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EQUIVARIANT HOLOMORPHIC MORSE
INEQUALITIES II:

TORUS AND NON-ABELIAN GROUP ACTIONS

SIYE WU

Abstract
We extend the equivariant holomorphic Morse inequalities of circle actions
to cases with torus and non-Abelian group actions on holomorphic vector
bundles over Kahler manifolds and show the necessity of the Kahler condi­
tion. For torus actions, there is a set of inequalities for each choice of action
chambers specifying directions in the Lie algebra of the torus. We apply the
results to invariant line bundles over toric manifolds. If the group is non­
Abelian, there is in addition an action of the Weyl group on the fixed-point
set of its maximal torus. The sum over the fixed points can be rearranged
into sums over the Weyl group (having incorporated the character of the
isotropy representation on the fiber) and over the orbits of the Weyl group
in the fixed-point set.

1. Introduction

Index theorems express analytical indices of elliptic complexes in
terms of topological invariants; information on the individual cohomol­
ogy groups are usually obtained with the aid of vanishing theorems.
Taking the de Rham complex fo~ example, the Euler number is not
enough to determine the Betti numbers. However, if we consider a
Morse function, then the Morse inequalities bound each Betti number
by the data of the critical points. In this paper, we consider a holo­
morphic setting in which a compact group acts holomorphically on a
holomorphic vector bundle over a Kahler manifold. The index theorem
is the Atiyah-Bott fixed-point formula [2] (when the fixed points are
isolated), which expresses the equivariant index, the alternating sum
of the characters of the Dolbeault cohomology groups, in terms of the
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fixed-point data. The corresponding equivariant holomorphic Morse in­
equalities when the group is the circle group was obtained by Witten
[24] and was first proved analytically using the heat kernel method by
Mathai and the present author [19] when the fixed points are isolated.
In this paper, we extend the result to cases with torus and non-Abelian
group actions. We also show that the Kahler condition is essential for
such Morse-type inequalities although, in contrast, not necessary for the
equivariant index formula of Atiyah and Bott.

Let M be a compact Kahler manifold of complex dimension nand E,
a holomorphic vector bundle over M. The Dolbeault cohomology groups
H*(M,O(E)) with coefficients in E are cohomologies of the twisted
Dolbeault complex (no,* (M, E), BE) and are independent of the choice
of holomorphic connections. Let G be a compact, connected Lie group
whose Lie algebra is denoted by Lie(G). Let 9 == RLie(G). We
assume that G acts holomorphically and effectively on M preserving the
Kahler form w. If the fixed-point set of a maximal torus in G is non­
empty, then the G-action is Hamiltonian [8], i.e., there is a moment map
J-l: M ---* g* such that for any x E g, the corresponding vector field Vx on
M satisfies i Vx w == d(J-l, x). If the action of 9 E G on M (still denoted by
g) can be lifted holomorphically to 9 on E, then G acts on the space of
sections f(M, E) by g: 8 ~ 90809-1 (g E G) and similarly on n*(M, E).
In this case, G commutes with the twisted Dolbeault operator BE and
hence acts on the cohomology groups H k == Hk(M, O(E)) (0 ~ k ~ n).
The purpose of this paper is to study the decomposition of each H k in
terms of the irreducible representations of G.

In sections 2 and 3, the group acting on M is a torus T. Section 2
shows that there is a set of Morse-type inequalities for each choice of
action chambers specifying the directions in the Lie algebra t. This is
obtained by applying the result of [24], [19] to various circle subgroups of
T. Section 3 applies the result of the previous section to T -invariant line
bundles over toric manifolds (including projective spaces and Hirzebruch
surfaces). In section 4, we demonstrate that for non-Kahler manifolds,
the strong equivariant holomorphic Morse inequalities need not hold.
Violation of strong inequalities is also used to show the non-existence
of invariant Kahler structures. In section 5, the group G is a general
compact non-Abelian group. The main result is obtained by applying
that of section 2 to a maximal torus T of G, assuming that the T-fixed­
point set F is discrete. The novelties are that the cohomology groups
Hk (0 ~ k ~ n) are representations of the non-Abelian group G (hence
the structure of H k is more rigid) and that there exists an action of the
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Weyl group W on F (hence the set F can be organized into W-orbits).
Throughout this paper, C, ~, (Q, Z, N will denote the sets of com­

plex numbers, real numbers, rational numbers, integers, non-negative
integers, respectively.

2. Equivariant holomorphic Morse inequalities with torus
actions

In this section, we assume that the compact Lie group that acts on
the Kahler manifold is a torus group T. Let t = ALie(T) be the Lie
algebra of T and £, the integral lattice in t; the dual lattice £* in t* is
the weight lattice.

Definition 2.1. Let Z[£*] be the formal character ring of T con­
sisting of elements q = E~E.c* q~e~ (q~ E Z). We say q ~ 0 if q~ ~ 0
for all ~ E £*. The support of q is the set supp(q) = {~ E £* Iq~ =I O}.
Let Q(t) = E~==o qktk E Z[£*][t] be a polynomial of degree n with coef­
ficients in Z[£*]. We say Q(t) ~ 0 if qk ~ 0 in Z[£*] for all k. For two
such polynomials P(t) and Q(t), we say P(t) ::; Q(t) if Q(t) - P(t) ~ O.

For example, if V is a finite dimensional representation of T, then
its character char(V) ~ 0 in Z[£*]. Let the support of V, denoted
by supp(V), be the set supp(char(V)) of weights whose multiplicity in
V is non-zero. For any () E t, there is a homomorphism Z[£*] --t C
given by e~ t--t eA(~,8). For instance, char(V) t--t trveA8 under this
homomorphism. Another important type of elements in Z[£*] is given
by the series

(2.1)
1J 00

e def. """ k~+1J---L-Je1 - e~ ,
k=O

~,"I E £*.

We emphasize here that in (2.1) the left-hand side is a notation for the
formal series on the right-hand side.

