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O N T H E S T R U C T U R E OF SPACES W I T H RICCI 
C U R V A T U R E B O U N D E D B E L O W . II 

JEFF CHEEGER & TOBIAS H. COLDING 

0. Introduction 

This paper, the sequel of [4], is the second in a series devoted to the 
study of the structure of complete connected riemannian manifolds, Mn, 
whose Ricci curvature has a definite lower bound and of the Gromov-
Hausdorff limits, Y, of sequences of such manifolds. 

By [4], in the noncollapsed case, off a subset of codimension > 2, 
such a limit space, Y, is bi-Hölder equivalent to a connected smooth rie­
mannian manifold (for the proof of connectedness, see Section 3 below). 
Additionally, even in the collapsed case, there exist natural renormal-
ized limit measures, u, with respect to which Y is infinitesimally Eu­
clidean almost everywhere. We do not know whether "bi-Hölder" can 
be replaced by "bi-Lipschitz", or "infinitesimally Euclidean" by "locally 
Euclidean". Nor do we know whether in the collapsed case, the local 
Hausdorff dimension of the space is the same at all points. 

In order to describe the results of the present paper in detail, we 
will recall some background from [4]. 

After rescaling the metric, we can assume 

(0.1) RicMn > - ( n - 1 ) . 

Sometimes we assume in addition that for some definite v > 0, 
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(0.2) Vol(5i(m)) >v > 0 . 

Let dan denote Gromov-Hausdorff distance. As indicated above, 
most of our results are phrased in terms of the structure of pointed 
Gromov-Hausdorff limits of sequences of such manifolds, 

{ ( M f , m , ) } ^ ( y , y ) , where 

(0.3) RicMf > -{n- 1). 

In parts of Sections 3, 4, we also assume the noncollapsing condition, 

(0.4) Vol(5i(mj)) >v > 0 . 

Our limit spaces carry natural renormalized limit measures, u, which 
play a central role in the discussion; see [15] and [4]. These arise as limits 
of subsequences of renormalized riemannian measures, Vol- —> v, where 

M W0 = Vol^ 
1 

Voljiihimj)) 

If (0.4) holds (which turns out to be equivalent to the assumption that 
the limit space, Y, has Hausdorff dimension n) then the measure, u, is 
unique and coincides with normalized Hausdorff measure; see [12], [4]. 
However, in the collapsed case, uniqueness need not hold; see Example 
1.24 of [4]. 

A tangent cone, O^yoo^oo^oo)) at y G y is the pointed Gromov-
Hausdorff limit as ri —> 0, of some sequence, {(Y,y,r~ d,^)}. Here, d 
denotes the metric on Y and v^ is defined as in (0.5). Usually, we just 
denote a tangent cone by Yy. 

Let W1Z = UfcW7̂ fc denote the weakly regular set of Y. By definition, 
WTZk is the set of points at which some tangent cone is isometric to Rfe. 
The strongly singular set, Y \ W1Z, is denoted by SS. 

Let #r (0) C Rfc denote the ball of radius r. We write y G (WTZk)^ 
if for some 0 < r, we have dGH(Br(y),B^(0)) < er. 

Let 1Z = UklZk denote the regular set of Y. By definition, TZ^ is 
the set of points at which every tangent cone is isometric to Rfe. The 
singular set, Y\1Z, is denoted by S. At present, we do not know of any 
example for which W1Z ^ 1Z, or equivalently, for which S ^ SS. 

We write y G (TZk)e,Æ if for all 0 < r < ô, we have dGH{Br{y),B^(<ò)) < 
er. We put UÆ(7li:)e,Æ = (^fe)e) the e-regular set. Clearly, r\f(TZk)f = IZ^-
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As indicated above, the volume convergence conjecture of Anderson-
Cheeger, Vol(Mf ) - • Vol(Mn), for sequences of manifolds, Mf ^ 4 M n , 
satisfying (0.3), was proved in [12]. This was generalized in Theorem 
5.4 of [4], to yield volume convergence for sequences of limit spaces 
xrn dan -yn 

i 
In Section 1, we prove a generalization of the original conjecture, for 

sequences, 
Mn ^ Mk^ satisfying (0.3), where Mk is a manifold. This 

generalization is formulated in terms of fc-dimensional Hausdorff content 
ft*,. Thus, we show ft^(Mf ) - • H^{Mk), or equivalently, ft^Mf ) - • 
Vol(Mfc). When specialized to the case, k = n, this, together with 
relative volume comparision, [18], yields the result of [12]. 

At present, the formulation in terms of Hausdorff content cannot 
be generalized to sequences Y\ -^4 Yk. The essential diÆculty stems 
from our lack of knowledge of whether the Hausdorff dimension of the 
singular set of a limit space can exceed that of the regular set; compare 
the discussion of polar limit spaces below. 

Note that for sequences, 
Mn ^ Mk 

(even those with uniformly 
bounded sectional curvature) the renormalized limit measure on Mk 

need not be unique. Thus, there does not exist a generalization for such 
sequences in which "Hausdorff content" is replaced by "renormalized 
volume"; compare Remark 1.49. 

For (Z, /i) a measure space, we set (0'6) L!i»=mL d/j,. 

The main technical result of Section 1 is Theorem 1.2, which (in 
nonquantitative form) asserts the following. 

Let (Ml1,mi) ^ 4 (Rfc,0) and RicMf > -<*», where Si ->• 0. Then 
there exist Lipschitz maps, $i : Barrii) ->• Bk(0), with \d$i\ < c(n), 
such that 

(0.7) / 

and 

| r f$ i - 1| —• 0 . 

