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N O N - U N I V A L E N T H A R M O N I C M A P S H O M O T O P I C 
TO D I F F E O M O R P H I S M S 

F.T. FARRELL, P. ONTANEDA & M.S. RAGHUNÄTHAN 

We solve in this paper Problem 111 of the list compiled by S.-T. Yau 
in [32]. Here is a restatement of this problem. 

P r o b l e m 111 of [32]. Let / : Mi —> M 2 be a diffeomorphism 
between two compact manifolds with negative curvature. If h : M\ —> 
Mi is a harmonic map which is homotopic to / , is h a univalent map? 

(This problem has recently been reposed in [31] as Grand Challenge 
Problem 3.6.) The answer to the problem was proven to be yes when 
dimMi = 2 by Schoen-Yau [29] and Sampson [27]. Part of the interest 
in the problem comes from the fact that harmonic maps have become 
extremely useful in proving rigidity results; see for example [30], [6], 
[14], [33], [15] and [20]. Hence the negative answer given in this paper 
to Problem 111 places some limits on the applicability of the harmonic 
map techniques to rigidity questions. Our precise result is that for every 
integer n > 6 there is a pair of closed negatively curved Riemannian 
manifolds Mi and M 2 with dimMi = n, a diffeomorphism / : M\ —> M2, 
and a harmonic map h : Mi —> M 2 homotopic to / such that h is not 
univalent (i.e., not a one-to-one map). Furthermore given any e > 0, Mi 
and M2 can be constructed so that the sectional curvatures of M 2 are 
all pinched within e of —1 and Mi has constant —1 sectional curvatures. 

This paper has evolved from the earlier papers [9], [21], [10], [11] and 
[12]. In fact, the crucial use made here of the Scharlemann-Siebenmann 
C°°-Hauptvermutung [28] was earlier used in [12]. The second key ingre
dient is the existence of closed (real) hyperbolic manifolds with interest
ing cup product properties. Such manifolds are constructed in section 
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2 of this paper by elaborating on ideas in a letter written more than 10 
years ago by one of the authors, M.S. Raghunathan, to W. Casselman. 
The construction is an extension of that contained in the joint work of 
J.J. Millson and M.S. Raghunathan [19] (The results in [19] were also 
crucially used in [21] and [11].) 

1. S t a t e m e n t and proof of results 

This section contains 4 results: Lemma, Corollary, Theorem and 
Addendum. We first state these results and then devote the rest of 
the section to proving them. Theorem and Addendum are the main 
results of the paper and were discussed in the introduction. Lemma 
and Corollary are used to prove Theorem and Addendum. Lemma is 
a consequence of the constructions done in Section 2 (in particular of 
2.26) and Lemma is used to prove Corollary. 

L e m m a . Given m G Z (with m > 6) and r G R+, there exists a 
pair of closed connected orientable (real) hyperbolic manifolds M and N 
and a pair of cohomology classes a G H1 (M, Z2) and ß G H2 (M, Z2) 
satisfying the following properties: 

1. dimM = m and N is a totally geodesic codimension-one subman-
ifold of M whose normal geodesic tubular neighborhood has width 
> r. 

2. The isometry class of N depends only on m (not on r). 

3. aUß^O. 

4. a is the Poincaré dual of the homology class represented by N in 
# m _ i ( M , Z 2 ) , 

5. ß is co-spherical; i.e; it is in the image of H2(S2, Z2) under some 
continuous map M —>• S2. 

Corollary. Given an integer m > 6 and a positive real number e, 
there exists a m-dimensional closed connected orientable (real) hyper
bolic manifold M and a homeomorphism g : A4 —> M with the following 
properties: 

1. A4 is a negatively curved Riemannian manifold whose sectional 
curvatures are all in the interval (—1 — e, —1 + e). 
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2. M and M. are not PL homeomorphic. 

3. There is a connected 2-sheeted covering space M —>• M such that 
g : At —>• M is homotopic to a diffeomorphism. 

Remark . In property 3, At —> Al denotes the pullback of the 
covering space M —>• M via g, and g is the induced homeomorphism 
making the diagram 

M À M 

M 4 M 

into a Cartesian square. Also, M and At are given the differential 
structure and Riemannian metric induced by M —> M and At —)• At, 
respectively. 

T h e o r e m . For every integer m > 6 ; there is a diffeomorphism 
f : M\ —> M<2 between a pair of closed negatively curved m-dimensional 
Riemannian manifolds such that the (unique) harmonic map h : Mi —> 
Mi homotopic to f is not univalent. 

A d d e n d u m . In the Main Theorem, either Mi or M% can be chosen 
to be a real hyperbolic manifold and the other chosen to have its sectional 
curvatures pinched within e of — 1; where e is any preassigned positive 
number. 

Proof of Theorem and Addendum. Let g : Al —> M be the homeo
morphism given by Corollary relative to m and e. Set Mi = .M, M^ = 
M and let / : Mi —> M2 be a diffeomorphism homotopic to g : Ai —> M 
which exists by property 3 of Corollary. Let k : Al —> M be the unique 
harmonic map homotopic to g given by the fundamental existence result 
of Eells and Sampson [8] and uniqueness by Har tmann [13] and Al'ber 
[1]. Lifting this homotopy to the covering spaces AI, M gives a smooth 
map 

k:M^M 

covering k and homotopic to g. Note that k is also a harmonic map as is 
easily deduced from [7, 2.20 and 2.32]. Consequently, k is the harmonic 
map h : Mi —> M2 mentioned in the statement of the Theorem. Also 
note that if k is univalent, then so is k. Hence it suffices to show that k 
is not univalent. Since k is smooth, k univalent would mean that 

k:M^M 
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is a C°°-honieomorphisni and hence M and Ai are PZ/-homeomorphic 
by the C°°-Hauptvermutung proven by Scharlemann and Siebenmann 
[28]. And this would contradict property 2 of Corollary; consequently, 
k and hence also h are not univalent. This proves the Theorem and the 
part of the Addendum where M% is real hyperbolic. 

To prove the case where M\ is real hyperbolic; set M\ = M, M<2 = 
Ai and let / be a diffeomorphism homotopic to g~l. The rest of the 
argument is as before. 

Proof of Corollary. Let M and N be as in Lemma relative to 
the given integer m > 6 and a sufficiently large positive real number r 
depending on e. (How large is sufficient will presently become clear.) 
Note that the normal bundle of N in M is trivial since M and N are 
both orientable. The Riemannian manifold Ai is constructed by cutting 
M apart along N and reglueing with a twist determined by a certain 
self-diffeomorphism f : N —> N and using Lemma 2.2 of [21]. (See [21, 
p. 10] for details of this construction.) Note that although M varies 
with the real number r, the Riemannian manifold N does not because 
of property 2 of Lemma. The number of possible self diffeomorphisms 
used for glueing (described below) will be finite; in fact this number is 
equal to the cardinality of [N x I, N x di; Top/O]. (Here I = [0,1] and 
di = {0,1}.) Hence property 1 of Lemma shows that Al will satisfy 
property 1 of Corollary provided r is chosen sufficiently large. 