Recall we assumed that T a~ts holomorphically and effectively on
a compact Kahler manifold M with a non-empty and discrete fixed­
point set F. We also assume that t~e T-action preserves the Kahler
form wand hence is Hamiltonian [8]; let J-L: M --t t* be the moment
map. For any p E F, l~t Al,··· ,Ah E £*\{O} be the weights of the
isotropy representation of T on TpM (Figure 2.1(a)). The hyperplanes
(A~)l.. C t cut t into open polyhedral cones called action chambers
[12], [13], [21]. (When M is a coadjoint orbit, the action chambers
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are precisely the Weyl chambers.) We fix a positive action chamber
C (Figure 2.1(b)). Let ,xt,C = ±,xt be the polarized weights, with the
sign chosen so that ,xp,c E C*. (Here C* is the dual cone in t* de­
fined by C* = {e E t* I(e, C) > O}.) We define the polarizing index
nP'c of p with respect to C as the number of weights ,xt E -C*. We
also assume that there is a holomorphic vector bundle E over M on
which the T-action lifts holomorphically. The torus T acts on the fiber
Ep over p E F and on the cohomology groups H k == Hk(M,O(E))
(0 ~ k ~ n). Following (24], (19], we denote Ep (8) = trEpev=IlJ (p E F)
and H k (8) = trHkev=Io.

Theorem 2.2. For each choice of the positive action chamber C,
we have the strong equivariant holomorphic Morse inequalities

for some QC(t) ~ 0 in Z[£*].

Remark 2.3. The strong inequalities (2.2) imply the following
weak equivariant holomorphic Morse inequalities:

(2.3)

(0 ~ k ~ n).

Setting t == -1 in (2.2), we recover the Atiyah-Bott fixed-point theorem

(2.4)

Remark 2.4. If T is the circle group 8 1, then

There are only two action chambers C± = {(J E lR I±O > O}. The po­
larizing index nP'c+ of p with respect to C+ is the number of weights
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A~ < 0, denoted by np • Theorem 2.2 reduces to the results in [24], [19].
In particular, for C = C+, (2.2) becomes

(2.5)

1 e-yCIIA~18

L t
np

Ep(O) II 1 _ -yCIA~(J II 1 _ -yCIIA~I(J
pEF .xP>o e AP <0 e

k k
n

= L tkHk(O) + (1 + t)Q+(O, t),
k==O

where Q+(O, t) ~ 0 in IR((ev'-18)), the ring of formal characters of 8 1

[19].

Proof of Theorem 2.2. We notice that (2.2) is equivalent to

(2.6)

= L tkHk(O) + (1 + t)Qc(t)(HO)
k

regarded as an equality of analytic functions in (J E tC for Im() E -C.
(2.2) implies (2.6) because for any 8 E C the Taylor expansions on
the left-hand side of (2.6) are uniformly convergent in (J E tC if ImO E

-(8+C). Conversely, if (2.6) is true for complex (J E tC with Im(J E -C,
we, take Im(J --t 0 within the cone -C. The equality (2.2) of formal
series follows from the uniqueness of the Fourier expansion of tempered
distributions [16]. For 8 1-actions [24], [19], (2.5) is a true equality both
in IR((ev'-18)) and as analytic functions for Im(} < O. The rest of the
proof, which is similar to that of [21], Theorem 2.2, shows (2.6) using
(2.5). By analyticity, it suffices to prove (2.6) for purely imaginary (J.

Pick an integral point (J1 E C n £',. Since ("\1, ( 1) =I- 0 for all p E F and
1 ::; k ::; n, h = (p, (J1) generates a Hamiltonian 8 1-action on M with
the same fixed-point set F. Moreover the weights of 8 1 at p E Fare
(A1' (J1) (1 s k ::; n) a~d I(A~, ( 1)\ = (A~'C, (J1) > 0 for all p E F and
1 S k ::; n. (2.5) implies (2.6) for 0 = -Asol (s > 0). The result
follows from continuity since such (J's form a dense subset of -Ac.

q.e.d.

The inequalities (2.3) or (2.2) show that the multiplicities of weights
in the cohomology groupsHk (0 S k S n) are constrained by the fixed­
point data. Given an action chamber C, the support of H k is contained
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in a suitably shifted cone -C* in £*. By choosing different chambers,
it is possible to bound suppH* (0 ~ k ~ n) in various directions in t*.
We need the following definition. (See Figure 2.1(c),(d).)

Definition 2.5. For a given choice of positive action chamber C
and p E F, let

(2.7)

and

rp,C = {~- 2:~==1 rk'\1,cl~ E supp(Ep),rk 2:: 0

and rk > 0 if '\1 E -C*}

(2.8) rk,C = U
pEF,nP'c ==k

We set r k = nc rk,c.

Proposition 2.6. For any 0 ~ k ~ n,

(2.9)

(2.10)

supp(Hk ) C £* n nrk,c = £* n r k,
c

supp(Hk ) ::J £* n Urk,C\(rk-1,C u rk+1,c).
c

Proof. (2.9) follows from the weak inequalities with all choices of
C. (2.10) follows from the strong inequalities: If ~ E £* n rk,c but
~ fi rk±l,C, then the polynomial QC(t) = 2:~==o 2:~E.c* q~e~tk in (2.2)

has coefficients q~-l = q~ = O. This means that (1 + t)QC(t) does not

contain the term e~tk. Hence ~ E supp(Hk ). q.e.d.

Recall that a Kahler manifold (M, w) is quantizable if ~ represents
an integral de Rham class. In this case, a pre-quantum line bundle over
M is a line bundle whose curvature is A.

Corollary 2.7. If L is aT-invariant pre-quantum line bundle of
a quantizable Kahler manifold (M,w), then suppHk(M,O(L)) is con­
tained in the moment polytope ~ for any k = 0, ... ,n.

Proof. Let J.-L: M ~ t* be the moment map. The image ~ = J.-L(M)
is a convex polytope [1], [14]. For any facet of ~, there is x E t such
that the hyperplane xl- contains the facet and (~, x) ~ O. Choose an
action chamber C with an edge containing x. For any fixed point p E F,
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the weight of the torus action on the fiber of the pre-quantum line bun­
dle over P is J.L(p) E Ll, hence (J.L(p) , x) ~ O. Since all (A~'c, x) ~ 0
we conclude that (rp,c,x) ~ 0 for all p E F. By (2.9) of Proposi­
tion 2.6, (supp(Hk ), x) ~ 0 for any facet of Ll. Since ~ is convex, we
get supp(Hk ) C ~ for any k. q.e.d.

In sections 3 and 5, we will apply Theorem 2.2 and Proposition 2.6
to toric manifolds and to cases with general non-Abelian group actions.