(0.8) / 
JE 

\Vi(z) - 1\ ^ 0.. 
Br(0) 
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where, V(z), the renormalized volume of the fibre, is defined by 

(O.S.) y,w = ^»; ' f0 »voi^^-'w)-
Here and sometimes below, we attach a subscript to Vol, in order to 
emphasize the relevant dimension or space. 

Since in (0.8), we understand Vi(z) = 0 if <&~ (z) is empty, it follows 
that for i sufficiently large, the range of $j has almost full measure. 

We point out that there exist sequences, 
M 4 ^ T 3 ; for w h i c h t h e 

maps, $ j , cannot be chosen to be fibrations; see [1]. 
As a particular consequence, we find that there exists e(n) > 0, 

such that for any limit space, Y, satisfying (0.3), the Hausdorff dimen­
sion satisfies, dim y > k, where k denotes the largest, k, such that 
(WTZk)e(n) T̂  0. Moreover, for polar limit spaces, those for which the 
base point of every iterated tangent cone is a pole, equality holds. 

Theorem 1.2 leaves open the possibility that T-Lk(A) = oo, for every 
subset, A C TZk, for which v{A) > 0. In actuality, there is a subset of 
IZk of full measure with respect to v, on which T-Lk and v are mutually 
absolutely continuous; see [5]. From this assertion, (whose proof is 
entirely different from that of Theorem 1.2) we can also obtain the 
applications mentioned in the previous paragraph. 

In Section 2, we define lower dimensional "Hausdorff" measures as­
sociated to a renormalized limit measure, v, on a collapsed limit space; 
compare [14]. For all ß, we define a measure, u_ß, the Hausdorff mea­
sure associated to v in codimension ß. If u_ß(U) = oo, for all ß > ß', 
we say codini^ U < ß'. 

We show that codini,, 5 5 > 1. Conjecturally, we have codini^ 5 > 1 
as well. Recall in this connection that in Section 2 of [4], it was shown 
that u(S) = 0. Moreover, in the noncollapsed case, where v = 'Hn, 
the normalized n-dimensional Hausdorff measure, we have dim S <n — 
2; see [4], Section 7. However, in the collapsed case, the estimate, 
codini,, 5 > 1, would be optimal in general. Indeed, the space [0,1], 
with the measure, v = H1, occurs as such a limit space. For this space, 
the regular set is the open interval, (0,1). 

o 

In Section 3 we show that in the noncollapsed case, (lZ)e, the interior 
of TZ€, is connected. In particular, for all z G TZ, there exists C(z) C 1Z, 
with v{Y \ C(z)) = 0, such that for all w G C(z) and e > 0, there exists 

o 

a minimal geodesic from z to w which is contained in (1Z)e. This result 
is obtained as a consequence of (a precise version of) the following fact: 
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Removing a closed subset, B, for which v_\(B) = 0, cannot discon­
nect a (possibly collapsed) space, Y, which is the limit of a sequence 
of manifolds satisfying (0.3). This property is well known for smooth 
manifolds. 

In Section 4, using the results of Section 3, we show that the isometry 
group of a noncollapsed limit space is a Lie group. It was conjectured 
in [4] that this holds in the collapsed case as well. 

In Section 5, we show that a (possibly collapsed) limit space which 
contain a one 1-dimensional piece and which satisfies an additional con­
dition, is itself 1-dimensional. In this extremely special case, this as­
sertion provides an affirmative answer to a number of questions which 
were raised at the begining of this introduction. 

1. Generalized volume convergence; the collapsing case 

In this section we prove a generalization in the collapsing case, of the 
volume convergence conjecture of Anderson-Cheeger and deduce some 
consequences. The original conjecture was proved in [12]. The main 
technical theorem of this section is Theorem 1.2 which we formulate in 
terms of V(z), the renormalized volume function for the fibres; see (0.9) 
for the definition of V(z). 

In what follows, we will denote by \I>(iti,..., Uk \ • • •), any nonnega­
tive function depending on the numbers, u\,..., u^, and some additional 
parameters, such that when these additional parameters are fixed, we 
have 

(1.1) lim *(wi, . . . ,ufc | . . . ) = 0. 
ui,...,Uk—>0 

Theorem 1.2 Let 

(1.3) RicMn > —{n — l )er , 

and assume that for some m G Mn, we have 

(1.4) dGH(Blr(m),Blr(0))<er. 

Then there is a harmonic map, $ : B^r(m) —> Hk, with &(Br(m)) C 
5*(0) and 

(1.5) LipQ < c(n), 
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such that 

[1.6) -f | d $ - l | <^{e,rl\n) 
Br(m) 

(1.7) / \V(z)-l\<^(e,i-1\n). 
Bk(O) 

In particular, 

(1.8) l H . . ( ^ ( 0 ) \ * W ( - ) ) ) < w ( e , r ' | n ) . 
1 ' F<V(B*(0)) - ' ' 

Before proceeding to the proof of Theorem 1.2, we will discuss a pre­
liminary result which is valid on arbitrary complete riemannian man­
ifolds. After Lemma 1.14, the assumptions of Theorem 1.2 will once 
again be in force. 

If bi , • • • , bfc G C°°(Mn), we define $ : Mn ->• Rfc by 

(1.9) $ = (b i , . . . , b f c ) . 