It remains to specify the finite set of glueing diffeomorphisms so that 
properties 2 and 3 are satisfied relative to a homeomorphism 
g : Ai —ï M. To do this we use smoothing theory as developed by 
Kirby-Siebenmann [16]. We start by associating to each element 

7 G [N x / , N x di : Top/O] 

a self-diffeomorphism 
/ 7 : N - • N 

such that / 7 is topologically psuedo-isotopic to ÌOIN; i.e., there exists a 
self-homeomorphism 

F 7 : N x [0,1] - • AT x [0,1] 

such that , for all x G A", 

1. F7{x,0) =x 

2. F 7 ( a : , l ) = / 7 ( x ) . 
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This is done as follows. By smoothing theory, 7 determines a pair 
(W,g) where W is a smooth manifold and g : W —> N x I is a home-
omorphism which is a diffeomorphism over N x di. In particular W 
is a smooth s-cobordism. Now / 7 and F7 are constructed using the 
s-cobordism theorem; see [21, §1] for more details. Then the set G of 
possible glueing maps is defined by 

G = {/7 |7 G [TV xI,N x dI;Top/0}}. 

Let ,M 7 be M modified by the twist glueing determined by / 7 , and 
let 

g7 : Mj -> M 

be the homeomorphism determined by F 7 . As pointed out above, since 
G is finite, there exists a real number r£ > 0 such that each . M 7 , 7 G G, 
satisfies property 1 of Corollary provided M comes from choosing r in 
Lemma to be re. 

We next show how to use a and ß to determine 7. For this we 
introduce some notation. Let 

u : Top/O ->• Top/PL 

denote the canonical map, and let 

»7 : S3 ->• Top/PL 

and 
»7 : 5 3 ->• T o p / O 

denote the generators of 7r3(Top/PL) and ^(Tap/Ö), respectively. Re
call that both -K^(Top/PL) and -K^Top/O) are cyclic groups of order 2 
and that 

w# : 7T3 (Top/O) - • ^{T op I PL) 

is an isomorphism. Hence both 77 and 77 are well defined up to homotopy 
and furthermore 

00 o fj ~ 77. 

Next, fix a continuous map 

/5 : M -^ S2 

such that (/9)* maps the generator of i f^S" 2 , Z2) to /3. (This is possible 
because of Lemma's property 5.) Then identify Sl with I/dl and N x I 
with a tubular neighborhood of N in M . And define a continuous map 

â : M 5 1 
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by the formula 

-( \ _ Î t if x = (y,t) G N x I, 
a{X> ~ d l if x&NxI. 

Let a, A and ip denote the inclusion map 

a : N x I ->• M, 

the diagonal map 
A : M - ^ M x M 

and the canonical quotient map 

tp : S2 X S1 -)• S2 A S1 = S3. 

Then the homotopy class 7 G [N x 7", TV x <9I; Top/O] determined by a 
and ß is represented by the following composite map 

NxI^M A M X M ^ I S 2 X S 1 ^ S 3 ^ Top/O. 

Now define the Riemannian manifold Ad and the homeomorphism 
g : Ad ^ M posited in Corollary by 

M = Ad1 and g = g1. 

It remains to verify Corollary's properties 2 and 3. To do this, let 
7 : M —> Top/O denote the composite map 

M A M X M ^ I S 2 X S 1 ^ S 3 ^ Top/O 

and observe that the homotopy class of 7, denoted [7] G [M,Top/O], 
corresponds to the smooth structure on M given by g : Ad —> M; while 
[LO Æ 7] G [M, Top/PL] corresponds to the PL-structure given by the 
same map g relative to a Whitehead triangulation of Ad. 

Since Top/PL is a uf(Z2, 3) and 77 ~ u r?, we see that this PL-
structure on M is the homotopy class of the Æmposite 

M^MxM^S2xSl%S3\ K(Z2,3). 

Now a standard algebraic topology argument shows this composite con
sidered as an element of if3(M,Z2) is aU/3. But «U/3 7̂  0 by Lemma's 
property 2. Hence g : Ad ^ M and Î^M : M ^ M represent different 
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PL-structures on M since 0 G H3 (M, Z2) corresponds to the standard 
PL-st ructure idu '• M —> M. Now the argument of [21, 3.1.2 and 3.1.3] 
shows that M and M are not PL-homeomorphic thus verifying property 
2 of Corollary. 

We next define the 2-sheeted cover q : M —>• M mentioned in Corol
lary to be the pullback via (ß x a) o A of the 2-sheeted cover 

ids2 xp:S2 x S1 -+ S2 x S\ 

where p is defined by 
p(z) = z2 

for all z G S1. It is easily shown that M is connected by using Lemma's 
property 4 and the fact that both M and N are connected. Now note, 
by naturality, that the smooth structure g : M. —> M on M corresponds 
to 

[704] G [M,Top/O}. 

Let ip : S3 —> S3 be a degree 2 map and £ : M —> S2 x S"1 be the canon
ical map covering (ß x a) o A . Then we have the following homotopy 
commutative diagram: 

M - ! » S2xS1 ^ S3 

q I I idS2 x p I (p 

M 0XAoA S2xSl A S3 -^ Top/O 

Consequently, 
[fi o ip o tp o (\ = [j o q\. 

But fj o tp is null homotopic; since ^^(Top/O) has order 2 and 93 is 
degree 2. Hence rj o (p o tfj o ̂  is also null homotopic. Therefore <? : .M —> 
M is topologically psuedo-isotopic to a diffeomorphism; thus verifying 
Corollary's property 3. This completes the proof of Corollary. 

Proof of Lemma. The manifolds M and N result from contrac
tions done in the next section; in particular from judiciously applying 
Corollary 2.26, whose set up starts in subsection 2.15. 

Let n = m, n\ = m — 1 and n<2 = m — 2 in this set up. Furthermore 
let G , L , H , G i , G 2 be the algebraic groups constructed in subsection 
2.15 relative to this choice of integers n, ni,W2 and setting the algebraic 
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number field k = Q(v 2). (Note L is constructed in 2.21.) Fix non-zero 
ideals 6' C a' C Z as in lemma 2.22. Define a subgroup A of T(a') by 

A = r(6')(r(a')nH(Q)) 

and set 
Ai = A n Gi(Q) 

(See subsection 2.1 for notation.) Fix also the non-zero ideal b C ft' 
posited in section 2.24 and let ç denote any non-zero ideal of Z such 
that 

çCb. 

Set 

(1) $ = r(c)Ai 

and let 

(2) $i = $ n G i ( Q ) 

i = 1,2. And note that 

(3) Ai = $ i . 

We now define M and N as follows relative to a sufficiently small ideal 
ç which depends on r: 

M = X/$, 
(4) 

N = Xi/$!. 

(How ç is chosen will presently become clear.) Note that X and X\ 
are isometric to ET™ and H P - 1 , respectively, and that <f> consists of ori
entation preserving isometries of EP; cf. Remark 2.23 (iii) and Corol
lary 2.26. More precisely stated M and N are closed connected ori
entable (real) hyperbolic manifolds and that N is a totally geodesic 
codimension-one submanifold of M. The isometry class of N is clearly 
independent of ç, and hence of r, because of (3) and the second equation 
in (4). Also notice that the posited cohomology class a is determined 
by Lemma's property 4. To define ß, set 

(5) T = X 2 / $ 2 . 



