 

for all n » 0 . Consider a small neighborhood U = -5(0, s) of the cusp 
point c. Then for all n 3> 0 we have similarly 

PSn(Ln,U,p) ~ / |af (*»-*> \dx\d 

{J{gB : gpeU} 

= off \x\a\dxA =0(sd+a). 

Since d + a > 0, this bound tends to zero as s —> 0 and we have 
established uniform convergence of the Poincaré series for (Ln,ôn). 

Next we treat the case where Ln is hyperbolic. Then the geodesic 
stabilized by Ln has endpoints {a„,c} on the sphere at infinity. In this 
case the invariant metric becomes 

I da; I 
Pn = I 

and we have the estimate 

diam(£) x d{0,B)d{an,B). 

The calculation above becomes 

PSn(Ln,U,p) = O U \x - an\
al2\x\al2 \dx\d 

a a d d+® = 0 \x - an\
a + \x\a \dx\a =0{s° 

and as before this bound gives uniform convergence. 
Since d/2 = 1 when d = 2, the proof is now complete in the case of 

classical Kleinian groups. Also when d = 1 we have 

8 > rank(L)/2 = 1/2 = d/2, 

so we have covered this case as well. 
Finally we explain how d/2 can be improved to (d — l) /2 for d > 3. 

Replacing L with a suitable abelian subgroup of finite index, we can 
assume that for each n there is a maximal connected abelian Lie group 
Gn with 

Ln cGn Clsom + ( I f f m ) . 

Fixing attention on a particular n, let D = dim(G„). If Ln is hy­
perbolic, then Gn is conjugate into M* x SO(cf) and we have 

D = l + [d/2], 
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since [d/2] is the dimension of a maximal torus in SO(d). If Ln is 
parabolic of rank r, then Gn is conjugate into W x SO(d — r ) , so we 
have 

D = r+[(d-r)/2] = [(d + r)/2]. 

Now for D < d the orbit Lnp is rather sparse, since it is confined to 
the D-dimensional submanifold Gnp. Due to this sparseness, the critical 
dimension for integrability of \x\a becomes — D instead of —d. Thus we 
need only guarantee S > D/2 to achieve uniform convergence of the 
Poincaré series. (For a detailed proof of this statement, it is useful to 
change coordinates so c = oo and p = 0. Moving p distance < 1 if 
necessary, we can assume the stabilizer of p in Gn is trivial, and that 
the injectivity radius of the submanifold Gnp C M^ at p is bounded 
below. Then for Ln parabolic the orbit of p in M^ is a cylinder: 

Gnp={Sv)D-r x l r , 

while for Ln hyperbolic it is a cone with vertex an: 

GnP^iS1)0-^]^. 

The bound on the Poincaré series becomes 

r \dx\D 

/<?„, (i + W 

and this integral is uniformly bounded, independent of the shape of 
the cylinder or cone, if S > D/2. To see this uniformity, compare the 
integral above to one where Gnp is replaced by a D-plane through p.) 

It remains only to check that ö > (d — l ) / 2 implies ö > D/2. If Ln 

is hyperbolic then d > 3 implies 

D < l + [d/2] <d-l, 

while if Ln is parabolic of rank r < d — 1 we have 

D < [ ( 2 d - l ) / 2 ] =d-l; 

in either case, we have ö > (d — l ) / 2 > D/2 as desired. Finally if 
rank(I/„) = d then D = d and we have 

S > rank(L) /2 = d/2 = D/2, 
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so we are done. D 

Proof of Theorem 6.2. As before we assume K = {p} is a single 
point. Normalize coordinates so c = oo and p = 0, and pass to a 
subgroup of index two if necessary, so L and Ln preserve orientation 
for all n » 0 . Then the rank restriction implies Ln and L act by pure 
translations on M^. Thus for g G L we can write g(z) = z + £(g) and 
iXng){z) = z + £n{g). 

Since Xn converges to the identity, the length ratio satisfies 

/ß1N 14 (ff) | v 1 
(6.1) s u p - • 1 

L-{0} l % ) l 

as n —>• oo. In particular, Xn is an isomorphism for all n 3> 0, so Ln —> L 
algebraically. Moreover large elements of L map to large elements of Ln, 
so Ln —> L strongly (by Lemma 4.5). 