3. Applications to toric manifolds

The toric manifolds which we consider here are smooth complex
manifolds M, each equipped with an effective action of T == Tn (n ==
dime M). Such a manifold can be characterized combinatorially by a
fan ~, a collection of cones in t == A Lie(T) that satisfy certain com­
patibility and integrality conditions. (For reviews, see for example [5],
[20], [3], [9].) M is compact if and only if the corresponding fan ~ is
complete, Le., the union of all the cones I~I == t. Top dimensional cones
a in the n-skeleton ~(n) are in one-to-one correspondent with the T-fixed
points Pa E F. The weights of isotropic representations on Tpu M span
the cone -a* C t*. The hyperplanes containing (n - 1)-dimensional
cones cut t into action chambers. The T-equivariant holomorphic line
bundles over M are characterized by (continuous) piecewise linear func­
tions cP on ~ modulo t* (the space of globally linear functionals). For
each a E ~(n), CPla E t* is the weight of the T-action on the fiber
over Pa. We denote this line bundle by L<p. The cohomology groups
H k == Hk(M, O(L<p)) (k == 0,··· ,n) are representations of T. For each
weight ~ E £*, the multiplicity of ~ in Hk can be computed using ~, cP
and ~ (see Remark 4.3 below). The purpose of this section is to find
information on such multiplicities using the results of the previous sec­
tion. This method provides much geometric insight, especially on how
the multiplicity varies according to the position of the weight relative
to the image of the (generalized) moment map. The multiplicity in the
equivariant index was studied in [18], [10] with similar considerations
by using the Atiyah-Bott fixed-point formula (2.4).

We consider a toric manifold M with a T-invariant Kahler struc­
ture. This is equivalent to the existence of a T-invariant ample line
bundle over M; the Kahler structure is then induced by the projective
embedding. Such a line bundle corresponds to a strictly convex piece­
wise linear function. From the symplectic point of view, if M admits a
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(non-degenerate) symplectic form, then the image of the moment map
is a convex polytope which does define a strictly convex piecewise linear
function on its fan (with a possible perturbation of the Kahler form).
Therefore a symplectic toric manifold is Kahler. An explicit construc­
tion of a Kahler structure using the Delzant construction [6] was given
by [11].

Proposition 3.1. Let M be a compact smooth toric manifold of
complex dimension n with aT-invariant K iihler structure and let H k

:=:

Hk(M,O(Lcp)) (k :=: 0,··· ,n), where the line bundle is determined by
a piecewise linear function cp on the fan. Then the following hold:

1. If 0 < k < n, the sets supp(HO), supp(Hk ) and supp(Hn ) are
mutually disjoint;

2. supp(HO) = £* n rO, supp(Hn ) :=: £* n r n , where each weight is
of multiplicity 1.

Proof. Choose any action chamber C. Let ac E ~(n) be the unique
cone containing -C. It is clear that the polarizing indices nU'c ofpu E F
are given by nUc,c = 0 and nU'c > 0 for all a # ac. Therefore in the
weak inequality (2.3) for k = 0, there is only one term that bounds
char(HO). Since dime M = dim t, the number of isotropy weights at
Pu is equal to n, hence the multiplicity of any weight in HO is not
greater than 1. Let C run through all action chambers. Since ruc,c =

cpluc + ac' we obtain rO = nUEE(n) (cplu + a*). Using again dime M =
dim t = n, for any a E ~(n) and any action chamber C such that ac # a,
we have (cplu+a*)nrU,C = 0. Therefore rOnru,c = 0. Taking the union
of a E ~(n) with nU'c = k > 0, we get rO n rk,c = 0, hence rO n r k = 0
for k > O. By (2.9) of Proposition 2.6, supp(HO) n supp(Hk ) = 0 for
k > o. Also, since rO n rk,c = 0 for any k > 0 and any C, by the
Atiyah-Bott fixed-point theorem (2.4) or by (2.10) of Proposition 2.6,
we have supp(HO) ::) £* n rO. Hence supp(HO) = £* n rO, each weight
with multiplicity 1. The results on H n can be proved similarly. q.e.d.

Corollary 3.2. If <p is a strictly convex piecewise linear function,
then H k = 0 for k > 0 and Ind = char(HO); if -cp is convex, then
H k = 0 for k < nand Ind = (-I)n char(Hn).

Proof. In the first case, there is a T-invariant Kahler form such that
Lcp is the pre-quantum line bundle and p,(p) = <plpO" for all a E ~(n).

The moment polytope ~ = nUEE(n) (J.t(Pu) + a*) = rOo From Corollary
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2.7 and Proposition 3.1, we obtain r k c ~ for all k, and rO n r k = 0
for k > 0. Therefore H k = °for k > 0, and Ind = char(HO), with
supp(HO) = £,* n~. The second case can be proved similarly. q.e.d.

Example 3.3. Consider the projective space cpn = (cn+I\{O})/C*
with the standard Tn-action given by (UI,··· , un): [Zl,··· , Zn.Zn+l] ~
[UIZI,··· .UnZn, Zn+l] in homogeneous coordinates. t = ALie(Tn) ~
R.n is spanned by el, . .. , en·

1. The case n = 1 has been considered in [24] using the inequalities
in (2.5) and their counterparts for C = C-. If L is a line bundle over
Cpl with CI (L) = r, then dimHO(Cpl, O(L)) = r + 1, HI = °if r ~ 0,
and HO = 0, dim HI = Irl - 1 if r < 0.

2. It is instructive to work out the case n = 2 directly using the
results of the previous secti<?n. There are three fixed points PI =
[1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1] with isotropy weights {ei, ei - ei},
{ei, ei - ei}, {-ei, -ei}, respectively. There are six action chambers.
Let C be a chamber spanned by {el, el + e2} (Figure 3.1 (a)). The line
bundle L = (e,3 \ {O} x C) /C*, where the quotient is (Zl, Z2, Z3, w) ~

(UZI,UZ2,UZ3,UTW), U E C*, has cI(L) = r E Z. The T 2-action lifts to
L by

(UI,U2): [ZI,Z2,Z3,W] ~ [UIZI,U2Z2,Z3,W].

The weights on Lp1 , Lp2 , LP3 are ~l = rei, ~2 = rei, ~3 = 0, respectively
(Figure 3.1(b)). It is easy to see that nP'c = 0,1,2 for P = PI,P2,P3,
respectively and that

rP1,C ={xlei + x2e;1 X2 ~ O,XI + X2 ~ r},

r p2 ,c ={XI < O,XI + X2 ~ r},

rp3 ,c ={XI,X2 < O}.

On the other hand, nP'-c = 2,1,0 for P = PI,P2,P3, respectively and

rP1,.-C ={XI-+ X2 > r,X2 < O},

rp2 ,-c ={Xl ~ 0, ~l + X2 > r},

rp3 ,-C ={XI,X2 ~ O}.