NON-UNIVALENT HARMONIC MAPS 235 

Then T is a framable closed codimenskm-2 submanifold of M; hence 
it determines a co-spherical class ß G H2 (M, Z2). Note that ß is the 
Poincaré dual of the homology class represented by T in i7 m _2(M, Z2). 
Furthermore, the cup product aUß is the Poincaré dual of the homology 
class represented by the intersection NnT in _ffTO_3(M, Z2). (Note that 
N and T intersect transversally.) And this homology class is different 
from zero because of Corollary 2.26. Hence Lemma's property 3 is 
verified. 

It remains to pick the ideal ç small enough so that the tubular neigh
borhood of A?" in M has width > r. As a first approximation, start by 
making the largest possible choice; i.e; set ç = b in (I) and call the 
resulting pair of closed hyperbolic manifolds thus obtained from (4) by 
MQ and N. Let 7ri(Mo, N) denote the set of all free homotopy classes 
of maps of the closed interval [0,1] into MQ starting and ending in N. 
Each non-trivial such class is represented by a unique geodesic segment 
meeting N perpendicularly at its endpoints. Also this geodesic segment 
is a curve of minimal length in its free homotopy class. Furthermore, 
there are only finitely many such geodesic segments of length less than 
2r. Let 7 i , 72 , . . . , 7 n list this set consisting of all (non-trivial) geodesic 
segments of length less than Ir which meet N perpendicularly at their 
endpoints. We may assume that n > 1. (Since otherwise we're done; 
because if n = 0, then the normal geodesic tubular neighborhood for N 
in MQ has width > r.) 

Note that -KI(MQ,N) can be identified with the double coset space 

7ri(JV)\7ri(Mo)/7riC/V) ; 

therefore, 

(6) 7 r i ( M o , A T ) = $ i W $ i . 

Using (6) together with equations(l) and (3), there exist elements 

9i,92,-,9n in 
T(b) - A1 

such that the double coset containing g,b represents the free homotopy 
class of 7J . A smaller non-zero ideal çC b can be chosen such that 

(7) gitr(c)M 

for all i = 1,2,..., n. The ideal ç is constructed using the fact that each 
Qi acts on X = Mm via elements 

-gi£SO(f,VQ)-SOU\,VQ). 
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(See subsection 2.15 for this notation.) This is the non-zero ideal c we 
seek; i.e; set 

M = X / ( r ( ç ) A i ) . 

Note that there can be no geodesic segments 7 in M of length less 
than 2r which meets N perpendicularly at its endpoints; since such a 
7 would be a lift, relative to the covering projection M —> MQ, of one 
of the geodesic segments 7$ and thus contradict (7). Consequently the 
normal geodesic tubular neighborhood of N in M has width > r . This 
completes the proof of Lemma. 

2. Cons truc t ion of s o m e hyperbol ic manifolds 

2 .1 . Let G be a connected, semisimple linear algebraic group 
over Q, and C its centre. We fix once and for all an imbedding of 
G in some GL(n) as a Q-algebraic subgroup such that the following 
holds: for every prime p in Z , C ( Q , ) C GL(n,Zp). If A is any Q-
algebra and B is any Q-algebraic subgroup of G, we denote by B(A) 
the group of A-points of B and identify it with a subgroup of GL(n, A) 
through the inclusion B(A) <—>• G(A) <—>• GL(n,A). We also set for 
any subring A' C A, A a Q-algebra, B ( A ' ) = B(A) n GL(n,A'), and 
set r B = B ( Z ) ( = B(Q) n GL(n,Z)). If a C Z is an ideal, we set 
T B (a) = {x £ B(Z) J x = l (mod a) — x is considered as an element of 
GL(n,Z)}. If a = Z, then TB(Z) = T B , and if a + {0}, then TB(a) 
has finite index in T B - We also set T G ( Ö ) = r ( a ) in the sequel. We 
denote by B the K.-points of B . (All algebraic groups over subfields of R 
are denoted by bold-face capital Roman letters, and the corresponding 
standard letters will denote the M-points). We fix a maximal compact 
subgroup K C G(R) = G and denote the Riemannian symmetric space 
K\G by X. The group T(a)(a a non-zero ideal in Z) acts properly 
discontinuously on X. Let a = p]1 • • -pr

f
e be the prime factorisation of a 

with pi, 1 < i < £ distinct. For a prime p, let Mp(r) = {g £ GL(n, Zp) | 
0 — 1 = 0 (mod pr)}. Then evidently if we set 0 (a ) = LI Mp(rp) where 
rp = ri if p = pi and rp = 0 otherwise, then T(a) = Q(a) fi T for 
the diagonal inclusion T C \[pMp. Let fl*(a) = ü(a)]J C(QP) and 
T*(a) = r n f i ' ( o ) . 

2 .2 . L e m m a . Let po be any prime. Then there is an integer r > 0 
such that T(PQ) is torsion free for all £ > r. Any torsion element of 
T*(pe

0) is fflC(Q). 
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Proof. If £ > r with r suitably large, the group {x G GL(n, Zpo) | 
x = 1 (mod Po)} is torsion free; hence the first assertion. To see that 
the second assertion holds, observe first that Mpo(£)C(QPo) is the direct 
product of Mpo (£) and C(QPo ) for all £ > r; this is because every element 
of C(Qp) is of finite order while Mpo(£) is torsion free. If 7 = Ç.a with 
C G Mp0(£), a G C(Qp) and v is an integer such that av = 1, then 
7" = ( " e r n Mpo(£) = T(pfj). It follows that if 7 is a torsion element, 
then C is a torsion element and thus £ = 1. Hence 7 G C(QP) and since 
7 G G(Q),7 G C(Q) proving our contension. 

2.3. Suppose now that B is a connected reductive Q-subgroup 
of G such that B n K is a maximal compact subgroup of B(= B(M)). 
(In particular, we may take B = G). Then Y = B n K\_B is in a 
natural fashion a totally geodesic Riemannian submanifold in X. One 
has evidently a natural map 

y/rB(a)^x/r(a) 
for every non-zero ideal a C Z. The group C(M) acts trivially on 
X and if all torsion elements of T*(a) are contained in C(Q), then 
r*(a)/C(Q) = r(a) acts fixed point freely on X. One has evidently a 
natural map Y/TB{Q) —> X/F(a), where T B (a) is the image of TB(a) = 
r*(a) n B(Q) in F (a), a being a non-zero ideal on Z. The real Lie 
group B may not be connected and may contain elements which reverse 
the orientation on Y. Consequently for torsion free F&{a),YlF-Q{a) is a 
manifold which may not be orientable in general. However, one has the 
following result due to Rohlfs and Schwermer [26]. (We have included 
a proof for the sake of completeness). 

2.4. Lemma. There exists a non-zero ideal a C Z such that 
TB(a) C B°(= connected component of the identity in B). More gener
ally if Bj, 1 < i < £ is any finite collection of reductive groups, we can 
find a non-zero ideal a such that TB^O.) C Bf for all i. If the Bj are all 
semisimple, we can choose a to be coprirne to any given non-zero ideal 
b. 