Now recall the spherical metric is given by a = 2\dx\/(l + \x\2). Let 
U = {z : \z\ > R} be a neighborhood of oo. Then by (6.1), for n » 0 , 
the Poincaré series satisfies 

PK(L„U,P) = E |9'(P)|J.= E ( r T p ^ w f 
g(p)eu {geL:\en(g)\>R} ' n v y y | 

< E \tn(g)\-2ön = o l E l^)l"2a 

Kn(fl)|>-R \ | % ) | > Ä / 2 

where a is chosen so 8n > a > rank(L)/2 for all n » 0 . Since the last 
sum converges, it can be made arbitrarily small by a suitable choice of 
R. Thus the Poincaré series converges uniformly. D 

Proof of Theorem 6.3. Once again we assume K = {p}. By alge­
braic convergence, we can write L = (g) and Xn(g) = 9n- Normalize 
coordinates so c = oo, p = 0, and g(p) = 1, where we have identified 
IR ,̂ with C. Changing Ln by a conjugacy tending to the identity, we 
can assume 

g(z) = Z + l, 

9n{z) = A„z + 1, 

and | A | > 1. 
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By hypothesis, |A„ — 1| < M(|A„| — 1) for some M. So for k > 0, we 
have 

I \ \k — 1 1 
> l A " l X _ l (1 | | A I , u | 2 , , | A i f c - 1 - , 
^ TTTV^ 7T — ITT U + Ara + A „ + + Ara 

> 

M ( | A n | - l ) AT 

fe|A»|fc/2 

IM 

Since the last bound is independent of n, we see g^ is large whenever k 
is large, and thus Ln —>• 1/ strongly (by Lemma 4.5). Moreover 

k \ Æ« |A 

< 
v /(2M)2|A»rÆ" 

= o(j:k-A, 
k>K 

where a is chosen so 6n > a > rank(I/) /2 = 1/2 for all n » 0 . Since 
the last sum converges, it can be made arbitrarily small by taking K 
sufficiently large. 

Carrying out the same argument with the other fixed-point an of gn 

normalized to be at c = oo, we conclude that for any e > 0 there is a i f 
such that 

E tó'(Æ < e. 
\k\>K 

Choose a neighborhood U of c = oo such that g^ip) 0 U for all n and 
\k\ < K. Then Æn(Ln, U,p) < e, and we have shown that the Poincaré 
series converge uniformly. D 

7. Cont inui ty of Hausdorff d imens ion 

In this section we establish conditions for continuity of the Hausdorff 
dimension of the limit set. 
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The continuity of dimension will generally come along with a package 
of additional properties. For economy of language, we say Tn —> V 
dynamically if: 

D l . r n - • r strongly; 

D2. The limit sets satisfy A„ —> A in the Hausdorff topology on closed 
subsets of S1^; 

D3. H.dim(A n ) ^ H . d i m ( A ) ; 

D4. The critical exponents satisfy ô(Tn) —> ô(T); 

D5. The groups Yn and T are geometrically finite for all n ^> 0; and 

D6. The normalized canonical densities satisfy /zn —>• /z in the weak 
topology on measures. 

Actually when Y is geometrically finite, conditions D l and D6 imply the 
rest (by Theorems 3.1 and 4.1). The terminology is meant to suggest 
that the dynamical and statistical features of Yn (as reflected in its limit 
set and invariant density) converge to those of T. 

Here is the prototypical example: 

T h e o r e m 7 .1 . IfVn —> T algebraically and T is convex cocompact, 
then r „ —> r dynamically. 

Proof. Since T has no parabolic subgroups, Tn —> V strongly 
(Corollary 4.3). By Theorem 4.1, Tn is geometrically finite for all n 3> 0 
and A„ —> A. Now pass to any subsequence such that ô(Tn) —> a and 
ßn —> v weakly; then v is a r-invariant density supported on the limit 
set. Such a density is unique for a convex compact group (Corollary 
3.4), so v = ß. We have thus verified D l and D6, and D2-D5 follow. 
D 

Our goal in this section is to obtain dynamic convergence in the 
presence of cusps. We will establish the following results. 

T h e o r e m 7.2 (Dynamic convergence). LetYn C Isom(M<i+1) con­
verge strongly to a geometrically finite group T. If 

liminf^(rn)>(1 ifd = 2,or 
( d - l ) / 2 ifd + % 

then Tn —> V dynamically. 
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For hyperbolic 3-manifolds, there is a simple condition on parabolics 
that promotes algebraic convergence to dynamic convergence. 

T h e o r e m 7.3 (Radial limits). LetYn —> V algebraically, where T C 
Isom(M3) is geometrically finite. If all accidental parabolics converge 
radially, then Tn —> V dynamically. 

Corollary 7.4. IfTn—>F is an algebraically convergent sequence 
of finitely-generated Fuchsian groups, then H.dim(A n ) —> H. dim(A). 

The bot tom of the spectrum Ao is insensitive to subtleties of limit 
sets of dimension d/2 or less, so from Theorem 7.2 we obtain: 

Corollary 7.5. If Tn converges strongly to a geometrically finite 
group T, then Xo(Mn) —> Ao(M) for the corresponding quotient mani­
folds. 