Our goal is to study the function, V(z), or equivalently, its unrenor-
malized version, 

(1.10) V{z)=\o\n_k{$-\z)). 

For technical reasons, we will introduce a weighted volume function, 
J(z), the key properties of which, are easier to establish; compare 
Lemma 1.14 below and Section 2 of [13], where a weighted volume was 
also employed. We then deduce the properties of V(z) from those of 
J(z). 

For all e > 0, we choose a smooth nondecreasing function, Xe '• R+ -> 
R_l_, in such a way that max \x'e\ is independent of e and 

0, if t < e/2, 

(1.11) Xe(*)= ( l - 2 e t ) + 2 e 2 , i f e < t < l + e, 

1, if t > l + 2e. 

In the application, we take e > 0 suÆciently small and from now on, we 
just write x f° r Xe-
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We set 

(1 12) J(z) = / / * - ( * ) * ( d e t « V b ' ' V b « > » i f * _ 1 W ^ 0 ' 
o if ^~1(z)=$. 

Here ((Vbs, Vbt)) denotes the matrix whose (s, i)-th entry is (Vb s , Vbt). 
Note that 

(1.13) 0<J<V. 

It follows easily from the implicit function theorem that J(z) is a 
smooth function; see (1.17). The following lemma, which provides an 
estimate for the gradient of J(z), will be employed in proving Lemma 
1.31, at the very end of the proof of Theorem 1.2. 

Lemma 1.14. Let b i , • • • , b^ be functions with bounded gradient, 

(1.15) |Vbi |<C7. 

Assume that Q~l(z) is compact for all z (such that <&_1(z) is nonempty). 
Then there exists C = C(C, k) > 0 such that 

(1.16) \VJ(z)\<CJ2[ \Hesshj\. 

Proof. For z G Rfc, let <J> denote the subset of ^~1(z) consisting of 
those points at which the vectors, V b i , . . . , Vb^, are linearly indepen­
dent. At m e ^r1{z), we denote by (OJJ), the inverse of the matrix, 
((Vbs, Vbt)), and by tr(Hessb;), the trace of the restriction to ^T1{z)m, 
of the bilinear form Hess^. Here Q_~l{z)m denotes the tangent space of 
®Tl{z) at m. 

The proof is now an direct consequence of the formula, 
(1.17) 

O T ™ 

— = / x'(det((Vbs , Vbt))) V OijVbi (det((Vbs, Vb t ») 
dz3 U-\z) jri 

+ / x(det((Vb s , Vb t))) y V ^ H e s s b , ; 

To see that (1.17) holds, note that at points of <J> 1(z), the vector 
field orthogonal to §L~l(z), which projects to ^ - is Ylt^d^^i- Note 
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also that in (1.11), the set of points at which the integrand in (1.12) does 
not vanish, is contained in the interior of the set {Jz^T1(z). Hence, in 
(1.12), the right-hand side can be rewritten as an integral over ^.~1(z). 
By differentiating this expression under the integral sign in the direction 
of Y_̂  aijVbi, we obtain (1.17). The first term in (1.17) arises from the 
derivative of x (de t ( (Vb s , Vbt ) ) ) . The second term arises (via the first 
variation formula) from the derivative of the area element on <J?~ (z) 
in the direction of ^iCiijVbi. To see this, observe that virtually by 
definition, tr(HessbJ is the inner product of the mean curvature vector 
to §L~l(z) with the vector Vb j . q.e.d. 

Proof of Theorem 1.2. We begin by defining functions, b j , as in 
[12], [4]. 

After rescaling the metric, we can assume that r = 1. Also, without 
loss of generality, we can assume t > 3. Let {ei)i=\,...,k be the standard 
basis for Rfe. By (1.4) there exists an e-Gromov-Hausdorff approxima­
tion, F, from Bg(0) to B^{m) C Mn. By means of this approximation, 
we can define k points in Mn by qi = F(£ei,x). Put 

(1.19) bi(-) = ^q~i - rn^qi 

and let b , denote the function on B${rn) such that 

(1.20) Abi = 0 , 

(1.21) bl\dBz{m)=bi\dBz{m). 

As in (1.9), we set $ = ( b i , . . . , b^) . If necessary, by slightly rescaling 
the functions, b , , without loss of generality, we can and will assume that 

(1.22) 5 i - * ( m ) C ^ - ^ S f (0)) C Bx{m), 

where ^ = ^ ( e , ^ - 1 | n) , and that ^~1(z) is compact for z G B\(0) with 
^~1(z) ^ 0; compare Lemmas 2.5 and 6.15 of [4]. 

It follows from the Cheng-Yau gradient estimate, [8], that (1.5) 
holds. 

From [3] (compare also [12]) it follows that 

(123) 

£i(m) {E3 I ivfci-n'+E*, i(vb„ vb,)i+E, I I W } 
< * ( e , rl\n). 
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In particular, (1.23) gives (1.6). Thus, it suÆces to prove (1.7) 
(which implies (1.8)). 