Proof. Clearly the general case of finitely many Bj follows from the 
case of a single group B. Consider first the case where B is semisimple. 
Let p : B —> B be the universal covering of B; then B is semisimple, B 
has a natural definition over Q, and p is a morphism over Q. Let /z be 
the (finite) kernel of p. The exact sequence 

l - ^ / z - ^ B - ^ B - » ! 
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of Q-groups gives rise to the following commutative diagram (for Galois 
cohomology) with exact rows: 

1 -

1 -

-»• MQ) -

1 
-»• / i(M) -

- • B(Q) -

1 
->• B(M) -

-+ B(Q) 

1 
->• B ( M ) 

Æ 

Æ 

^ ( Q , M ) 

1 

HHm,v) 

We need only to find an ideal a in Z coprirne to 6 such that <5ffi(rB(a)) = 
0, since B being simply connected, B(M) is connected. To do this ob
serve first that $ = J Q ( F B ) is a finite group, since H1(Q, ß) is an abelian 
torsion group while T B is finitely generated. Now $ being a finite set, 
we can find a (finite) Galois extension k of Q such that /z(Q) = /j,(k)(Q is 
an algebraic closure of Q containing k) and every element </? G $ can be 
represented by a f-cocycle / ^ on Gal(k/Q). This means that the image 
of ftp in H1(k, /z) is zero. It follows that every element of T B then can be 
lifted to an element ofB(k). Ifk admits a real imbedding, every element 
of T B would be in the image of B(W)- and this last image is precisely 
B°. Hence we have only to deal with the case where every archimedean 
completion of k is isomorphic to C. If kw is one such completion and aw 

is the complex conjugation in kw, then the restriction of aw to k gives an 
element of Gal(k/Q) which we continue to denote ow. Moreover, the aw 

as w varies over inequi valent archimedean valuations are all conjugates 
in Gal(k/Q). Pick one such w and set aw = a. Now by the Cebotarev 
density theorem ([18, Theorem 10, Ch. VIII]) there are infinitely many 
primes p all coprirne to b such that for each of these primes, there is 
a completion kv of k containing Qp and unramified over it such that 
(kv : Qp) = 2 and the unique nontrivial element in Gal(kv/Qp) restricts 
to a on k. Fix one such prime p. Then the map B(Q p ) —> B(Q p ) maps 
B(Qp) onto an open subgroup. Thus we may assume that there is an 
integer r > 0 such that 

{x G B(Z p ) | x = \{mod pr)} C Image B (Q p ) . 

In particular, T B ^ / ) C Image B(Q p ) so that SQP (7) is zero (in Hl(Qp, //)). 
This means that if </? G $ is of the form 6Q(^) with 7 G r ß ( p r ) , the image 
of <5Q(7) in if1(Qp, /u) is zero. But the Galois group of kv over Qp re
stricted to k is < a > and since /i(Qp) = ß{k) one concludes that fv |<0-> 
is cohomologous to zero where we have set 93 = ^ ( 7 ) , 7 G T-&{pT). It 
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follows that <5Q(7) has trivial image in i ï 1 (R,ß) if 7 G F B O / ) , i.e., 

7 G Image B(M). This proves the lemma for semisimple B . 

For a general connected reductive B , let M = [B,B] and T the 
connected component of the identity in the centre of B . Fix an ideal a 7̂  
0 such that F M ( « ) C M ° . From the fact that the congruence subgroup 
property holds for tori (this is essentially a theorem of Chevalley [5]; see 
also [25, Theorem 2.2]) one deduces that there is an ideal a ' / 0 , f l ' C a 
such that r T ( a ' ) C T° . (T° has finite index in T). Let q : B ->• 
B / M = T" be the natural morphism. Then q(F^(a')) is an arithmetic 
subgroup of T ' . It follows again from the theorem of Chevalley that 
if we fix a realisation of T ' as a Q-subgroup of some GL(m), then 
Q(^T{QL')) ^ FT1 (a ) f ° r a suitable non-zero ideal a C a/. Finally let 
a C a be a non-zero ideal such that q(FB(a )) C r T / ( a ). We then 
claim that FB(a") C B°. Let 7 G r B ( a ' " ) . Then 4(7) G q(FT(a')). 
Thus there is a ô G r r ( a ' ) such that jô'1 G r M ( « ' ) , and 7 ^ _ 1 G M ° . 
On the other hand, S G T° so that 7 G M°.T° = B°. Hence the lemma. 

2 .5 . Since for any B as above, B° acts as orientation preserving 
diffeomorphisms on Y = B n K\B, one sees that for a suitable non-zero 
ideal a' (coprirne to a given ideal b ^ 0 in Z if B is semisimple), the 
manifold Y/TB{Q) is orientable for any a C a'. Suppose now that G ì , G2 
are two connected Q-subgroups such that Kj = G-i n K is a maximal 
compact subgroup of G, for i = 1,2. Then Xj = Kì\Gi are connected 
totally geodesic (symmetric) sub-manifolds in X whose intersection Z 
is again a connected totally geodesic sub-manifold on which G\ n G2 = 
if1 acts transitively. If G ì fi G2 = H , then H1 has finite index in 
H = H (M) and contains the identity component if0 of H. From the 
lemma, we conclude that , we can find an ideal a' ^ 0 such that for any 
non-zero ideal a C a', the manifolds X/F(a),Xi/TG.(a) and Z/Tn(a) 
are all orientable. If G i , G 2 and H are semisimple, a' can be chosen 
to be coprirne to any preassigned ideal b 7̂  0. In the sequel we set 
r?(ö) = rGi(o) and Fu (a) = A (a). The natural maps 

Z/A{CL} ^ Xi/Tiia) ^ X/F{CL} 

are immersions for i = 1,2. In general they are however not imbeddings. 
We will presently show that the ideal a' above can be chosen in such a 
way that for all a C a' these mappings are indeed imbeddings. Towards 
this end we prove 

2.6. L e m m a . Let B i , B 2 be two connected reductive algebraic Q-
subgroups of G and Bj = Bj(R) i = 1,2. Then there is an ideal a' C Z 
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coprirne to any given non-zero ideal b C Z such that if B\j n KB^ 7̂  <f) 
for 7 G r(a) w/ii/i a C a', i/ien 7 G B1.B2. 