Corollary 7.6 (Strong limits). Suppose M = H 3 / r is topologically 
tame, and Tn —> T strongly. Then the quotient manifolds Mn = M3 /Yn 

satisfy 

A0(M„) ->• A0(M); 

and i /H.d im(A) > I, then we also have 

H.dim(A n ) - ^ H . d i m ( A ) . 

In the next section we will give several examples of the discontinuous 
behavior of dimension. In particular we will show strong convergence 
alone is insufficient to guarantee H. dim(A„) —> H.dim(A), even for 
geometrically finite 3-manifolds. 

Semicont inui ty of d imens ion . One inequality for the critical di­
mension and the bot tom of the spectrum for a geometric limit is general 
and immediate: 

T h e o r e m 7.7. / / T n —> TQ geometrically, then 

0{TG) < l im in f£ ( r n ) and 

Ao(MG) > l imsupA 0 (M„) 

for the corresponding quotient manifolds. 

Proof. By Theorem 2.1, the critical dimension ô is the same as 
the minimal dimension of an invariant conformai density. Thus for 
each n there exists a normalized T„-invariant density \in of dimension 
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<î(r„). Taking the weak limit of a subsequence, we obtain a r^- invariant 
density /z of dimension l i m i n f # ( r n ) , so Ô(TG) < l i m i n f # ( r n ) , again by 
Theorem 2.1. 

Similarly, we can choose an / G CQ°(MG) such that the Ritz-Rayleigh 
quotient (2.1) is less than Ao(Mc) + e. This / is supported on a compact 
submanifold K C MQ that can be nearly isometrically embedded in Mn 

for all n 3> 0. It follows that l imsupAo(M„) < AQ(MG) + e; now let 
e - > 0 . D 

C o r o l l a r y 7 .8 . Let M = M 3 / r be a geometrically infinite, topolog-
ically tame hyperbolic 3-manifold. Then 

£(r„) - • 6(T) = 2 and 

A0(M„) - • A0(M) = 0 

whenever Tn —> V algebraically or geometrically. 

Proof. We have #(T) = 2 by Theorem 3.5. By the preceding result 
we have 

2 > limsup(5(r„) > liminf 6(Tn) > S(T) = 2 

if the convergence is geometric. For the case of algebraic convergence, 
use the fact that any geometric limit V contains the algebraic limit and 
thus liminf S(Tn) > S(T') = S(T) = 2. The relation A0 = S(2 - S) 
completes the proof. D 

Proof of Theorem 7.2 (Dynamic convergence). By strong conver­
gence, for n > 0 there are surjective homomorphisms 

xn •• r -»• r n 

converging to the identity. By Theorem 4.1 we also know Tn is geo­
metrically finite, the limit sets satisfy An —> A and the truncated cores 
satisfy Ke(Mn) ->• Ke(M) strongly. 

To complete the proof, we must show (D6): that the canonical mea­
sures ßn for r n converge weakly to the canonical measure /z for Y. Pass 
to any subsequence such that ßn has a weak limit u, and 8n = 5{Fn) con­
verges to some limit 8. Clearly v is a T-invariant density of dimension 
Ô. 

To prove /z = u, recall that /z is the unique T-invariant density 
supported on A with no atoms at the cusps (Corollary 3.3). Since A„ —> 
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A, v is supported on A, so we need only check that v(c) = 0 for each 
cusp point c G A. 

To this end, fix e > 0 and a cusp point c G A. We will construct a 
neighborhood U of c such that /J,n(U) < e for all n » 0 . 

Let L C r be the stabilizer of c and let Ln = Xn(L>) C Tn. Adjusting 
Ln by a conjugacy converging to the identity, we can assume c is also 
fixed by Ln. By Corollary 2.2, we have 

S = lim<J(rn) > S(T) > rank(L)/2 , 

so the sequence (Ln, 8n) fits into the setup discussed in §6. 
We claim there exists a compact set F C ffirf such that 

(7.1) A c I ' F U { o o } 

and, for all n » 0 , 

(7.2) A„ C Ln • F U {oo}. 

Indeed, by Theorem 4.1 there is an e > 0 less than the Margulis constant 
such that the truncated core Ke(M) is the strong limit of Ke(Mn). Let 
H C Mrf+1 be the horosphere such that H/L C M is the component of 
dM<e corresponding to c. Projection along geodesies rays from c gives 
a natural bijection 

R^/L^H/LcM. 

Since every geodesic from c to A lies in the convex hull, this bijection 
sends A/L into Ke(M). By compactness of Ke(M), there is a compact 
set F C Rd such that 

A/LcF/LcWic/L. 