For convenience of notation, we put 

(1-24) U,r = \ fdß. 
Br(z) 

Relation (1.7), follows by adding the following three inequalities (and 
multiplying through by VolR*(^(0))(Voln(-Bi(m)))_1). 
(1.25) 

Jo,i - (VolR*(JB1
fc(0)))-1Voln(S1(m)) < tffor1 | n ) V o M 5 i M ) , 

(1.26) 0 < / \V- J\ < * ( e , r 1 | n ) V o l n ( S i ( m ) ) , 
ißf(O) 

(1.27) / iJ-Jcii^^r^^VoinCßiM). 
JBÌ<(O) 

To see (1.25), note that by the coarea formula, 
(1.28) 

J o ' 1 = v i Lk(M\ I x(det((Vb s , Vbt))) v /det((Vb s , V b t » , 

which, together with (1.22), (1.23), gives (1.25). 
Similarly, the coarea formula gives 

(L29> V^ = v i mk,nK I Vdet«Vbs,Vb*>) , 
VolR*(5f(0)) *-i(B*(o)) 

which, together with (1.22), (1.23), implies 
(1.30) 

V0,i - (VolRfc(^(0)))-1Vol„(JBi(m))| < tffor1 | n ) V o l ( 5 i M ) . 

From (1.13), (1.25), (1.29) we get (1.26). 
The proof of (1.27), relies on the following lemma, which represents 

a "reverse Poincaré inequality" for the function J{z). 

Lemma 1.31. 

(1.32) / \VJ(z)\ < ^ M ^ H J o , ! . 
JB*(O) 
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Proof. Observe that from (1.16) together with the coarea formula, 
we get 

;i.33) 
*î(0) 

dJ 

dz 
<CJ2[ [ |Hessb.| 

k 

<CJ2 |Hessb j | A / d e t ( ( V b s , V b t ) ) . 
j = l M ( m ) 

Thus, (1.32) follows easily from (1.23) together with the Schwarz in­
equality. q.e.d. 

From (1.32) and the Poincaré inequality for B\(0), we obtain 

(1.34) / I J - J O . I I ^ M ^ H J O , ! , 

ißf(0) 
which, together with (1.25) gives (1.27). This suÆces to complete the 
proof of Theorem 1.2. q.e.d. 

R e m a r k 1.35. Relation (1.7) of Theorem 1.2 can be viewed as 
providing a sharpening of Proposition 1.35 of [4], which implies the 
uniqueness of renormalized limit measures on Rfc, arising from sequences 
for which RÌCM?1 > — (n — l)<5j, where <5, —> 0. In the context of Theorem 
1.2, Proposition 1.35 would leave open the possiblity that the function, 
V(z), oscillates rapidly and is only close to being constant in the sense 
of measures. In particular, Theorem 1.40 below does not follow from 
Proposition 1.35; compare (1.48). 

Corollary 1.36. There exists e(n) > 0 such that if (M", ra j )} -^4 
(Y,y) satisfies (0.3) and (WKk)e ^ 0, for some e < e(n), then Uk{Y) > 
0. 

Proof. Let y G (W7^fc)e. If e < e(n), for e(n) suÆciently small, then 
for i suÆciently large, there exist Lipschitz maps, 3>j : Br(rrii) —> Rfe, 
with uniformly bounded Lipschitz constants, as in Theorem 1.2. We can 
assume that some subsequence, {&j}, converges to a Lipschitz map, $ : 
Br(y) ->• Rfe, Br(y) C Y. Since $(Bs(y)) is compact, for all 0 < s < r, 
and 3>j is almost surjective for i suÆciently large, a straightforward 
limiting argument shows that 

(1.37) V°l»>(g?(0)\»(ftte)))< , ( e , r - | n ) . 
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Now, from the fact that $ is Lipschitz, it follows easily that T-Lk(Br(y)) 
is positive. This completes the proof. q.e.d. 

Recall that in [4], a limit space satisfying (0.3) is called polar, if the 
base point of every iterated tangent cone is a pole, i.e., every infinite 
geodesic which emanates from the base point is a ray. At present, we 
do not know of an explicit example of limit space which is not polar. 

Let Uh denote the set of points, y, such that no tangent cone splits 
of a factor, R isometrically. By Theorem 4.7 of [4], if Y is polar, then 
dimüfc < k. As pointed out in Section 4 of [4], from this result and 
Corollary 1.36, we immediately obtain the following consequence. 

Theorem 1.38. The Hausdorff dimension of a polar limit space is 
an integer. 

We close this section with the generalization of the results of [12], [4] 
which was described in Section 0 and at the beginning of this section. 

Recall that if Z is a metric space and U C Z, the fc-dimensional 
spherical Hausdorff content, T-L^U), of U is defined as follows; see [14]. 
Let B = {Bri(qi)} denote a covering of U. Put 

(1.39) HliU) = VolRk(B
k
l(0)) inferì -

i 

Theorem 1.40. Let (Aff,mj) ^ 4 (Mk,m) satisfy (0.3), with Mk 

a manifold. Then for any ball, Br(rn) C Mk, and sequence, m, —> m, 

(1.41) H Ì ( 5 r ( m t ) ) ^ Vol(Br(m)). 

Proof. By standard covering and rescaling arguments, it suÆces to 
show that under the assumptions of Theorem 1.2, we have 

(1.42) nk
O0(B1(m)) > VolRk(B

k(0)) - ^(ejr1 \ n) ; 

the opposite inequality is clear. 
Fix n > 0. As in the proof of Lemma 2.5 of [4] (compare also [12]) 

(1.23) implies that there exists Ev C Bi-n{m), with 

(1.43) VoM#„) > (1 - *(e, t'1 I r], n))Voln(5i_„(m)), 

such that for all p G Ev, r < 77/6, and 91, 92 £ Br(p), 
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Clearly, (1.44) implies 

(1.45) (1 - $ ( e , r 1 \rhn))UUEv)) > VolR* ( $ ( £ „ ) ) . 