Proof. We observe first that if k G K, the (Bi,B2) double coset 
BiA;B2 is a closed subvariety of G. This follows from the results of 
Birkes [3]. Birkes shows that if M is a reductive anisotropic algebraic 
group over M and p is representation of M defined over M, on a vector 
space V then the M orbit of any vector in V(R) is closed. To apply this 
result, let g = Ï ffi p be the Cartan decomposition of the Lie algebra g of 
G with Ï being the subalgebra corresponding to K and p the orthogonal 
complement of Î in Q with respect to the Killing form of Q. Let bi,i = 
1,2 be the subalgebras of g corresponding to the Bi,ii = ï fi b, and 
q, = p n bi so that bj = fy © q$ is a Cartan - decomposition of bj. Let 
ß' = É©-\/~ïp) b̂  = Éjffî-v/̂ Tq,; these are then compact Lie algebras over 
R and define corresponding anisotropic M-forms G', B'l5 B'2 of G, Bi , B2 
respectively. Moreover there is a natural isomorphism $ (over C) of G 
on G' which carries Bj onto B^ and induces identity on K (K has 
natural inclusions in G and G' = G'(M); the latter is induced by the 
inclusion of t in g' = t © y/^ïp). We fix an identification of G' as a 
M-subgroup of GL(V) for some vector space V over R. We then have 
a natural action of B'x x B'2 on End V given b y T 4 &1T&2 where 
T G EYiii V(C),ftj G B^. Since B^ are anisotropic over R, Birkes' result 
tells us that if T G End V(R), B[TB'2 is a closed subvariety in End V(C) 
and hence in G'. It follows that if T G G'(M),BÌTB£ is closed in G'. 
Thus if T G G'(M),Bi$- 1(T)B 2 is closed in G. Since $ is the identity 
morphism on K, the double coset B1&B2 is closed for any k G K. Now 
let Q[G] denote the coordinate ring of G over Q and I the subalgebra of 
(Bi x B2) invariants for the action (gi,g2)g = gigg^ for g G G,g, G B, 
in Q[G]. Then / is a finitely generated Q-algebra. Let S C / be a finite 
set of generators for 7". We assume as we may that all / G I take the 
value 0 at 1 G G. We have fixed a realisation of G as a Q- subgroup 
of GL(n) (for some n). Let \j G Q[G] be the function that assigns to 
each g G G, the value cnj(g) — öij where {aij(g) | 1 < i, j < n} is the 
matrix of g. Then the \j generate Q[G] so that every / G Q[G] may 
be expressed as a polynomial Pf{{\j \ 1 < i,j < n}) in the A^ with 
coefficients in Q; / ( l ) = 0 if and only if Pf has constant term equal to 
zero: this holds in particular for / G S. Now since K is compact, there 
is a positive integer N coprirne to b such that one has | f(K) |< N 
for all / G S. We assume - as we may - by replacing the / by integral 
multiples if need be - that / is a polynomial in the Ay, 1 < i, j < n, 



NON-UNIVALENT HARMONIC MAPS 241 

with integral coefficients. It then follows that if 7 G r ( a ' ) (so that 
Ay(7) G a ' ) ) / ( 7 ) ^ ^ ' f ° r a n f £ S- If w e take a' to be contained in 
N, we see that /(-y) is an integer divisible by N. On the other hand 
if 7 is such that B\y n &-B2 7̂  </> with k £ K, then 7 G BiA;B2 so that 
/ ( 7 ) = f(k) leading to | /(-y) \< N. This means that /(-y) = 0 for all 
/ G S; and since S generates I as a Q-algebra, f(y) = 0 for all f G I 
with / ( l ) = 0. Now the orbits B i . B 2 and B1kB2{k G K) are both 
closed. Consequently if they are distinct, one can find a / G I with 
/ ( l ) = 0 but f{k) + 0. Thus B i . B 2 = BiA;B2. Hence if 7 G T(a) with 
a C a/ is such that -B17 n KB2 7̂  0, then 7 G B i . B 2 . This proves the 
lemma. 

2.7. Corollary. T/ie notations are as in 2.5. Then given an ideal 
bj^ 0 in Z ; t/îere is an «dea/ a' coprirne to b such that for any 7 G T(a) 
w/ii/i a C a', if X;by n l j ^ £/ien 7 G Gj. ^4/so «/ Z 7 V\ Z ^ <j> for 
7 G r ( a ) , 7 G if. 

Proof. We need only take B i = B 2 = Gj in Lemma 2.6. to prove 
the first assertion. For the second take B i = B 2 = H . 

2 .8 . From now on we assume that G is anisotropic over Q. It 
follows that any reductive Q-subgroup B of G is also anisotropic over 
Q and that B/TB is compact [4]. As before we fix Q-subgroups G i , G 2 

of G and a maximal compact subgroup K in G = G (IR) such that 
GÌ n K = Kj is a maximal compact subgroup of Gi = G,(1R). We 
set Xi = K\Gi,i = 1,2 and identify Xi,i = 1,2 as connected totally 
geodesic submanifolds of X. Let Z = X\ n X 2 so that Z is also a 
connected totally geodesic submanifold in X. Let H = G i fl G 2 ; then 
H = H(M) acts transitively on Z. Since GÌ/YQ,Ì and H/Tn are compact, 
the quotients X / T , X J / T G ; and Z/Fn are all compact. As before, we set 
Ti = TGÌ and A = T H and for an ideal a 7̂  0 in Z, set Fi(a) = Tj n T(a) 
and A (a) = A fl T(a). We also assume that dimZ = dimX\ + dimX<2 — 
<iiraX-equivalently X\ and X 2 intersect transversally. We fix a non-zero 
ideal fl'cZ such that the following conditions are satisfied: 

let $ C r ( a ' ) be any subgroup of finite index, $ j = <J>nrj(a'), i = 1,2 
and * = $ n A(a ' ) ; then 

(i) $ is torsion free; 

(ii) if 7 G $ (resp. $ j , i = 1,2, resp. \I>), then 7 acting on X (resp. 
Xj , i = 1,2, resp. Z) is orientation preserving; 
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(iiii) the map XÌ/$Ì ->• X/$,i = 1,2 and Z/\I> ->• Xj/<i>j are smooth 
imbeddings. 

(iv) $ n G1KG2(= $ n Gj-K"^) C G1.G2 (here G° = identity con
nected component of Gì). 

We now wish to examine the intersection of the submanifolds Xi/$i,i = 
1,2 in X/& with $,$i,i = 1,2 as above. Let p = p® : X ->• X/& be 
the natural projection. If xo G X\/^i fl X^j^i-, we can find 5?i G Xi 
and 7 G $ such that Ï 17 = 5?2 G X^ and p(3?i) = a?o(= p{x2))'-> but this 
means that we can find g-i G GÌ for i = 1, 2 and k £ K such that 

9i %2 = 7-

Conversely, if 7 G G\KG2ì it is clear that e gj~ 7 = e 32 where eG X is 
the identity coset. It is now immediate that 

-X"i/$i n X 2 / $ 2 = p ( U 7 e G l i f G 2 n $ (X17 n X 2 ) ) . 

Observe that our choice of a' has been made to ensure that 

G1KG2n$ C G1G2. 

Thus if we want the intersection Xi/Q\ n X2I&2 to be connected, it 
suÆces to demand that for any 7 6 $ , 

X17 m 2 c (Xi n x2)0 

with 6 G $ (if 6 G $ , from the injectivity of X2/^2 in X/<&, one sees that 
0 is in fact in $2).This would mean in fact that I i / $ i n I 2 / ^ 2 = Zf^l. 
We will show that it is possible to choose $ C r ( a ' ) so that this condition 
can in fact be met provided G i , G2 and H satisfy certain conditions. 