Thus we have (7.1), and strong convergence of Ke(Mn) to Ke(M) implies 
that a slight enlargement of F satisfies (7.2). 

By hypothesis, we have ô > 1 if d = 2) or 8 > (d - l ) / 2 (if d^2). 
So by Theorem 6.1, the Poincaré series for (Ln,Sn) converge uniformly. 
Since F is compact, this means we can choose a neighborhood U of c 
such that 

Pön(Ln,U,x) <e 

for all a; G F and n » 0 . 
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Since ßn{c) = 0 and Ln • F covers the rest of the limit set An , we 
have 

Vn(U) = Vn(Un(Ln-F))<J2vn(UDgF) 

Ln{xeF : g(x)eU} 

= / Ps„(Ln,U,x)dfj,n < €/j,n(F) < e. 
F 

Since e was arbitrary, the weak limit v has no atom at c. Thus /z = v 
and we have established the dynamic convergence. D 

Proof of Theorem 1.3 (Radial limits). We first show r „ —> F strongly. 
Let Xn '• F —> Fn be isomorphisms converging to the identity, and con­
sider any maximal parabolic subgroup L C F. Set Ln = Xn(L>) C Fn. 
The cusps of a hyperbolic 3-manifold have rank f or 2 (= d or d— 1), so 
if Ln is parabolic it converges strongly to L by Theorem 6.2. Otherwise 
L is generated by an accidental parabolic; but since we are assuming 
accidental parabolics converge radially, Ln —>• L strongly by Theorem 
6.3. Thus all parabolic subgroups converge strongly, so Fn —> F strongly 
by Theorem 4.2. 

We therefore have the setup for Theorem 7.2. As before it suffices 
to show a weak limit v of the canonical measure un has no mass at a 
cusp point c. But Theorems 6.2 and 6.3 imply that the Poincaré series 
converges uniformly, so v{c) = 0 by the same reasoning as above. D 

Proof of Corollary 7.4- Finitely generated Fuchsian groups are al­
ways geometrically finite, and all accidental parabolics converge radially 
(since the multipliers are in W). Thus Theorem 7.3 applies. D 

Proof of Corollary 7.5. Consider any subsequence such that Ao(M„) 
converges to a limiting value A. If A = <i2/4, then 

^ > A 0 ( M G ) > l i m A 0 ( M „ ) = ^ 

by Theorem 7.7, so we have convergence of Ao- Otherwise A < cP/4 and 
the relation Ao = 8(d — 8) (Theorem 2.1) shows 

l imtf(rn) = A ( d - A ) >d/2. 

By Theorem 7.2, ô{Fn) ->• Ö(FG) and thus A0(M„) - • \{MG) in this 
case as well. D 
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Proof of Corollary 7.6 (Strong limits). First suppose M is geomet­
rically finite. Then the convergence of Ao is contained in Corollary 7.5. 
Since 

f < H.dim(A) < liminfH.dim(An), 

and Mn is geometrically finite for all n » 0, H. dim(An) is determined 
by Ao(Mn) (via the relation Ao = 8(2 — 6)), so the dimensions of the 
limit sets also converge. 

For M geometrically infinite, the convergence of dimension and Ao 
follows from Corollary 7.8. D 

8. Examples of discontinuity 

In this section we sketch three examples of the discontinuous behav­
ior of the <5(r) as T varies. We only consider geometrically finite groups; 
thus we have 6(F) = H.dim(A(r)) throughout, and so these examples 
also demonstrate discontinuity of the dimension of the limit set. 

I. 6(F) is not continuous in the geometric topology. Let 
TQ C Isom(Mrf+1) be a cocompact Kleinian group. By a result of 
Mal'cev, any finitely generated linear group is residually finite [21, Thm. 
VII]. Thus there is a descending sequence of subgroups of finite index, 

r0 D ri D r 2 . . . , 

suchthat p | r „ = r = {1}. 
The limit sets of these groups satisfy A(r„) = S1^ for all n, while 

A(r) = 0. So although we have r n —> F geometrically, the critical 
dimension ô(Fn) = d does not converge to 6(F) = 0. 

Note that the strong convergence fails dramatically in this example, 
since there is no surjection F —> Fn. 

II. Convergence of limit sets vs. convergence of 6(F). Here is 
an example where ö is discontinuous even though A varies continuously. 