If r ~ 0, by (2.9) of Proposition 2.6,

rO c rP1,c nrp3,-c = {XI,X2 ~ O,XI +X2 ~ r}
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(Figure 3.1(c)),

(Figure 3.1(d)), and
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r l C rp2 ,c n rp2 ,-c == 0

(Figure 3.1(e)). By (2.10) of Proposition 2.6,

supp(Ho) :) 712 n (rP1 ,C\rp2 ,c).

Hence supp(HO) == 712 n rO, where rO == {Xl, X2 2 0, Xl + X2 ::s; r}, and
H l == H 2 == O. Similarly, if r < 0, then HO == H l == 0, and H 2 == 7l2nr2 ,

where r 2 == {Xl,X2 < O,Xl + X2 > r}.

3. For general n, cpn as a toric manifold can be described by a
fan ~: any k vectors in {vo == - L:~==l ei, Vi == ei (1 ::s; i ::s; n)} span
a k-dimensional cone in the fan~. For any piecewise linear function
cp on ~, either cp or -cp is convex. In fact by shifting a linear func­
tional, cp can be brought to the standard form cp(vo) == -r, cp(Vi) == 0
(1 ::s; i ::s; n); r is the first Chern number of the line bundle. cp is
convex if and only if r 2 o. In this case, Corollary 3.2 implies that
H k == 0 for k > 0 and that supp(HO) contains the integer points in
the simplex {L:~==l xiei IXi 2 0 (1 ::s; i ::s; n), L:~l Xi ::s; r} in t* ~ ~n,

each with multiplicity 1. If r < 0, then H k == 0 for k < n, and
supp(Hn) == 712 n {L:~==l xiei IXi < 0 (1 ~ i ::s; n), L:~==l Xi > r}, with
multiplicity 1.

Corollary 3.4. If dime M == 2, then

(3.1) supp(lnd) == supp(Ho) U supp(HI
) U supp(H2

)

is a disjoint union.

Proof. This follows from part 1 of Proposition 3.1 since the only
choice of k is k == 1. q.e.d.

Example 3.5. We consider the Hirzebruch surface, given by a fan
~ in ~2 whose I-skeleton ~(l) is spanned by vectors Vl == el, V2 == e2,
V3 == -el, V4 == -ael - e2 (a E N). We choose an action chamber
C spanned by {-el' -ael - e2} (Figure 3.2(a)). Consider a piece­
wise linear function given by cp(Vl) == cp(V2) == 0, cp(V3) == -r and
cp(V4) == -8. We assume that r,8 > O. It is easy to see that if 8 2 ar,
then cp is convex, hence H l == H 2 == 0, supp(HO) == ,,£2 n rO, with
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multiplicity 1, where rO = {O ::; Xl ::; s,O ::; X2 ::; r - aXI} is a
4-gon. If s < ar, since isotropy weights of the four fixed points Pi
(1 ::; i ::; 4) are the negatives of {ei, e2}' {-ei, e2}' {-e2' -ei + ae2}'
{-e2' ei - ae2}, respectively (Figure 3.2(b)), we have nP'c = 0,1,2,1 for
P = PI,P2,P3,P4, and rP1,c = {XI,X2 2:: O}, r p2 ,c = {Xl> r,X2 2:: O},
rp3 ,C = {Xl> r, aXI + X2 > s}, rp4 ,C = {Xl 2:: 0, aXI + X2 > s}. On the
other hand, nP'-c = 2,1,0,1 for P = PI,P2,P3,P4, respectively, and

rP1,-C ={XI, X2 < O},

r p2 ,-c ={Xl ::; r, X2 < O},

r p3 ,-C ={Xl ::; r, aXI + X2 ::; s},

r p4 ,-C ={Xl < 0, aXI + X2 ::; s}.

Using Proposition 2.6, we obtain supp(HO) = Z2 n ro, supp(H I )

Z2 n r l (the equalities follow from part 2), where

rO = rP1,c n rp3 ,-c = {Xl, X2 2:: 0, aXI + X2 ::; r}

(Figure 3.2(c)),

r l = (rp2 ,c ur p4 ,c) n (rp2 ,-c ur p4 ,-c) = {Xl::; r, X2 < 0, aXI +X2 > s}

(Figure 3.2(d)), and H 2 = 0 since

r 2 C rp3 ,c n rP1,-c = 0

(Figure 3.2(e)). The results are in accord with Corollary 3.4. An alter­
native way of obtaining the same results is to calculate the equivariant
index (2.4) and use Corollary 3.4.

Remark 3.6. We make several observations on the multiplicity of
weights in H k when 0 < k < n..

1. First, the multiplicity of a weight in H k (0 < k < n) is not
necessarily 1, even when dime M = 2. For example, it was shown in
[18, Example 5.6], that-for a certain line bundle over the blow-up of Cp2
at three points, a weight can appear in the index with multiplicity -2.
Using Corollary 3.4, one concludes that the multiplicity of that weight
in HI is 2.

2. When dime M 2:: 3, a weight can appear simultaneously in coho­
mology groups of different degrees. To see this, we construct a fan E in
~3. Set e+ = el + e2 +e3. Let the top-dimensional cones be spanned by
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{el,e2,e+}, {e1,e2,-e3}, {-e1,-e2,e3}, {-e1,-e2,-e+}, and those
obtained by cyclic permutations of the basis. Define a piecewise lin­
ear function <p on ~ by <p(e+) = <p( -ei) = 1, <p( -e+) = <p(ei) = -1
(i = 1,2,3). Then <p determines a line bundle such that 0 is a weight of
both HI and H 2 •

3. It would be interesting to investigate the general conditions on
the fan under which any weight is of multiplicity 1 or can appear in
only one of the cohomology groups. One knows that if M 1 "and M2

are toric manifolds of one of these types, then so is any M1-fibered
toric manifolds over M 2 • An interesting class of examples is the Bott­
Samelson manifolds studied from the symplectic point of view in [10].

4. Necessity of the Kahler condition

It is well-known that the Hirzebruch-Riemann-Roch theorem or its
equivariant counterpart, the Atiyah-Bott fixed-point theorem, are valid
for holomorphic vector bundles over arbitrary compact complex man­
ifolds. Therefore it comes as a surprise that the strong equivariant
holomorphic Morse inequalities holds for Kahler manifolds only. In this
section, we show that the strong inequalities (2.2) are violated on a suit­
able non-Kahler toric manifold. We also use the violation of the strong
inequalities to show the non-existence of invariant Kahler structures on
certain symplectic manifolds.