2 .9 . We fix once and for all an ideal ^ / 0 in Z as in 2.8. 
Let A C r(</) be a subgroup (of finite index) such that A D T(ç) for 
some non-zero ideal ç in Z. Let Aj = Aj = A fl Gj(Q). Now according 
to a theorem due to Borei and Harish-Chandra [4], the set D(A) of 
double cosets A i \ A n G i G 2 / A 2 is finite. It follows that there is an ideal 
Ò(A) = b 7̂  0 in Z with the following property: T(b) C A, and for any 
non-zero ideal tf_ C b, with T(V_) C A the image D(bT) of T{V_) n G i G 2 

in - 0 ( A ) equals D(b)(= image of T(b) n G i G 2 ) . We fix an ideal b = 
Ò(A) with this property with A as above. Let G(Aj) denote the adéle 
group of G formed out of all the non-archimedian valuations. Let $ 
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be a subgroup of (finite index in) A such that $ C AiT(ò) and such 
that $ D AiT(ç) (Ai = A fi Gi(Q)) for some nonzero ideal ç. Let 

A A 
$i = $ n G,(Q) , i = 1,2, and let $ (resp. $ j , i = 1,2) be the closure 

A 
of $ (resp. &i,i = 1,2) in the adéle group G(Aj ) . Note that $ (resp. 
A 

$ , , i = 1,2) has a natural identification with the projective limit of 
the groups {^»/r(ç) | ç a nonzero ideal such that T(ç) C <&} (resp. 
{<&i/r^(c) | ç a nonzero ideal such that Tj(ç) C <&i},i = 1,2). With this 
notation we have the following: 

A A 

2.10. L e m m a . $ n G i G 2 C $ i $ 2 -

Proof. We have here identified G(Q) as a subgroup of G(Aj ) . 
Suppose now that 7 G $ fi Gi (C)G2(C) . Let c „ , l < n < 00 be a 
decreasing sequence of nonzero ideals which is cofinal in the family of 
all non-zero ideals in Z. We assume that çn C b and that T(çn) C $ . 
Then from the choice of 6 it follows (since <& C AiT(ò)) that for every 
n, 1 < n < 00, we can find 7i(n) G A,,i = 1,2, and 7(n) in T(cn) such 
that 7 = 7i(n)7(n)72(n) . Now since Ai C <&, we see that 71 (n) G $ 1 , 

A A 

and 72(n) = 7(n) 71 (n) 7 G <& fi A2 = $2- Since $1 and $2 are 
compact, we can find a sequence A(n), 1 < n < 00 of integers such that 

7,(A(n)) tends to a limit 7jG $ j , i = 1,2. On the other hand, since 
Ç.ni 1 < ™ < 00 is cofinal in the family of all non-zero ideals, j(n) tends 

A A A A 

to the identity element. Thus 7 =7 i72 with 7 iG$ , , i = 1,2. Hence the 
lemma. 

2.11. Let Q denote an algebraic closure of Q in C, and Q the Galois 
group of Q over Q. Let 7 G r n G i ( C ) G 2 ( C ) ; then 7 G r n G i ( Q ) G 2 ( Q ) 
( nullstellensatz), i.e., 7 = g\g2 with g,b G Gi(Q),i = 1,2. One then has 
o-(31)0-(32) = o-(7) = 7 = 3152 for all a G Q. Hence ^ ( 7 ) = 3i"V(gi) = 
920~(g2)~1 is in (Gì fi G2)(Q); and cr >->• Ar(7) is a 1- cocycle on Q with 
values in (Gi n G2)(Q). The element 0(7) in Hl(Q, H) determined 
by the 1-cocycle is easily seen to be independent of the decomposition 
7 = 9i92- Moreover, the very definition of the cocycle {Aa(-y),a G Q} 
shows that the image of 0(7) in H1(Q, Gj) is trivial for i = 1, 2. Suppose 
now that 7 G $ with $ as in 2.9. Then by Lemma 2.10 we see that 0(7) 
has trivial image in H1 (Qp, H) for every p G V. Therefore we have the 
following lemma: 

2.12. L e m m a . Suppose G i , G 2 , H are such that the fibre over 
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the trivial element in tf^Q, Gi) x H1(Q,G2) x J | i ï 1 (Qp, H) for the 
per 

natural map 

ff1(Q,H) ^H1(Q,G1)xH1(QiG2)x J J ^ ^ . H ) 
per 

is trivial. Then for $ as in 2.9, $ n G i G 2 C Gi(Q).G2(Q). 

Proof. The assumptions guarantee that 0(7) is trivial in Hl(Q, H). 
This means that we can find h G H(Q) such that gï cr(gi) = AT (7) = 
h~1a(h) for all a £ G leading to g\h~l = o(g\h~l) for all a G G-
Thus u\ = g\h~l G Gi(Q). Analogously, u2 = % 2 G G2(Q) so that 
7 = Min2GGi(Q).G2(Q). 

2.13. Once again let us fix a $ as in 2.9. Then one has, assuming 
that the triple (Gi, G2, H) satisfies the conditions of Lemma 2.12, that 
any 7 G <& fi Gi(C)G2(C) can be expressed as a product 7 = g\g2 with 

A A A A 

gi G Gj(Q). On the other hand, we have 7 =7i7 2 with 7i£Ti,i = 1,2. 
We conclude, therefore, that 

(*) 7x si ^ ^ ( e H ^ ) ) . 

A A 

2.14. Lemma. Suppose now that 7,<?i,g2,7i and 72 are as above 
A - l 

and f/iaf 7i 31 is in the closure of H(Q) in H(Ay). XTien 7 = 7172 

with 7i G $ j . 
Proof. Observe that there is an open (and closed) subgroup ft 

of G (A/) such that H n G ( Q ) = $. (And hence ft n G;(Q) = $j for 
A " 1 

i = 1,2.) Now since 7i 31 is in the closure of H(Q) in H(A/), there 
, s A _ 1 A A 

is a C G H(Q) such that 7i giÇ G ft leading to giÇ G7i ft = $ ft C ft. 
Since 01C G Gi(Q),7i = 5 l ( G ft n Gi(Q) = $1. Analogously 7 2 = 
Ç~lg2 G $ 2 so that 7 = 7172. Hence the lemma. 

2.15. We will now apply these considerations to a special situa
tion. Let A; be a totally real number field and 00 its set of archimedean 
valuations (kv ~ ffi for all v G 00, kv denoting the completion at v). We 
assume that | 00 |> 2. Let / be a quadratic form on a vector space E 
over k of dimension n + 1, where n > 6. We assume that E admits a 
basis B = (eo, e i , . . . , en) such that the following conditions hold: 
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(i) For Xi G k, 0 < i < n, / ( V J a^ej) = 2_\ uixfi where Ui G k, 0 < 
0<i<n 0<i<n 

i < n. 

(ii) For i > 0, Ui is positive in every kv,v G oo. 

(iii) wo is positive in &„ for all v G oo\i>o, for some VQ and uo is negative 
in kVo. 

Let G ' denote the A;—algebraic group SO(f), the special orthogonal 
group of the quadratic form / . Let Bi, % = 1, 2 be subsets of B containing 
eo and of cardinality n, + 1. Assume further that the cardinality of 
B\ n B<2 is m + 1 = n\ + n<2 — n + 1. Let / j denote the restriction of 
/ to the k span of Bi, and Gj the special orthogonal group SO(fi) of 
the quadratic form f\. We then have natural inclusions G^ <—^ G ' of 
A;—algebraic groups. We also set H ' = G[ fl G^; then H ' is precisely the 
special orthogonal group of the restriction g of / to the A;—linear span 
F of B1 n B2 = C. Let G = Rk/QG', Gt = Rk/qG^ and H = Rk/QH'. 
We will now fix an ideal a' ^ 0 and groups A and $ as in 2.9 for the 
groups G , G i , G 2 above. With this choice of G, G i , G 2 , a ' and $ we 
have 