Thus (by letting e —> 0 and then 77 —>• 0) it suffices to show 

(1.46) VolR* ($ (£„ ) ) > ( l - * ( e , ^ | » 7 , n ) ) V o l R f c ( 5 i _ , ( 0 ) ) . 

Let J4 C -BI(O) denote an arbitrary subset. From (1.5), and the 
coarea formula, it follows that 

(1.47) [ V(z)<(c(n))kVoln(<S>-l(A)). 
A 

Hence, by (1.7), 

(1.48) V o l R » ( A ) < ( C ( n ) ) * ^ Ö ^ V o l R » ( ß i ( 0 ) ) - * ( e , £ | n ) . 
Voln(JBi(m)) 

If in (1.48), we take A C §(Bi_ri(m)) to be the subset of points, 
z, such that $ _ 1 ( z ) C 5 i_„(0) \ £ „ , then from (1.8), (1.43), (1.48), we 
obtain (1.46). q.e.d. 

R e m a r k 1.49. Even though Theorem 1.2 implies a statement about 
convergence of renormalized volumes, it does not follow that 'H^c(Br(mi)) 
could be replaced by the renormalized volume V o l ( 5 r ( m J ) in Theorem 
1.40. As mentioned in Section 0, such a statement would be false in gen­
eral, even for sequences for which the sectional curvatures of the M " 
are uniformly bounded. Note in this connection that the hypothesis of 
Theorem 1.2 is much stronger that that of Theorem 1.40. Note also that 
the notion of fc-dimensional Hausdorff content does not involve any sort 
of renormalization. 

2. T h e s t r o n g l y s i n g u l a r se t 

In this section, we introduce a family of lower dimensional Hausdorff 
measures associated to a Borei measure, /z; compare [14]. We then 
specialize to the case /J = u, a renormalized limit measure on a possibly 
collapsed limit space, Y. We show that for the notion of codimension 
defined by this family of measures, the strongly singular set satisfies 
codini,, 5 5 > 1. Recall that SS = Y \ W1Z, where W1Z denotes the 
weakly regular set. 
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Let Z be a metric space and let /z be a Borei measure on Z. For 
/3 G R, we define the associated Hausdorff measure in codimension ß as 
follows. Fix 8 > 0 and U C Z. Let # = {-Bn(<7j)} be a covering of [/ 
with r-i < 6, for all i. Put 

(2.1) 0"-/?)*^) = inf ÇrrV(S r j(9i)) • 
i 

As usual, (/j,_ß)g(U) is a nonincreasing function of £ and we put 

(2.2) /u_ /3([/) = l im( /u_ / 3) ,([7). 
o—>0 

Clearly, / j ^ is a metric outer measure. Thus, by standard measure 
theory, the Borei sets are / / .^-measurable; see e.g. [14]. 

We say that ß satisfies a doubling condition if for all s' > 0, there 
exists K = K(S'), such that , /J,(B2S(Z)) < 2Kjj,(Bs(z)), for all z G Z and 
0 < s < s!. It is more standard to require that the constant, K, can be 
chosen independent of s', but this stipulation would play no role here. 

If ß satisfies a doubling condition in our sense, it follows from the 
standard argument given in Section 1 of [4] that we have /JO = /i. If /i is 
a Hausdorff measure, 7-Lk, then (up to normalization) so is ß-ß, for any 
ß. For U C Z, we say coding U > ß', if fi-ß(U) = 0, for all ß < ß'. 

Let Y be the pointed Gromov-Hausdorff limit of a sequence of man­
ifolds, { (M" , ra j )} , such that (0.3) holds. Let v be & renormalized limit 
measure on Y as in Section 1 of [4]. 

T h e o r e m 2.3 . The set, SS C Y, satisfies codimuSS > 1. 

Proof. The proof follows the pat tern of that of Theorem 4.7 of [4]. 
We begin by recalling some definitions. 

If every tangent cone at y £ Y splits off a factor, Rfe, isometrically, 
then y is called k-Euclidean. We denote the set of fc-Euclidean points 
by£ f c . We put WZ>fc = y \ £ * + i . 

Let y E Y and let py(z) = ~z~y denote the distance function from y. 
We say that a point, z G Y, is not a restricted cut point of y, if for all 
e > 0, there exists r(z, e) > 0, such that for 0 < r < r(z, e), there exists 
a space, Xr, (0,xr) G R x Xr (the isometric product) and a pointed 
er-Gromov-Hausdorff approximation, >̂r : Br(z) —>• 5 r ( (0 ,a ; r ) ) , such 
that 

(2.4) IPJ, — i o (f)r\ < er (on Br(z)). 
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Here t denotes the coordinate function on R x Xr corresponding to the 
factor, R . 

Let WT>o(y) denote the set of restricted cut points of y. Note that 
WV0 C nyWV0(y). We put S^y) = Y \ WD0(y). 

The following proposition is an improved version of Proposition 2.13 
of [4]. The conclusion ofthat proposition, is the assertion, v(WDo(y)) = 
0; see (2.14) of [4]. We observe that a trivial modification of the proof 
enables one to strengthen the conclusion to u_ß(WDo(y)) = 0, for all 
ß < 1; see (2.6) below. 

Proposition 2.5. If Y is not a single point, then for ally £ Y and 
ß < 1. 

(2.6) v-ß{WD0{y)) = 0 . 