Recall that a toric manifold of complex dimension n is Kahler if
and only if its fan ~ admits strictly convex piecewise linear function.
When the complex dimension n = 2, such a convex function always
exists. Therefore every toric 2-manifold is Kahler. Notice that in this
dimension, the strong inequalities (2.2) are equivalent to the weak ones
(2.3). When n = 3, there are fans in t ~ ~3 which does not admit any
convex piecewise linear functions. An example is the fan with 8 top­
dimensional cones ai (0 ~ i ~ 6) and a', whose stereographic projection
is given by Figure 4.1(a) (see for example [5], [9]). Suppose that there
were a strictly convex piecewise linear function <p on ~. For the choice
of coordinates in Figure 4.1(a), convexity on the adjacent cones a1 and
a4 means that 2<p(a) + c.p(f) > ~<p(c) + ~<p(d). Summing over this and
the other two inequalities obtained by the cyclic pe~mutations of (a, d),
(b, e), (c, f), we get 3(<p(a)+<p(b)+<p(c))+<p(d)+<p(e)+<p(f) > o. On the
other hand, convexity on a4 and a2 implies that -2<p(a) > <p(b) +<p(f),
and hence 3(<p(a) +<p(b) +<p(c)) +<p(d) +<p(e) +<p(f) < 0, a contradiction.
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The corresponding toric variety has an orbifold singularity because the
cone a' is not spanned by a Z-basis. (In general, a toric variety has at
most orbifold-type singularities if all the top-dimensional cones in the
fan are simplicial. It is smooth if these cones are spanned by a Z-basis.)
The singularity can be avoided by a further triangulation of a' into 15
cones ai (7 ~ i ~ 21) by Jurkiewicz [17], as shown in Figure 4.1(b).
This results a smooth toric 3-manifold with 22 fixed points.

Theorem 4.1. There exists a T 3 -invariant line bundle over the
smooth toric 3-manifold corresponding to the fan of Figure 4.1 such that
the strong equivariant holomorphic Morse inequalities are not satisfied.

Proof. Let {el' e2, e3} be the standard basis in t ~ ~3 , and {ei , e2' e3},
its dual basis in t*. We choose a piecewise linear function 'P on the fan in
Figure 4.1 such that 'P = -(ei+e2+e3) in the cones ai, 7 ~ i ~ 21 (those
inside a'), 'P = 0 in ao, and 'P is given by linear interpolations between
the cones a' and ao, for example, 'Plu! = - 3e2+ 3e3' 'PIU4 = -3e3·
Choose the action chamber C = a7 (shown in Figure 4.1(b)). It is
straightforward to check that

1) 0 E rk,c for k = 0,7 only and nPo,c = 0, nP7 ,c = 3,

2) 0 ft rk,-c for any k.

If the strong inequalities (2.2) were to hold, then according to Proposi­
tion 2.6, the above claims imply the following:

1) 0 is a weight in HO and H3 with multiplicity 1,

2) 0 is not a weight in HO or in H3,

respectively. This is a contradiction. q.e.d.

We actually showed that the strong inequalities (2.5) are violated
for the action of any circle subgroup of T3 whose generator is in C = a7.

The example is consistent with the Atiyah-Bott fixed-point formula (2.4)
since possible contributions to HO and H3 cancel in the equivariant
index.

Remark 4.2. In [26], the author shows that the strong holomorphic
Morse inequalities hold for any meromorphic group action on a complex
manifold with a filterable Bialynicki-Birula decomposition, which is a
filtration of the manifold by closed subvarieties compactible with the
group action. This condition is weaker than the Kahler assumption
made in the current paper. The toric manifold in Theorem 4.1 was
initially constructed to show that Bialynicki-Birula decompositions need
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not be filterable [17]. Therefore the work of [26] provides a deeper
understanding this counterexample of strong inequalities.

We now make some remarks on the weak inequalities.

Remark 4.3. Proposition 3.1 on toric manifolds was derived from
the weak inequalities (2.3), together with the Atiyah-Bott fixed-point
formula (2.4). For a general (possibly non-Kahler) toric variety M with
aT-invariant holomorphic line bundle Lr.p, Demazure's result [7] (see
also [5], [20], [9]) states that the multiplicity of ~ E [,* in H k is equal
to the dimension of the local cohomology group H~(~)(t), where Z(O =

{x E tl~(x) ~ <p(x)}. In fact, Demazure's result implies Proposition 3.1.
(~ E [,* n rO if and only if Z(~) = t, in which case HO = C and H k = 0
for k > o. That the multiplicity in HO is not greater than 1 also follows
from the existence of a dense open TC-orbit in M.) This suggests that
(at least in the completely integrable cases) the weak holomorphic Morse
inequalities could be valid for a larger class of complex manifolds. For
example, the weak inequalities are not violated for the line bundle in
Theorem 4.1. Notice also that the lowest complex dimensions for a toric
manifold to be non-Kahler is 3; this is when the weak Morse inequalities
become weaker than the strong ones. This leaves open the possibility
that weak inequalities might hold when the manifold is complex but not
Kahler.

Remark 4.4. More generally, consider a complex manifold M with
a holomorphic torus T-action. Assume that the fixed-point set F is
discrete. For any p E F, let Al' · .. ,A~ E [,* \ {O} be the weights of T on
TpM. Let E be a holomorphic vector bundle over M with a lifted T­
action. Let ef., ... ,ef form a basis of Ep , with weights J-Ll' ••• ,J-L~ E [,*,

respectively. Near a fixed point p E F,. the T-action on M has the local
model en equipped with the action

ev=ro. (z ... z) t--+ (ev=r(Ai,O) z ... ev=r(A~,8)z )· 1, ,n 1" n ,

() E t. Holomorphic sections of E in a neighborhood of p correspond to
linear combinations of Z~l • • • z:-n ® ef (ml,··· ,mn E N, 1 ::; i ::; r),
whose weight under the T-action is J-Lf - 2:~==o mkA~. (The minus sign
is explained in [19] in Sl-cases.) Not all such local sections extend to
M. So

n

supp(Ho) C {t-tf - L mkAtlml,'" , mn E N,l ::; i ::; r},
k==O
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counting multiplicities. This is part of the weak Morse inequalities. For
similar reasons, other weak inequalities in (2.3) are likely to be true
when the manifold M admits a T-invariant complex structure.