Consider a sequence of open hyperbolic Riemann surfaces Mn of 
genus two with one end of infinite area. Let 7„ be a simple geodesic sepa­
rating Mn into two subsurfaces Xn, Yn of genus one, with area(Xn) = oo 
and area(y„) = n. Suppose that as n —> oo the length of 7„ tends to 
zero (see Figure 3). Then 

Ao(M„)< ! \V4>n\2 / [\<Pn\2^0, 
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-A-n *n 

In 

F I G U R E 3. Pinching an open Riemann surface. 

where (f>n is supported on Yn, | V 0 n | = 1 on small area neighborhood 
of 7„, and 0„ = 1 on the rest of Yn. Thus the limit sets satisfy 
H.dim(A n ) ->• 1. 

On the other hand, choosing base-frames in Xn, we can arrange 
the example so (Mn,u)n) converges geometrically to a surface (M, LO) 
of genus one with one cusp and one infinite volume end. The area of 
K(Mn) is constant by Gauss-Bonnet, so the injectivity radius in K(Mn) 
is bounded above. Letting A denote the limit set of (M, w), we then have 

A „ ^ A 

in the Hausdorff topology by Proposition 4.6, but 

H.dim(A n ) ->• 1 > H.dim(A), 

so the dimension is discontinuous. 
In terms of the Laplacian, the positive ground state 4>n G L2(Mn) 

of norm 1 becomes more and more concentrated in Yn as n —> oo, and 
Yn disappears in the limit. In terms of invariant densities, the canonical 
density /zn for Tn becomes concentrated at the cusps of T, and any limit 
v = lim/in is purely atomic. 

I l l : <5(r) is not cont inuous in the s trong topology. Our 
last example establishes Theorem 1.3 of the introduction, by showing 
H. dim(A) can jump even for a strongly convergent sequence of Kleinian 
groups. 

Let Tt be the elementary Kleinian group generated by 

lt(z)=e2mtz + l, 

where t = 0 or Im(t) > 0. Then Mt = M3 /Vf is homeomorphic to a solid 
torus Sl x D2. For t G M the fundamental group of Mt is generated by 
a geodesic, while MQ has a rank-one cusp. 
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As we saw in the proof of Theorem 5.1, we have: 

1. Tt —> To strongly ifft —>• 0 horocyclically. 

2. If t —> 0 along a horocycle in M, then a subsequence 
of Tt converges geometrically to a rank-two parabolic 
group r" D I V 

Indeed, the strong convergence occurs exactly when the complex torus 
Xf = 0 ( I \ ) / I \ converges geometrically to an infinite cylinder, and this 
means t —> 0 horocyclically. On the other hand, if t —> 0 along a 
horocycle, then [Xt] remains in a compact subset of the moduli space 
H / S i ^ (Z), and a subsequence converges to a torus XQ = C/V. 

Now the idea is to use the fact that ô(T) = r / 2 if V = HI is an 
elementary parabolic group of rank r . The discrepancy between the 
ranks of TQ and V will lead to a discontinuity in ö. 

We would also like our example groups to be nonelementar y. To this 
end, for R > 4 let 

Then Go = Z * Z is a Fuchsian group; M/Go is a pair of pants with two 
cusps and one infinite volume end. (When R = 4 the quotient is the 
triply-punctured sphere.) Since Go is geometrically finite and its limit 
set is a proper subset of S^ = R U {00}, we have 

S(G0) < 1. 

In fact, ô(Go) tends to 1/2 continuously as R —> 00, so for any 
0 < e < 1/2 we can choose R > 4 such that 

<J(G0) = 1/2 + e. 

(See the discussion of Hecke groups in [24]). 
We can also think of Go in terms of the Klein-Maskit combination 

theory. A fundamental domain for z *—> z/(Rz + l) is the region exterior 
to the two tangent disks 

D = {z : \z±l/R\ < 1/R}. 

Since we assume R > 4, D is properly contained in a fundamental 
domain 

F = {z : \Rez\ < 1/2} 
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F -D 

- 1 / 2 -2/R 0 2/i? 1/2 

FIGURE 4. A fundamental domain for GQ. 

for the other generator 70 (z) = z+1 of Go- Thus F — D is a fundamental 
domain for Go (Figure 4). From this picture one sees Go is discrete and 
free on its generators, and the manifold iV"o = H3 /Go is isomorphic to a 
connect sum of two copies of Mo. 

Now let 

Note that Gt D Tt. For all t inside a small horoball resting on t = 0, we 
also have D C Ft for a suitable fundamental domain for Yt. (This is be­
cause the torus Çl(Tt)/Tt approximates the infinite cylinder Q(ro)/ro.) 
Thus Gt is also free and discrete, and Nt = M3 /Gt is the connect sum 
of Mt and Mo- As in the discussion of Tt, we have Gt —> Go strongly iff 
t —> 0 horocyclically (by Theorem 5.1). 