Proof We will use the notation of [4]. Fix 0 < ß < 1. Note 
that (2.22) of [4] can be strengthened to the assertion that the set, 
Ufe>fe0 W(p,j,k,Tf), of [4], admits a covering by balls, {BTt2-U+k)(qik)}, 
where k > fco, such that 

Nk 

(2.7) ^ ( r , 2 - f c ) - ^ ((BTt2-k(Qik)) < <n, 2~\ V, n^)2~k^) . 

This follows immediately from (2.18) of [4], provided we divide both 
sides of that equation by (rn)13. By using (2.7) in place of (2.22) of [4], 
we get in place of (2.23) of [4], 

( oo oo \ 

f l ( J W{p,j,k,Tt)\ = 0 . 
fc0=lA;>A;o 

Hence, we can strengthen (2.24) of [4] to 

(2-9) v-ß(WV0(y) n A2-ji2i (y)) = 0 , 

and letting j —> oo, we obtain (2.6). q.e.d. 

Now we can finish the proof of Theorem 2.3. 
Assume that the conclusion of Theorem 2.3 is false. Then for some 

ß, with 0 < ß < 1, we have u_ß(SS(Y)) = oo. In view of Proposition 
2.5, a density argument completely analogous to that used in the proof 
Theorem 4.7 of [4], shows that v'_JSS{Y-y)) = oo, for some tangent 
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cone, Yy, which splits isometrically as R x X, for some X and some 
renormalized limit measure, i>', which admits a corresponding splitting. 
Here, (2.6) plays the role of the assumption made in Theorem 4.7, to 
the effect that the space in question is polar. 

The above argument can be repeated starting with Yy in place of 
Y. As in Theorem 4.7, the resulting second order tangent cone splits 
off a factor, R 2 , isometrically. After n + 1 repetitions, we obtain an an 
iterated tangent cone which splits off a factor, R n + 1 , isometrically. But 
this is impossible for limit spaces satisfying (0.3). q.e.d. 

3. C o n n e c t e d n e s s propert ies of 1Z; t h e noncol lapsed case 

In this section, we consider pointed Gromov-Hausdorff limit spaces, 

{(Aff,mi,Vò!i)} ^ 4 (Y,y,v), satisfying (0.3). In the main application, 
Theorem 3.9, we add the noncollapsing condition (0.4). 

Recall that if Mn is a smooth manifold and B C Mn is closed, with 
T-Ln~l{B) = 0, then Mn \ B is arcwise connected. The following lemma 
enables us to extend this result to possibly collapsed limit spaces. 

L e m m a 3 .1 . For all d, e > 0 there exists C(n,d,e) > 0, such that 
the following holds. Let Mn satisfy (0.1) and let 

(3.2) E = \jB^iq~), 

j 

(3.3) Be(x1)\JBe(x2)cBd(m)\E. 

Then if every minimal geodesic, 7 : [0, £] —> Mn, with 7(0) = x\, j(£) G 
Be(x2), intersects E, we have 

(3.4) 0 < c(n, d,e)<J2 rjlVol(Br] (q3)). 

j 

Proof. As in [19], by observing the ball, Be(x2), from the point, xi, 
we get 
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(3.5) Vol(5£(x2)) < C(n, d, e) Vol(dE) 

<C(n,d,e)J2Vol(dBrj(qj)) 

3 

3 

where in the last step, we have used relative volume comparison. Since 
by (0.5) and the relative volume comparison theorem, 

(3.6) 0 < C(n.d.e) <Yo\(BAx<>)), 

if we divide both sides of (3.6) by Vol(_Bi(m)), the claim follows. q.e.d. 

Theorem 3.7. Let Y satisfy (0.3) and let B be a closed subset ofY, 
with v-i(B) = 0, for some renormalized limit measure v. Let y\ G Y\B. 
Then for u-almost all y% G Y \ B, there exists a minimal geodesic, from 
y\ to ij2 which lies in Y \ B. 

Proof. Let {(M",m,;, Vol;)} -^4 (Y,y,u). It suÆces to assume B C 
Bd(y), for some d < oo. Then, since v_\(B) = 0, it follows that for all 
7] > 0, there exists, {Brj (WJ)}, with I < j < Nrp such that B C En = 
\JjBrj{wj) and Tljr~1v{Brj (WJ)) < r\. 

For e > 0 and y\ G Y, with yi,Ev > e, let Av>e C Ba(y) \ B, denote 
the set of points, y2, such that there exists a minimal geodesic from y\ 
to y<2 lying at distance > e from En. Clearly, the sets, En and Av>e are 
compact. 

For some fixed sequence of Gromov-Hausdorff approximations, let 
m,i,qi,j G Ml1, be such that m y ->• yi, qitj ->• Wj. Put Eïhi = 

UjBrMij)- For ^ > 0 , let A 
i,Tj,e+ip denote the set of points, m ^ such 

that there exists a minimal geodesic segment from m^i to m ^ lying at 
distance > e + ip from En^. Then by a standard compactness argument, 
for i suÆciently large, we have (relative to suitable Gromov-Hausdorff 
approximations) AijThe+ip C T,,p(AVte), where T1p(-), denotes the tubular 
neighborhood of radius ip. Moreover, since Av+e is compact, after pass­
ing to a subsequence, we have l imsup,^^ VobXA .̂e+T/Q < u(^-ri,e+'ip)-
From Lemma 3.1, we get, Vol(Bd(m,i)) — ^(771 e,ip,n) < Vol,-(A: rj e+ih)-
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Thus, by letting, 77 —> 0, ip —> 0 and then e —> 0, the theorem follows. 
q.e.d. 