Violation of strong holomorphic Morse inequalities can be used as an
obstruction to the existence of T-invariant Kahler structures. Recently,
Tolman [22] constructed a simply-connected six dimensional symplectic
manifold (M, w) that has a Hamiltonian T 2-action with isolated fixed
points but does not admit any T 2-invariant Kahler structure. (See [25]
for another perspective.) Let {el' e2} be the standard basis in t ~ R2

and {ei, e2}, the dual basis in t*. The six fixed points Pi (1 ~ i ~ 6) in
M correspond to the six vertices J.Li = J.L(Pi) of the moment polytope in
Figure 4.2(a) (reproduced from [22], Figure 2). Their isotropy weights
are the negatives of {ei, e2' ei +e2}, {ei, e2' -ei - e2}' {ei, -e2' ei - e2}'
{-ei, -e2' ei - e2}' {-ei, -ei +e2' - 2ei +e2}' {-ei, -ei +e2' 2ei - e2},
respectively. It can be shown that the strong inequalities (2.2) do not
hold in this example, therefore giving an alternative proof of the non­
existence of T 2-invariant Kahler structures. (Most of this comes up in
a discussion with S. Tolman and C. Woodward.)

Proposition 4.5 (Tolman [22]). There is no T 2 -invariant Kiihler
structure on Tolman's manifold M.

Proof. There is a T 2-invariant line bundle L such that the weights
on LPi (1 ~ i ~ 6) are ~l = 0, ~2 = 3ei + 3e2' e3 = 2e2, e4 = 3ei + 2e2,
e5 = 5ei, ~6 = -ei + 3e2 (Figure 4.2(b), from [22], Figure 3, Case
o < t < s). If there is a T 2-invariant Kahler form w', which may
be different from the original symplectic form w, then Figure 4.2(b)
is a deformation of the moment polytope associated to w'. Since all
the symplectic quotients of M by the T 2-action are C'p1 , where the
complex structure is unique, the curvature of L is still a (1, I)-form on
M. Therefore L can be equipped with a holomorphic structure, and
it is invariant under the T 2-action. Let C be the cone spanned by
{el - e2, -e2}. Then ei + 2e2E rp,c for P = Pl,P5 only and nP1,c = 1,
nPs,c = 0 (Figure 4.2(c)). If th~ strong inequalities (2.2) were to hold,
by (2.9) of Proposition 2.6, ei + 2e2 f/.: supp(H2). On the other hand,
ei + 2e2 E fP,-c only for P = P3,P6 and nP3,-c = 0, nP6,-c = 2
(Figure 4.2(d)). By (2.10) of Proposition 2.6, ei + 2e2 E supp(H2 ), a
contradiction. q.e.d.,

In fact, this argument ~shows further that there is no Kahler structure
invariant under any Sl-subgroup of T 2 whose generator lies in the cone
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Remark 4.6. It is not known whether there is a T 2-invariant com­
plex structure on Tolman's manifold. If it exists, then the strong in­
equalities (2.2) need not be true even when there is a moment map. On
the other hand since the toric 3-manifold in Theorem 4.1 is not sym­
plectic, though generalized moment maps in the sense of [18] do exist,
there is a possibility that the strong inequalities (2.2) could be true for
Hamiltonian torus actions on symplectic manifolds with invariant com­
plex structures not necessarily calibrated [3], §II.l.5 by the symplectic
forms. If so, then Tolman's example does not admit any T 2-invariant
complex structure.

5. Non-Abelian equivariant holomorphic Morse inequalities

In this section we consider a compact Kahler manifold M of complex
dimension n with a holomorphic and Hamiltonian action of a compact
connected real Lie group G, assuming that the fixed-point set of a maxi­
mal torus T eGis discrete. Let E be a holomorphic vector bundle over
M with a lifted holomorphic G-action. Let GC be the complexification
of G that contains G as a maximal compact subgroup. Then GC acts
holomorphically on M and E [15]. Choose an (isolated) T-fixed-point
p E F and denote the isotropy group of p in G and GC by H = Gp and
U = (GC)p, respectively. (In this way, we have for simplicity dropped
the subscript p unless ambiguity occurs.) Clearly H =:) T and U is a
complex subgroup of aC containing HC such that U n G = H. We
need a few group-theoretic results on GC, U, HC satisfying the above
constraints. These results will determine the behavior of the fixed-point
set, the isotropy weights and the fiber of the vector bundle over the
fixed points. For this purpose, it suffices that M is a complex manifold
with a holomorphic G-action; the Kahler condition will be used only to
establish the equivariant holomorphic Morse inequalities.

Let Ho, Uo be the identity components of Hand U, and let W =

NG(T)/T = NGc(rc)/Tc, WH, WHo, Wu, WUo be the Weyl groups of
G, H, Ho, U, Un, respectively.

Lemma 5.1. W acts transitively on the TC-fixed-point set in GC /U
with isotropy group Wu.

Proof. The fixed-point set is {gU I9 E GC, g-lTCg C U}. It has a
well-defined action of W because h E Nac(Tc ) acts on the fixed points
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by gU ~ hgU and for any t ETc, htgU = hg(g-ltg)U = hgU. To
show that the action is transitive, choose any fixed point gUo Since
g-lTCg and T C are two maximal tori in Uo, there is an element u E Uo
such that u-1g-1T Cgu = T C . So gu E NGc(Tc ) and gU = (gu)U can
be obtained from U by an element of W. Finally, h E NGc(Tc ) fixes
U (i.e., hU = U) if and only if h E U n Ncc(Tc ) = Nu(Tc ). So the
isotropy group in W is Nu(Tc)/TC = Wu . q.e.d.

Proposition 5.2. There is an action of W on the T -fixed-point
set F in M. Each W -orbit in F is the intersection of F with a G- or
GC -orbit in M, which do not depend on the choice of T.

Proof. Lemma 5.1 implies that for p E F, the T-fixed points in
GC . p ~ GC /U form a single W-orbit. For a different maximal torus
gTg-1 (g E G), the new fixed-point set gF is contained in the same
G-orbits. q.e.d.

Example 5.3. We consider the diagonal action of G = 80(3) on
M = 8 2 X 8 2 , where G acts on 8 2 by standard rotations. The maximal
torus in G is T = 8 1 . Let n, s be the poles in 82 which are fixed by
T. Then the T-fixed-point set in M is F = {(n, n), (s, s), (n, s), (s, n)}.
Though the isotropy groups Gp = T for allp E F, the situation is differ­
ent if we consider the action of the complexification GC = 8L(2,C)/Z2.
It is easy to see that the stabilizer (GC)(n,n) = B, a Borel subgroup
in GC, whereas the stabilizer (GC)(n,s) = TC. Consequently, the orbit

GC. (n, n) = {(x, x) Ix E 8 2
} ~ GC/ B is compact and contains another

fixed point (s, s) related to (n, n) by W = Z2, whereas GC · (n, s) =

{ (x, y) Ix =1= y E 82 } ~ GC/Tc is non-compact and contains (s, n), re­
lated to (n, s) also by Z2. In this case, M is the union of two GC-orbits.