3. Any sufficiently small horocycle in M resting on t = 0 
contains parameters t such that ô(Gt) > 1. 

Indeed, by Theorem 7.7 any geometric limit G' of Gt satisfies 8(G') < 
liminf ô(Gt), while for t moving along a horocycle (2) above says G' con­
tains a rank two parabolic subgroup T', and thus 8(G') > 1 (Corollary 
2.2). 

4- There is a sequence i „ e i such that Gtn —> Go strongly, 
but 

limô(Gtn) = l>ô(Go) = l + e. 

To construct tn, simply choose horocycles Hn converging to 0 and tn G 
Hn such that 6(Gtn) > 1; then tn —> 0 horocyclically, so Gt —> Go 
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strongly, but ö(Go) = 1/2 + e < 1. It follows that ö(Gtn) —> 1, since 
otherwise ö would be continuous by Theorem 7.2. 

By (4), ö is discontinuous in the strong topology. 

Sharpness . This jump in dimension from 1 down to 1/2+e is essen­
tially sharp. Indeed, suppose Go C Isom(M3) is geometrically finite and 
Gn —> Go strongly. If limö(Gn) > 1, then 8{Gn) —> ô(Go) by Theorem 
7.2; and if ö(Go) < 1/2, then Go is convex cocompact (Corollary 2.2), 
so we have continuity by Theorem 7.1. 

9. Quasifuchsian groups 

The Teichmüller space of a surface S leads, via Bers embedding, 
to many examples of Kleinian groups with interesting algebraic and 
geometric limits. In this section we study the dimension of the limit 
set A(X, Y) of the quasifuchsian group obtained by gluing together the 
universals covers of two surfaces X and Y in the Teichmüller space of 
S. 

D i m e n s i o n as a funct ion on Teichmüller space . We begin by 
recalling some facts from Teichmüller theory [7], [23, §3]. Let S be a 
connected compact oriented surface with x(S) < 0, and let Teich(S') 
denote the Teichmüller space of Riemann surfaces X marked by S. The 
Teichmüller metric is defined by 

d(X,X') = l- inf logK(c/>), 

where (f> : X —> X' ranges over all quasiconformal mappings compatible 
with markings, and K((f>) > 1 denotes the quasiconformal dilatation of 

4>. 
Let AH(S) denote the discrete faithful representations of ni(S) into 

Isom+(M3) , modulo conjugacy, equipped with the topology of algebraic 
convergence. One can also think of AH(S) as the space of complete 
hyperbolic 3-manifolds M homotopy equivalent to S. 

Let S denote S with its orientation reversed. For any pair of Rie­
mann surfaces 

(X, Y) G Teich(,S) x Teich(5) 

we can construct a quasifuchsian manifold 

Q(X,Y)=m3/T(X,Y) 
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marked by Sx [0,1] and hence residing in AH(S). The limit set A(X, Y) 
is a quasicircle, and the domain of discontinuity satisfies 

n(X,Y)/F(X,Y) ^XUY 

with markings respected. 

Propos i t i on 9 .1 . The function H .d imA(X, Y) is uniformly Lips-
chitz on Teich(5') x Teich(S). 

Proof. Let K = e11 where t = max(d(X1,X2),d(Y1,Y2)). Then 
there is a if-quasiconformal conjugacy between r ( X i , Yî) and r ( X 2 , 1 ^ ) , 
and hence a K-quasiconformal map between their limit sets Ai and 
A2, where K = e2t. Since K-quasiconformal maps are l /K-Hölder 
continuous [1, III.C], by general properties of Hausdorff dimension we 
have 

\- H. dim(A2) < H. dim(Ai) <KB. dim(A2), 
K 

and therefore 

| H . d i m ( A i ) - H . d i m ( A 2 ) | <2{K-l) < 4 t + 0 ( t 2 ) , 

using the fact that both dimensions are < 2. Thus H .d imA(X, Y) is 
Lipschitz with constant 4. D 

Sharper estimates can be obtained using [4]. 

I terat ion on a Bers slice. The subspace 

BY = {Q(X,Y) : X G Teich(S)} C QF{S) 

is a Bers slice of quasifuchsian space; it gives a complex-analytic model 
for Teich(S') as a space of Kleinian groups. 

Each element (f> in the mapping class group Mod (S1) determines an 
automorphism of By by sending Q(X, Y) to Q((p(X), Y). It is a funda­
mental fact that a Bers slice By has compact closure in AH(S) [7], so 
it is interesting to investigate the behavior of Q((pn(X), Y) as n —> 00. 