E x a m p l e 3 .8 . As observed in Example 1.24 of [4], the space [0, 00), 
with the measure, v, given by integration of the 1-form, r dr, occurs as 
the limit of a collapsing sequence of 2-dimensional manifolds satisfying 
(0.3). In this case, z^_i({0}) = 0, even though for the standard 1-
dimensional Hausdorff measure, we have %°({0}) = 1. 

In the noncollapsed case, the singular set S, satisfies dim S < n — 2; 
see Theorem 6.2 of [4]. In addition, for all e > 0, there exists ë > 0, such 

o 

that (TZ)ei C(1Z)e, the interior of (TZ)e; compare the proof of Corollary 
3.10 below. Thus, from Theorem 3.7, we obtain: 

T h e o r e m 3.9 . Let Yn, satisfy (0.3), (0.4). Then for all z £ K, 
there exists C(z) C 1Z, with u(Y \C(z)) = 0, such that for all w G C(z) 
and e > 0 ; there exists a minimal geodesic from z to w which is contained 

o o 

in (TZ)e. Moreover, for all e,ip > 0 and all yi,y2 £(TZ)e, there exists a 
o 

curve, c : [0,£] —>lZe from y\ to y2, with length, L(c) < y\,yi + ip. 

From Theorem 3.9, we get the following corollary. Let (lZ)ej = 

(T^n)e,s be defined as in Section 0. 

Corollary 3 .10 . LetYn, satisfy (0.3), (0.4). Then for allz,w G K 

and e > 0, there exists 8 > 0, such that z, w lie in the same component 

of (U)e,s. 

Proof. By Theorem 3.9, for all ë > 0, there exists a continuous 
curve, c€i C (TV)e', from z to w. It follows from Theorem A.1.5 of [4] 
(which depends on the conjectures of Anderson-Cheeger proved in [12]) 
that for 0 < ë < e sufficiently small, there exists ö > 0, such that for 
such a curve, c£/, we have <v C (1Z)ffi. q.e.d. 

4. I s o m e t r y groups of noncol lapsed l imit spaces 

In this section we will show that the isometry group of a limit space 
satisfying (0.3), (0.4) is a Lie group. Conjecturally, this holds even in 
the collapsed case. Note that Fukaya-Yamaguchi have proved that the 
isometry group of an Alexandrov space is a Lie group; see [16] and 
compare also [20]. 
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Theorem 4.1. If (Yn,y) is a pointed Gromov-Hausdorff limit of 
a sequence of manifolds, {(M",raj)} ; satisfying (0.3), (O.4), then the 
isometry group, Isom(Y), is a Lie group. 

Proof. The theorem is an immediate consequence of Theorem 4.5 
below, together with Corollary 3.10. q.e.d. 

Let Z be an arbitrary metric space. Denote by d (or ~) the metric 
on Z and as usual, let do denote the standard metric on Rfe. 

For H C Isom(Z), put 

(4.2) pH(z) = swph(z),z , 
hen 

(4.3) DHtr(z) = sup PH(W). 
weBir(z) 

If every closed ball in Z is the closure of its interior, for example, if 
Z is a length space, then for fixed H, the function DH>r(z) is continuous 
in r and z. 

We will use the standard (and obvious) fact that there exists no 
nontrivial subgroup, H C Isom(Rn), with 

(4-4) DH>1(0)<±. 

Theorem 4.5. Let Z be a locally compact metric space such that 
every closed ball is the closure of its interior. Assume 
(a) TZ = uf=llZk is dense in Z. 

(b) For all e > 0; k = 1,...,N, there exists zi(e),... ,zNre\(e) G TZ^, 
such that for all w G IZ^, there exist ß, 8 > 0, such that Zß and w lie in 
the same component of (7̂ fc)e,Æ • 

Then the isometry group, Isom(Z), is a Lie group. 

Proof. By [17] and [21] it suffices to show that lsom(Z) does not 
contain a sequence of small subgroups. Assume to the contrary, that 
there exists a sequence, {Hi}, of nontrivial subgroups, such that for all 
R > 0 and z G Z, 

(4.6) , l i m % ( « ) = 0. 
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To obtain a contradiction, it suffices to show that for all e > 0, there 
exist z(e), i(e), r(e) > r(e) > 0, with z(e) G 7^er(-e), such that 

(4-7) DHi{e)Ae){z(e)) = ^r(e). 

For in that case, by taking a sequence, ej —> 0, and a suitable sub­
sequence, €£ —> 0, we can assume that for some k and H^^ satisfying 
(4.4), we have in the sense of equivariant Gromov-Hausdorff convergece, 

(4.8) ( ^ ( ^ ( r f o ) ) - 1 « * , ^ ) ) ^ 4 (BUo),do,H), 

for some H C Isom(R fc) satisfying (4.3). This would contradict (4.4). 
Fix e > 0. To simplify the notation, in what follows, we will suppress 

the dependence of the relevant quantities on the particular choice of e. 
Choose 7] > 0, such that for z\,..., ZN as in (b), we have ZI,...,ZN G 

lZe>7ì. By (4.6), there exists i, such that for all a, 

(4-9) DHuV(za)<^n. 

By (a), there exists 6 > 0, w G Heß, such that 

(4.10) DHitg(w) > ^6 

For this w, choose ß as in (b) and A < min(?7,0), such that Zß and w lie 
in the same component of TZÊt\. 

Suppose, 

(4.11) DHuX{zp) > ^ A . 