2.16. L e m m a . The triple ( G i , G 2 , H ) as above satisfies the condi
tion in Lemma 2.12. 

Proof. i î 1 ( Q , H) (resp. Hl(Q, G , ) , i = 1,2) is naturally isomorphic 
to ^(k^W) (resp. Hl(k, G^),i = 1,2). The Galois cohomology set 
if1(A;,H /) (resp. if1(A;,G^),i = 1,2) can be interpreted as the set of 
isomorphism classes of non-degenerate quadratic forms i n m + 1 (resp 
rii + l,i = 1,2) variables with the same discriminant as g (resp fi,i = 
1,2). The natural map H1(k,ìì') —> Hl(k,G'j) in the context of this 
interpretation is the map which associates to each quadratic q form in 
(m + 1) variables the form q-Lai (=orthogonal direct sum of q and a.{) 
where a, is the form inni — m variables given by the restriction of / to 
the A—span of Bj\Bi+i((i + l) taken (mod 2)), i = 1, 2. Now according to 
a well known " Cancellation Theorem" due to Wit t , if q, q' are quadratic 
forms in (ra + 1) variables such that q + «j ~ q' + a,, then q ~ q'. It is 
not diÆcult to conclude from this that the map H1(k, H ' ) —> Hl(k, G^) 
is injective. Lemma 2.16 is now immediate. 

2.17. Let G ' 4 G ' be the (two sheeted) spin covering of G' . 
Let G'i = 7r_1(G^) and H ' = vr _ 1 (H') . One then has the following 
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commutative diagram with exact rows of fc-algebraic groups: 

1 —>• M —>• H ' - ^ H ' — • 1 

II I I 
1 — • M2 — • G ' i - ^ G^ — • 1 

II I I 
1 —>• / i 2 —>• G ' - ^ G ' — • 1 

The kernel of 7r is isomorphic to the multiplicative group of order 2 
over k which is denoted ß2- This leads to the corresponding Galois 
cohomology exact sequences embedded in a commutative diagram: 

* 2 H'(ft) -
1 

G'i(fc) -

G'(k) -

-+ H'(ifc) 

1 
- • Gj(fc) 

1 
-+ G'(fc) 

0 

g 

5 

# ! ( * ; , j i 2 ) - ( * ; * ) / ( * 

HHk,^) 

HHk,^) 

Let A;+ = {a; G A;* | a; > 0 in every A\,,t> G oo\{t>o}}. We assert that if 
m > 3, then <J(H'(fc)) = <J(G<(fc)) = <J(G'(fc)) = k+/{k*)2. This is seen 
as follows. <5(H'(&)) (resp. <5(G^(&)), resp. ö(G'(k))) is the subgroup 
k*/(k*)2 generated by non-zero values of the quadratic form g (resp. f\, 
resp. / ) on the A;—vector space [17]. By the Hasse principle [17] g (resp. 
fi, resp. / ) takes a value a; in A; if and only if it takes the value over 
kv for all valuations v of k. Now since m > 3 if v is non-archimedean, 
gf(resp. / j , resp. / ) takes every non-zero value over ^ [17 ] . When v = t>o 
again g(resp. / , , resp. / ) takes every value in k*Vo since g (resp. fi, resp. 
/ ) is isotropic over kVo. For v G oo\{fo}, g (resp. / , , resp. / ) takes 
every positive value in kv. Thus we have 

* 2 2.18. L e m m a . ô(H'(k)) = <J(G<(&)) = tf(G'(&)) = k+/{k 

The next result is a well known theorem due to Kneser (see [23]: 
Chapter 7). 

2.19. L e m m a . Let G (resp. G , ; resp. H) be the Q— algebraic group 
Rk/QG' (resp. Rk/QG'i, resp. Rk/QÙ'). Then G(Q) (resp. Gi(Q), 
resp. H(Q)) is dense in G (Ay) ('resp. Gi(Af), resp. H(Aj) ) provided 

that n > 2 ('resp. rij > 2, resp. m > 2). 
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2.20. Lemma. Let G , G i , G 2 , H he as in 2.15. Then there is an 
ideal a / 0 in Z such that F (a) (resp. Fi(a),i = 1,2, resp. A(a) = 
r(a) nH(Q)) is contained in the image of G(Q) (resp. Gj(Q),i = 1,2, 
resp. H(Q)). 

Proof. Denote by B any one of the groups, G, Gj, H and by B the 
spin cover of B. We then have the exact sequence of Q—groups 

1 -> Rk/Q/^2 ->• B ->• B ->• 1 

leading to the cohomology exact sequence 

B(Q)->B(Q) AHl(Q,Rk/Q^2) 

and H1(Q,Rk/<!$ß2) ^ Hl{k,n2) ^ k*/{k*)2. Now let A be one of the 
groups r , Fi, A = r n H(Q) according as B is G, G Ì 5H. Then A is 
finitely generated so that Æ(A) is a finite group. Now it is known [2] that 
the map H1(k,/j,2) —> Y\H1(kv, ^2), V = a complete set of inequivalent 

vev 
non-archimedean valuations, is injective. It follows that we can find a 
finite set 5" C V such that 

Æ(F) ^ Y[H1(kv,ß2) 
ves' 

is injective. Let S be the set of valuations of Q lying below 5". For 
w G S, let B+(QW) be the image B(QW) in B(QW). Then B+(QW) is 
an open subgroup of B(QW). Let a 7̂  0 be an ideal in Z so chosen that 
A (a) C B+(Q„,) for all w £ S: since B+(Q„,) is open B(QW) for w £ S, 
such an ideal a exists. It is now clear that a is a nonzero ideal with the 
desired properties. 

2.21. Let G, Gi , G2, H be as above. Let V = B\CU{e0}. Let L 'be 
the special orthogonal group of the quadratic form h = f restricted to 
the span of V. Let L = _Rfc//Q,L'. Now H'flL' is trivial so that the natural 
map H' x L' —> H'L'(c G) is an isomorphism of k— varieties. It follows 
that every element u of H'L' is uniquely expressible as a product hi with 
h G H' and £ G L', and if u = ht G G'(k) then h G H'(k),£ G L'(fc). 
Thus one has H(Q)L(Q) = (HL)(Q) = HL n G(Q). Now choose an 
ideal a' as in 2.9 taking Gì = H and G2 = L in Lemma 2.10. In 
view of Lemma 2.20, one can assume that F (a') C G(Q)+ = Image 
G(Q) in G(Q). Let r(o') = A(H,L) and let A(H) (resp. A(L)) be the 
group A(H, L) n H(Q) (resp. A(H, L) n L(Q)). We assume moreover 
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that a' has been so chosen that it satisfies the conditions of 2.9 also for 
G i , G2 and further that if B is one of the groups G i , G2, G, L, H and 
B its spin cover, then T(a') n B C B(Q)+ = Image B(Q) in B ( B is 
the spin cover of B ) . Now from Lemma 2.10, we know that there is an 
ideal b ^ 0,6 = b(A(H,L)) such that for any subgroup * C A(H)r(ft) 
containing A(H)T(ç) for some non-zero ideal c, we have 

* n H L = $ ( H ) f ( L ) , 

where $ ( H ) (resp. $ (L ) ) is the closure of ^ ( H ) = * n H(Q) (resp. 
* ( L ) = f flL(Q)) in G (A/) . On the other hand, we have 

f n H L C H ( Q ) L ( Q ) . 