Let ~, ~Ho' D.uo be the set of roots of the pairs (Gc ,T C ), (H~,T C ),

(Uo,Tc ), respectively. Choose a-set of positive roots ~+ C ~ and let
~- = -~+, ~~o = ~± n ~Ho· The length of w E W is l(w) =

Iw~+ n ~-I· Let lHo(w) = Iw(~+\~iIo) n ~-I be the length of w
relative to the subgroup Ho. Notice that IT(w) = l(w) (w E W).

Lemma 5.4. There is a TC-fixed-point in GC /U at which the set
of weights of the isotropy representation contains ~+\~iio.

Proof. Since the sets of isotropy weights at two fixed-points p and
wp (w E W) are related _by the action of wand since any two choices
of ~+ are conjugate under awE W, it suffices to show that the lemma
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holds for any given p under a particular choice of Ll+ depending on p.

Because U is a complex subgroup of G, Lluo is a closed subset of Ll, i.e.,
if a, j3 E Lluo and a + j3 E Ll, then a + j3 E Lluo. Furthermore, since
UnG = H, Lluon(-Lluo ) = ~Ho. It is easy to see that Ll' = Lluo \LlHo is
also closed (ifa,j3 E Ll' but a+{3 E ~Ho' then -{3 = (-a-{3)+a E ~uo'

a contradiction) and satisfies Ll' n(- Ll') = 0. So Ll' is contained in some
choice of Ll- [4]. Consequently, there is a parabolic subgroup P :> Uo
and P nG = H o. Therefore the set of weights of isotropy representation
at p is Ll\~uo :> Ll\Llp = Ll+\Llto. q.e.d.

For each W-orbit S E FjW, choose pES and let H == Gp be
the isotropy group in G. Denote Lls == LlHo ' ls(w) = lHo(W) and
detsw == (-l)ls(w)detw for w E W; they do not depend on the choice
of p in S.

Proposition 5.5. In each orbit S E F jW we can choose a repre­
sentative, denoted by Ps, such that the weights of the isotropy represen­
tation at ps contains Ll+\~!.

Proof. This is a direct consequence of Lemma 5.4. q.e.d.

Remark 5.6. In [13] (see also [21]), under a regularity assumption
that implies H == T, it was shown that the set of isotropy weights
contains Ll+ up to signs that depend on the roots. Proposition 5.5 is a
refinement of this result when M is complex and the G-action preserves
the complex structure. Let A~ (k == 1,··· ,n -ILl+\Ll!1) be the other
weights at Ps. Since TpsM is also a representation of U, the set of
weights (~+\~!)U{A~} is Wu-invariant. At another fixed point wps E

S, the corresponding set of isotropy weights is w( (~+\Ll!) U {A~}),

which depends only on the coset ill E WjWu. By W-invariance, any
action chamber can be transformed into one that intersects the positive
Weyl chamber t+ = {x E t I(Ll+, x) > O} in an open cone; let C be one
of such. At Ps, the polarizing index n~s is equal to nC ({A~}), that of

the set {A~}. At wps, n~ps = ls(w) + nC({wA~}).

The following lemma and example are communicated to the author
by D. Vogan.

Lemma 5.7. N(Lluo ) = {w E WlwLluo = Lluo } contains WHo as
a normal subgroup. Moreover, UjUo ~ Wu jWHo is a subgroup of

N(Lluo)jWHo·

Proof. Since H~ is a subgroup of U, WHo and Wu preserve the set
~uo' hence WHo < Wu < N(~uo)· For any a E ~Ho' W E N(Lluo )'
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since WToW-
1 == Two, and wa E wLluo n (-wLluo ) == LlHo ' WHo is

a normal subgroup of N(Lluo ). Finally, we prove U/Uo ~ WU/WHo.
Define a homomorphism Nu(Tc) -+ U/Uo by u H- uUo. Its kernel
is Nuo(Tc ); we show that it is onto. For any u E U, u-1Tcu is a
maximal torus in Uo. So there is Uo E Uo such that uOlu-lTcuuo == T C .

This implies that uuo E Nu(Tc ) and uuo H- uUo. By homomorphism
theorems, U/Uo ~ Nu(Tc)/Nuo(Tc ) ~ Wu/Wuo. Finally, let P be a
parabolic subgroup that contains Uo and such that P n G == Ho. Then
WHo < Wuo < Wp. Since Wp == WHo, we conclude that Wuo == WHo.

q.e.d.

Example 5.8. The isotropy group U can be disconnected. Let
the action of G == 80(3) on M == Cp2 be the projectivization of the
adjoint representation on so (3)c ~ ((J. If the root space decomposition
is so (3)c == Ceo EBCe+ EBCe_, where Ceo == Lie(Tc ) and [eo, e±] == ±e±,
then the T-fixed-point set F == {[eo], [e+J, [e_]}. The isotropy groups of
[e±] in GC are Borel subgroups while that of [eo] is the full normalizer
Nac(Tc ) of T C , which is disconnected.

Since G is compact, t is equipped with an invariant inner prod­
uct; this induces one on t*, which will be denoted by (., .). Let D ==
{,X E £,* I('x,Ll+) ~ O} and DHo == {,X E £,* I('x,Llilo) ~ O} be the sets
of dominant weights with respect to G and H o, respectively. We denote
the irreducible representation of G (Ho, respectively) of the highest
weight ,X E D (,X E DHo' respectively) by Rf (RfO, respectively). Since
Wu preserves Lluo' hence Lluo n (-Lluo ) == LlHo ' the action of Wu per­
mutes the Weyl chambers of the pair (Hf, T C ). Let Du C D Ho be a
fundamental region of the group Wu in £,*.

Lemma 5.9. Let V be a finite dimensional representation of U.
Then

(5.1)

Here rnA E Q; if U is connected, then rnA E N is the multiplicity of Rf
in V.

Proof. As a represe~tation of Ho, V == EB.x Rfo; the direct sum is
over some A E D Ho with possible multiplicities. Since V is a representa­
tion of U, WU/WHo acts on the set {RfO}. For a given Wu/WHo-orbit

through Rfo, let WA be the isotropy group. The contribution of this
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orbit to the character is
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(5.2)

Equation (5.1) follows readily. If U is connected, then WU/WHo = {I},
hence all mA E N. q.e.d.