Then by (4.9), the continuity of Diiu-{
zß) a n d the Intermediate Values 

Theorem, there exists r, with A < r < 77, such that if we take z(e) = Zß, 
i(e) = i, r(e) = 77, r(e) = r, then (4.7) holds. 

Similarly, if 

(4.12) DHuX(w) < ^ A , 
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there exists r, with A < r < 6, such that if we take, z(c) = w, i(e) = i, 
r(e) = 0, r(e) = r, then (4.7) holds. 

Thus, we can assume 

(4.13) DHiiX(zß) < ^ A < DHiiX(w). 

Since Zß and w lie in the same component of (7£fc)e,A? it follows from 
(4.13) and the Intermediate Values Theorem, that there exists z(e) lying 
in this component, such that if we take e = i, r(e) = A, r(e) = A, then 
(4.7) holds for some z(e) G (7£fc)e,A- This suffices to complete the proof. 
q.e.d. 

5. Limit spaces w i t h 1-dimensional p ieces 

In this section we show that if a limit space contains a 1-dimensional 
piece and satisfies an additional condition, then it is actually a 1-
dimensional manifold with possibly nonempty boundary. Hence, such a 
limit space is isometric to (—oo, oo), [0, oo), or to [0, £], for some £, or to 
a circle. This enables one to rule out certain candidates for limit spaces 
which could not be eliminated by arguments based solely on the split­
ting theorem and to confirm a number of basic conjectures concerning 
(possibly collapsed) limit spaces in this extremely special case. 

Let Z be a connected length space. A minimal geodesic segment, 7 : 
[—2£, 2£] —> Z, is called a 1-dimensional piece of Z if Be(

/y(s)) = -y((s — 
e, s + e)), for all (s — e, s + e) C [—2£, 2£]. In particular, for any minimal 
geodesic, a : [0,L] -+ Z, with CT(0) = 7(0), a{L) G BfXj(2£)), 2£ < L, 
we have a\[0,2£] = 7 | [ 0 , 2 £ ] . 

If Z contains a 1-dimensional piece, but is not 1-dimensional, then a 
segment, 7, as above, when suitably extended in at least one direction, 
must branch i.e., for all e > 0, there exists a minimal geodesic segment, 
a : [0,2£ + e] ->• Z as above, with o{2£ + S) ± l{2£ + ô), for some 
0 < ô < e. In particular, there exist distinct points, pi,P2 G ^ ( 7 ( 2 ^ ) ) , 
such that 7(0), pi = 7(0), p2 > 21. 

We say that 7 as above branches weakly at 7(2^), if for all pi,P2 G 
Bi(^(2£)) with 7(0) ,pi , 7(0),p<2 > 2£, there exist minimal geodesic seg­
ments, o~i : [0,Li] —> Z, from 7(0) to pi, such that a\(s) = 02(3), for 
some s > 2£. 

T h e o r e m 5 .1 . Let Y satisfy (0.3). If Y contains a 1-dimensional 
piece, 7 : [—2£, 2£] —> Y, which branches at j(2£), then 7 branches 
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weakly at j(2£). 

Proof. If the assertion is false, there exist pi,P2, with 2£ < 7(0), p\ 
7(0), p2 = L, such that for all minimal geodesies, a, : [0,1/] —> Z, from 
7(0) to pi, we have a\(s) 7̂  02 (s), for all 2£ < s < L. 

For 0 < r < -R, let -Ar;fl(p) denote the open annulus, BR(P) \ Br(p). 

Let p G Bi(^(2l)) satisfy 7(0) ,p = L > 2£ and let e be suÆciently small. 
Since AL_2£,L-2e+2e(p) 3 B^(2£ - e)), by observing B((l{2£ - e)) 

from the point, pj and applying directionally restricted relative volume 
comparison, it follows that 

( 5 ) u(Be(>y(2l-e))) " " * ' 

where * = * ( e | L - 2£, n). 

Since AL_2^-2£,L-2^0?i) n Be(-y(2£)) C ^ ,2^+2 e (7(0) ) and by as­
sumption, AL_2t-2e,L-2l{Pl) n ^L-2^-2e,L-2^(P2) H B2^{2£)) = 0, we 
get 

( 5 - 3 ) i / ( 5 £ ( 7 ( 2 £ - e ) ) ) - 2 - ^ -

On the other hand, since A2t-2e,2t{l{^))^Bt{'y(2tj) = Be(-y(2£-e)), 
by observing ^-2^,2^+2^(7(0)) r\B2e(

,y(2£)) from 7(0) and applying relative 
volume comparison, we get with (5.3), 

(5.4) u{Be(1{2£ - e))) > (2 - *)v(Be(>y(2£ - e))). 

For e suÆciently small, this is a contradiction. q.e.d. 

E x a m p l e 5.5. As shown in [4], the metric horn Y5 , with metric 
dr2+(^r1+e)2gs , arises as the limit of a collapsing sequence, {(Mf,gi)}. 
Let Y 5 denote the space obtained by attaching at the origin, a line 
segment, [—j, 0], to the space, Y 5 . It follows from Theorem 5.1, that for 
no j > 0 does the space, Y:5, arise as the limit of a sequence of manifolds 
satisfying (0.4). 

R e m a r k 5.6. The nonexistence of limit spaces, Y5 , discussed in 
Example 5.5, actually follows from an earlier unpublished result of the 
authors. It was announced in Example 8.77 [4]. The argument in the 
proof of Theorem 5.1 was suggested by the referee of [4]. 
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