Thus if 7 G •* n H L , 

7 = 7 (H)7(L) = g(H)g(L) 

with 7 (H) (resp. 7(L) , resp. g(H), resp. g(L)) in ^ ( H ) (resp. ^ ( L ) , 
resp. H(Q) , resp. L(Q)). Hence 

9(H)-1 j(H) = gCLm-L)-1 G (H n L)(Af) = {1}, 

so that g{H) = 7 (H) G § ( H ) n H(Q) = * ( H ) and similarly g(L) G 
* ( L ) . We conclude from this that 7 = 7 (H)7(L) with 7 (H) G \I>(H) 
and 7(L) G ^ ( L ) . We record this as 

2 .22. L e m m a . Fix an ideal g/_ 7̂  0 in Z such that the following 
conditions hold: let B denote any one of the groups G , G , , i = 1,2, H 
or L ; then if $ C r(</) is any subgroup of finite index, one has: 

(i) $ is torsion free. 

(ii) $ n B(Q) C B(Q)+ = Image B(Q) in B(Q). 

(iii) Let M ' be the subgroup of G ' = SO(f) which stabilises the 1-
dimensional subspace of E spanned by eo and M = Ü j - ^ M ' . Let 
K = M(R). Then 

$ n H(R)KL(M) C H L 

and 

$ n G i ( l ) K G 2 ( M ) C G i G 2 . 
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Then there is an ideal U_ ^ 0 contained in g/_ such that for any 
subgroup \I> ofT(g/_) satisfying 

T(ç)(T(gf_) n H(Q)) C * C T(l)(T(gf_) R H(Q)) , 

for some nonzero ideal ç, also satisfies 

* n H(R)KL(R) C ( * n H ( Q ) ) ( * n L(Q)). 

2 .23 . R e m a r k s . 

(i) We have shown that an ideal g/_ satisfying (i) - (iii) in the Lemma 
exists. 

(ii) The group B(R) is connected. Consequently elements of B ( Q ) + 

and hence T(g/_) R B ( Q ) + act as orientation preserving automor
phisms of the orientable manifold K R B(M)\B(R) . 

(iii) i f n B (R) is a maximal compact subgroup of B (M) and the nat
ural map of K fl B(R)\B(M) is an imbedding of this symmetric 
space (of constant curvature) as a totally geodesic submanifold of 
K\G (which is itself a Riemannian symmetric space of constant 
curvature). 

2 .24. We now fix ideals g/_ and U_ as in Lemma 2.22. Let A be a 
subgroup of T(g/_) with 

T(l)(T(gL) H H(Q)) D A D T(ç)(T(gf_) R H(Q)) 

for some non-zero ideal ç. Choose now an ideal 6 / 0 contained in g!_ 
such that for any subgroup $ of T(g/_) with 

r (c)Ai C $ C r(ò)Ai , 

where Ai = A n Gi (Q) , $ R G i G 2 C $ i $ 2 (recall that $ , = $ R Gj(Q) 
and $ j = closure of <£>, in G(Ay )). Now the triple G, G i , G 2 satisfy the 
conditions in Lemma 2.12 (see Lemma 2.16). Thus if 7 G G1G2 R 3>, 
then 7 = gig2 = 7172 with g^ G G J ( Q ) , T Ì G $ j . We assert that we can 
choose gi such that 7 ^ g\ is in the closure of H(Q) . For this it suÆces 
to show that 7 ^ g\ is in the image of H (Ay) in H ( A j ) . (See Lemma 
2.19). Since 71 G Image G i (Aj ) = G i ( A j ) + as ensured by condition (ii) 
in Lemma 2.22, for every p—adic component 7i(p),p G V, #yi(p) = 0 in 
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^(Qp,^)- If ÆKTI(P)~V) = Æ(% ( p ) _ 1 )%i ) = 0, then every p-adic 
component of 7J~ g\ will be in the image of H(Qp) and hence 7^ g\ will 
be in the image of H(Aj). Thus it suffices to show that 7 = «1.1*2 with 
Æ(u\) = 0, since Æ(7) = 0, this would mean Æ{1x2) = 0 as well. According 
to Lemma 2.18, there is an element Ç in H(Q) such that Æ(gi) = Æ(() 
and we need only set u\ = giÇ~l,u2 = Çg2- We have thus shown 

2.25. Theorem. There exists an arithmetic subgroup $ C G(Q) 
such that the following conditions hold. 

(i) $ is torsion free. 

(ii) $ n B(Q) C B(Q)+ = Image B(Q) where B is one of the groups 
G, Gi , G2, H or L and B is the spin covering ofB. 

(iii) Let M' be the subgroup of G' = SO(f) leaving the 1-dimensional 
subspace spanned by eo stable and M = Üj-^M'. Let K = M(R). 

Then K n B(R) is a maximal compact subgroup of B(R) for any 
B as above and we have 

$nGi(l)KG2(M) c ($nGi(Q))($nG2(Q)) 

and 

$ n H(M)ÜTL(]R) C ($ n H(Q))($ n L(Q)). 

2.26. Corollary. Let X = K\G(R),Xi = K nGi(R)\Gi(R),Z = 
Xi n X2 = K n H(M)\H(M) and y = K n L(M)\L(M). / / $ is as 
in f/ie theorem,, then the natural maps XjJ<b n G,(Q) —>• X / $ , Z / $ n 
H(Q) ->• X / $ and y/<i> flL(Q) ->• X / $ are (totally geodesic isometric) 
imbeddings of compact orientable manifolds in the orientable manifold 
X / $ . Moreover Xi/$nGi(<Q) and X 2 /$nG 2 (Q) intersect transversally 
in the connected submanifold 2 / $ fl H(Q) wMe Z / $ fl H(Q) intersects 
y / $ n L ( Q ) transversally in a single point viz. the identity double coset 
K§ in Ä"\G(M)/$. 

Proof. Let p G (-X"i/$ n Gi(Q)) n (X2/$ n G2(Q)). Then there are 
elements 31 G Gi(R),g2 G G2(M), A; G K and 7 G $ with kg2^~1 = g^1 

with ifgj" (as well as Kg2) projecting to p. This means that 7 = g\kg2 

i.e., 7 G $nGi(M)KG2(M). By the theorem we conclude that 7 = 7172 

with 7J G Gj(Q) fl <£>. Thus hg2^
 = 9\ 7i5 which means that p is the 

image of p' = Kg2^ = ^ s f 7i- Clearly p' G X\ fl X2 = Z so that p G 
Image Z in X / $ . That the intersection of Xxj§ n Gi(Q) and X 2 / $ n 
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GïiQ) is transversal follows from the transversality of the intersection 
of Xi and X2. Next suppose q G (Z/$ n H(Q)) n (Y/$ n L(Q)); then 
there exist h G H(R),k G K and I G L(JR) such that M0 _ 1 = h~l 

with ô e $ , i.e., 0 G H(R)KL(R) n $. By the theorem 6» = 0(H)0(L) 
with 0(H) G H(Q) n $ and 0(L) G L(Q) n $. Arguing exactly as 
above, we see that q is in the image of Z C\Y which is the identity coset 
in X = K\G(R). Thus Z n Y is precisely the identity double coset. 
That the intersection is transversal follows from the fact that Y and Z 
intersect transversally. This completes the proof of the theorem. 
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