At Ps (8 E F/W) whose isotropy group in GC is U, set Vs = VUe
According to the above lemma,

(5.3)

where mx E Q; if the isotropy group U is connected, then mx E N is
the multiplicity of Rf in Eps '

Theorem 5.10. Let G be a compact connected Lie group acting
Hamiltonianly on a compact Kiihler manifold M preserving the com­
plex structure. Assume that the fixed-point set F of the maximal torus
T is discrete. If E is a holomorphic vector bundle over M where the
G-action lifts holomorphically, then G acts on the cohomology groups
Hk(M,O(E)) (0 ~ k ~ n). Let Hk(M,O(E)) = E9AEV m~RX

(m~ E N) be the decompositions into irreducible representations RX
of G. Choose an action chamber C that intersects t+ in an open cone.
Then under the above notation, we have the following non-Abelian equiv­
ariant holomorphic Morse inequalities

L L detsw tls(w)+nC({w>.V)

SEF/WwEW

(5.4)

WAS. '"" mx ew(A+p)-p II 1 s II e k s
L..-J 1 - e-WAk 1 - eWAk

AEVs WA~EC· wA~E-C·

n

= L t k L det w L m~ ew(A+p)-p

k=.:O wEW AEV

+ (1 + t)QC (t) II (1 - e-Q
)

QE~+

for some QC(t) ~ O.
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Proof. We apply (2.2) to the maximal torus T of G. The con­
tribution of one orbit S E W/F is a sum over cosets ill E W/Wu.
This sum can be combined with that over Wu in (5.3). Since the
set w((Ll+\Llt) U {AZ}) depends only on the coset ill E W/Wu and
char(Ewps ) == ill char(Eps ), the result is

(5.5)

where

(5.6)

is a factor from weights not in Ll+\Llt. Using Weyl's character formula,
the contribution to (2.2) from the,cohomology group is

(5.7)

The result follows after multiplying both sides of (2.2) by
rroE~+(l - e-O

). q.e.d.

Remark 5.11. Setting t == -1 in (5.4), we obtain a fixed-point
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=L(-l)k L detw L m~ew(A+p)-p

k=O wEW AEV
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formula

(5.8)
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n-I~+\~tl

L L det w L mx ew(A+p)-p n
SEF/WwEW AE'Ds k=l

1

for non-Abelian group actions.
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(a) AD example of isotropy walha at

a fixed poiDt , E F wheD dimT - 2,

dimcM = 3.

(c) The CODe r~'C wheD suppE" ­

{(}. Dotted line staDds for bouDd­

aries DOt included. The poiariziDl in"

elex n"'c - 1.

(b) nae hypeplaDCI cut t iDto 6

chuu..... (Weipa at other fixed

poiDca may cut them further.) A

chamber C ia chORD.

(el) The CODe r",-C when suppE" =

{(}. Dotted line studs for bOUDd­

aries DOt included. The polariziul iD­

dex n"'-c _ 2.

Figure 2.1: Dlustration of isotropy weights, action chambers and the regions r",c.
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(a) The fan of Cp"l with three

top dimensioDal CODes a i (1 ~

i ~ 3). AD actioD chamber

C = a3 n (-al) is choseD.

(b) Posit.ioD of wellhtl (i ill

the fiber over Pi e F. The two

arrows at (. are the negative

of iIotropy weipta at Pi.

(C) The two CODes r JJ1 •c

and r JJs .-c , with n JJ1 ' c =
n""-c = 0, inteneet at the

dot.ted regiOD.

(d) The two CODes r"',C
and r P2 ·-

c , with nJ'2·c =

n~2'-C = 1, have empty in-

tersect.iOD.

(e) The two CODes r"',C
and r JJ1 .-C , with n JJ2 •C =

flJJ2'- C = 2, have empty in-

tersectiol1.

Figure 3.1: The projective space Cp2 with an invariant line bundle of first Chern number r ~ 0
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~4(O,8)

0'2 0'1

V3 111

0'3 =c
~2(r,O)

114 el(O,O)

(a) The fan of t.he Hirzebruch

surface with four top dimen­

siODal CODes ai (1 SiS 4). A

chamber C =a3 is choeen.

(b) PositioD of wei&hts (, in

the fiber over Pi E F. The two

arrows at ~ i are the Degative

of isotropy weiKhts at Pi.

(e) The two CODes r"',c
and r"',-c, wit.h n"'·c =
n"' - c = 0, intersect at the

dotted regioD.

\

I
rp1'-C

I
I
I \

(d) The four cones with po­

lariziDg indices 1. rp4 'c and

r"·-C iDt.erseet at t.he dotted

region.

(e) The two CODes rJl3 'C

and rJl • .-c, with n"3.C =

"",,-C = 2, have empty ill-

t.ersect.ion.

Figure 3.2: Hirzebruch surface with an invariant line bundle, case , < ar
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d

cc;..--------------~b

o

(a) A faD that does not admit a strictly

convex piecewise linear function. The edges

are spanned by a(l, 0, U), b(U, 1,0), c(O, U, 1),

dCO, -2, -1), e(-I,O, -2),/(-2, -1,0).

f

(b) The triangulation of u' by Jurkiewicz.

New edges are generated by g(-I, -2, -1),

1&(-1,-1,-2), i(-2,-l,-I), i(-I,-2,-2),

k(-2,-I,-2), 1(-2,-2,-1), m(-I,-I,-I).

Figure 4.1: Stereographic projection of the fan E corresponding to a non-Kahler loric 3-manifold. There are

22 top-dimensional cones C1i (0 ~ i ~ 21) in E. The cones C1t (0 ~ i ~ 6) are shown in (a). The cones C1i

(7 ~ i S 21) are contained in (fl. Only C17 is labeled in (b).
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(a) The moment polytope of Tol­

man's symplectic wanifold. The ver­

tices Pi are the values of the moment

map IJ at Pi E F.

(c) Two cones r""C, r""c contain­

ing ei + 2ei. The polarizing indices

n"l.c = I, n""c =o.

(b) Position of the weights ~i in the

fiber of a line bUDdle over Pi E F. The

neeative of isotropy weights are also

shown.

....----------- - -

"r Pe.-C

(d) Two cones r"',-c, r""-c COD­

taining e i + 2ei. The polarizing in­

dices n""-c = 0, nH .-C = 2.

Figure 4.2: Moment polytope and a T2-in~ant line bundle over Tolman's manifold
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