We begin with the case of Dehn twists. A partition V = { C i , . . . , Cr} 
on S is a collection of isotopy classes of essential disjoint simple closed 
curves, with no two parallel and none parallel to dS. Let M-p(X,Y) 
denote the unique geometrically finite hyperbolic 3-manifold with 

MV(X, Y) - int ( S x [0,1] - (J d x {1/2} J 
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as a topological space, with cusps of rank 1 along dS x [0,1] and of rank 
2 along \J Ci x {1/2}, and with conformai boundary XUY corresponding 
t o 5 x {0,1}. 

By [20] and [11], [12] we have: 

T h e o r e m 9.2 . Let r G Mod (S1) be a product of Dehn twists 

Pl Pr 
T — TC\ " ' TCr 

about the curves in a partition V, with each pi ^ 0. Then as n —>• oo ; 

Mn = Q(rn(X),Y) 

converges to algebraic and geometric limits MA and MQ, with 

MG ^MV(X,Y) 

and with MA the covering space of MQ corresponding to ni (Y). 

More precisely, there exists a choice of baseframes LOn G Mn such that 
algebraic and geometric convergence as above is obtained. 

We can now apply the results of §7 to arrive at: 

T h e o r e m 9 .3 . For any partition V ^ 0 and product of Dehn twists 
T as above, the limit sets satisfy 

H. dim(AA) < H. dim(AG) = l imH. d im(A( r n (X) , Y)) < 2. 

Proof. The algebraic and geometric limits MA and MQ both exist, 
and MQ is geometrically finite, so Mn —> MQ strongly by Lemma 4.4. 
Thus H. dim(A„) ->• H. dim(AG) by Theorem 7.2, and H. dim(AG) < 2 
since the limit set is not the whole sphere. 

To show the dimension of A^ is strictly less than that of AG , first 
note that MA is also geometrically finite. If the dimensions of the limit 
sets were to agree, then the canonical measures would satisfy \IA = I^G 
by Theorem 3.1, since there is a unique normalized T^-invariant density 
in the critical dimension #(1^) . But then the supports of the canonical 
measures would coincide, which is impossible since A^ ^ AG . D 

E x a m p l e . Figure 5 shows the limit sets A^ and AG for r a single 
Dehn twist on a surface of genus two. The parameters for this example 
were computed by Jeff Brock [11], [12]. 
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FIGURE 5. Algebraic and geometric limits. 

Corollary 9.4. For any mapping class (f> G Mod (S1), there is an 
i > 0 such that 

S(X,Y) = lim K.dim(A(<pni(X),Y)) 
n—>oo 

exists for every (X,Y), and either 

1. 4>l is a product of disjoint Dehn twists, and ö(X,Y) < 2, or 

2. 4>l is pseudo-Anosov on a subsurface, and ö(X,Y) = 2. 

Proof. The fact that an iterate 4>l 1S either a (possibly trivial) 
product of Dehn twists, or pseudo-Anosov on a subsurface, follows from 
Thurston's classification of surface diffeomorphisms [18], [36]. The first 
case is handled by the preceding result. For the second (pseudo-Anosov) 
case, by [11], [12], i can be chosen so the manifolds Q{(f>n%{X),Y) con­
verge geometrically to a topologically tame, geometrically infinite man­
ifold MQ, and hence ö = 2 by Corollary 7.8. D 

Pinching a geodesic. Next we investigate approach to infinity by 
pinching the curves in a partition V• 

Theorem 9.5. Suppose Xn —> oo in Teich(S') and for all simple 
geodesies C we have 

£c(Xn)^L(C)£[0,oo]. 
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Let V be the partition consisting of all C with L(C) = 0, and suppose 
L(C) < oo if C is disjoint from, (J "P. Then there is a geometrically 
finite manifold MA such that 

1. Q(Xn,Y) -+ MA strongly; 

2. V is the set of all accidental parabolics on MA; 

3. All accidental parabolics converge radially; and 

4. H . d i m A ( X n , Y ) - > H . d i m A A . 

Proof. By the conditions on £c(Xn), the sequence Xn tends to a 
limit Z in the Deligne-Mumford compactification of the moduli space 
of S. Here Z is a 'surface with nodes' naturally marked by 

T = S-[JV; 

it has cusps along the components of V, while its geometry outside V 
is fixed by the limiting lengths of curves C 0 V• The convergence is 
compatible with marking outside V• (Compare [19, Appendix A].) 

Pass to any subsequence such that the algebraic limit MA G AH (S) 
exists. We claim MA is the unique geometrically finite manifold with 
rank-1 cusps along V and with marked conformai boundary 

dMA = ft(rA)/rA = ZUY. 

To see this, first note that MA has a cusp at each C e ? because 

£C(MA) = limlc(Q(Xn,Y)) < 21 im£ c (X n ) = 0 

(by Bers' inequality, cf. [7], [22, §6.3]). Next we show dMA = ZUY. 
Consider on T any pair of simple curves C and D with positive geometric 
intersection number. The geodesic representative 7(C) intersects the 
ruled cylinder D x I between the representatives of D on the two faces 
of the convex core of Q(Xn,Y). Since tr>{Xn) and £D(Y) are bounded, 
7(C) meets an essential loop ô(D) C D x I of bounded length such 
that (7(C), 6(D)) C iri(Q(Xn,Y)) is a nonelementary group. By the 
Margulis lemma, the length of 7(C) is bounded below, and hence the 
two faces of the convex hull of Q(Xn,Y) are a bounded distance apart 
(independent of n) along C. It follows that T persists as a subsurface 
of the conformai boundary of the algebraic limit, and thus Z UY <Z 
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OMA- But the conformai boundary can be no larger than this by area 
considerations. 

We conclude that MA is the geometrically finite manifold described 
above. Now for each C G V, the quotient torus for 7ri(C) C T(Xn,Y) 
becomes long and thin as n —> oo, since it contains the 7ri(C)-covering 
space of Xn, itself an annulus of large modulus. Thus each accidental 
parabolic converges horocyclically, so Q(Xn, Y) —> MA strongly by The­
orem 5.1 (or by inspection). Since the limit set is connected, we have 
H. dim(A^) > 1; therefore H. dim(A(X n , Y) ->• H. dim(A^) by Corollary 
7.6. D 

Fenche l -Nie l sen coordinates . To construct a sequence Xn as 
above, let P b e a maximal partition of S. Then one obtains an isomor­
phism 

Teich(S) = l ^ x f 

by the map 

X ^ (£c(X),TC(X)) 

sending a surface to its Fenchel-Nielsen length and twist parameters (see, 
e.g. [19]). Consider any sequence of these coordinates ( L n ( C ) , T n ( C ) ) , 
C GV, tending to limiting values (L(C),T(C)) where some L(C) = 0. 
Then it is easy to see the corresponding Riemann surfaces Xn satisfy 
the hypotheses of the Theorem above. The manifolds Q(Xn,Y) tend 
to MA strongly, where 8MA = Z UY and Z is a surface with nodes 
obtained by gluing together (possibly degenerate) pairs of pants with 
the limiting length and twist parameters (L(C),T(C)). 

In fact one need only require that Tn(C) converge for those C G V 
with L(C) > 0, since twists along the accidental parabolics have no 
effect on Z. With this proviso, any sequence Xn satisfying the Theorem 
arises via the construction above. 

T h e Fenchel -Nie l sen twis t . Finally we describe some interesting 
periodic behavior that occurs for the continuous version of a Dehn twist. 
Fix a basepoint XQ G Teich(5") and a simple closed geodesic C on XQ of 
length L. Define Xt by cutting along C, twisting distance tL to the right, 
and regluing. (In terms of Fenchel-Nielsen coordinates, this means only 
the twist parameter TC(X) is varied.) The resulting continuous path in 
Teichmüller space represents a Fenchel-Nielsen twist deformation of X Q . 
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By construction 

Xt+1 = T(Xt), 

where r G Mod (S1) is a right Dehn twist about C. Thus the geometric 
limit 

MG(t) = UmQ(Xt+n,Y) = limQ(rn(Xt),Y) = Mv(Xt,Y) 

satisfies MG(t + 1) = MG(t); here V = {C}. Let ô(t) denote the Haus-
dorfi" dimension of the limit set of MG(t). 

T h e o r e m 9.6. The function ö(t) is continuous, ö(t + l) = ô(t) and 

lim \R.dim(A(XhY))-ô{t)\ = 0 . 
t—>oo 

Proof. By definition, ö(t + f) = ô(t). To see ö is continuous, first 
note that by Theorem 9.3 we have 

(9.1) S(t) = lim f{t + n), 
n—>oo 

where /(£) = H. d i m A ( X t , y ) . The map t t—>• X< is uniformly con­
tinuous in the Teichmüller metric, because -Xt+i = r(Xt) and r is an 
isometry; since H .d imA(X, Y) is Lipschitz, f(t) is also uniformly con­
tinuous. Thus (9.1) converges uniformly for t G [0,1]; therefore ö(t) is 
continuous and the Theorem follows. D 

Now recall we have Q(Xt,Y) —> MA algebraically as t —> oo. If ö(t) 
is nonconstant (as seems likely), then the Hausdorff dimension of the 
limit set of Q(X, Y) oscillates like sin(l/a;) as Q(X, Y) converges to MA 
along a Fenchel-Nielsen horocycle. 

See [17] for similar results on the dimension of the Julia set of z2 + c 
a s c - > 1/4. 
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